RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

Size: px
Start display at page:

Download "RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A"

Transcription

1 RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral: (D + 2)(D ) 2 y = e 2x. 5. Find Particular Integral: (D 3 + )y = cos(2x ). 6. Find Particular Integral: (D 2 + D)y = x 2 + 2x Reduce to linear differential equation x 2 d2 y x dy dx 2 dx + y = log x. 8. Reduce to linear differential equation x d2 y dx 2 2y x = x + x Reduce to linear differential equation ( + x) 2 d2 y + ( + x)x dy dx 2 dx + y = 2 sin x. 0. Reduce to linear differential equation (2x+3) 2 d2 y (2x+3) dy dx 2 dx 2yy = 6x.. Solve d2 y dx 2 4y = x sinh x. PART B 2. Solve (D 2 )y = x sin 3x + cos x. 3. Solve (D 2 4D + 3)y = sin 3x cos 2x. 4. Solve d2 y dx 2 + a 2 y = sec ax. 5. Solve x 2 d2 y dx 2 + 4x dy dx + 2y = ex. 6. Solve x 3 d3 y dx 3 + 2x 2 d2 y dx 2 + 2y = 0(x + x ). 7. Solve ( + x) 2 d2 y + ( + x) dy dx 2 dx + y = sin[2 log( + x)]. 8. Solve (2 + 3x) 2 d2 y dx 2 + 3(2 + 3x) dy dx 36y = 3x2 + 4x Solve dx dt t = 0. dy + y = sin t; dt + x = cos t Given that x = 2 and y = 0 when 0. Solve Dx + Dy + 3x = sin t; Dx + y x = cos t QUESTION BANK MATHEMATICS II

2 RAJALAKSHMI ENGINEERING COLLEGE MA 26. Find.( r r ) UNIT II - VECTOR CALCULUS 2. Prove that (r n ) = nr n 2 r PART A 3. Find the unit normal vector to the surface x 2 + xy + z 2 = 4 at the point (,, 2). 4. What is the greatest rate of increase of φ = xy 2 z at (, 0, 3)? 5. The temperature at a point (x, y, z) in space is given by T (x, y, z) = x 2 + y 2 z. A mosquito located at (4, 4, 2) describes to fly in such a direction that it gets cooled faster. Find the direction in which it should fly. 6. If φ = yz i + xz j + xy k, then find φ. 7. Write down φ in orthogonal curvilinear co-ordinates. 8. For what value of k is the vector r k r solenoidal? 9. Determine f(r) so that the vector f(r) r is solenoidal. 0. Find a such that F = (3x 2y+z) i +(4x+ay z) j +(x y+2z) k PART B. If r is the position vector of the point P (x, y, z), prove (r n ) = nr n 2 r where r = r. 2. Find the directional derivative of φ = xy 2 z 3 at the point (,, ) along the normal to the surface x 2 + xy + z 2 = 3 at the point (,, ). 3. Find the directional derivative of φ = 3x 2 +2y+z 2 at the point (,, ) in the direction 2 i + 2 j k. 4. Find a and b such that the surface ax 3 by 2 z = (a + 3)x 2 and 4x 2 y z 3 = may cut orthogonally at (2,, 3). 5. Prove that divcurl F = Show that F = (6xy +z 3 ) i +(3x 2 z) j +(3xz 2 y) k is irrotational vector and find the scalar potential function F = φ. QUESTION BANK 2 MATHEMATICS II

3 RAJALAKSHMI ENGINEERING COLLEGE MA Apply Green s Theorem in the plane to evaluate C (3x2 8y 2 )dx + (4y 6xy)dy where C is the boundary of the region defined by x = 0, y = 0, x + y =. 8. Apply Green s Theorem in the plane to evaluate C (3x2 8y 2 )dx + (4y 6xy)dy where C is the boundary of the region defined by y = x, y = x Verify Gauss s divergence theorem for F = 4xz i y 2 j + yz k taken over the cube bounded by x = 0, x =, y = 0, y =, z = 0, z =. 0. Verify Stoke s theorem for F = (x 2 y 2 ) i 2xy j taken over the cube bounded by x = ±a, x =, y = 0, y = b. QUESTION BANK 3 MATHEMATICS II

4 RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT III - ANALYTIC FUNCTIONS PART A. What is the necessary conditions for the existence of the derivative of f(z)? 2. If w = log z, then determine where w is non analytic. 3. Define singular point of the function with an example. 4. Show that f(z) = xy + iy is not analytic. 5. Define holomorphic function. 6. Show that v = e x sin y is harmonic function. 7. Show that v = e x cos y is harmonic function. 8. Find the invariant points of the transformation w = z z+. 9. Under the transformation w = z, find the image of z 2i = Show that the transformation w = z transforms all circles and straight lines to circles and straight lines in the w-plane.. State two important properties of Mobius transformation. PART B. If f(z) is a regular function of z prove that 4 f (z) If f(z) is an analytic function of z, prove that 0. ( ) f(z) x 2 y 2 = 2 ( ) log f(z) = x 2 y 2 3. Show that the function f(z) = xy is not analytic at the origin even though C-R equations are satisfied. 4. Determine the analytic function whose real part is sin 2x (cosh 2y cos 2x). 5. Determine the analytic function whose real part is e 2x (x cos 2y y sin 2y). 6. Determine the analytic function whose imaginary part is e x sin y. QUESTION BANK 4 MATHEMATICS II

5 RAJALAKSHMI ENGINEERING COLLEGE MA Determine the analytic function whose imaginary part is e x (x sin y y cos y). 8. find the analytic function z = u + iv, if u v = x y x 2 +4xy+y 2 9. Find the bilinear transformation that maps the points + i, i, 2 i of the z-plane into the points 0,, i of the w-plane 0. Find the bilinear transformation that maps the points i,, of the z-plane into the points 0,, of the w-plane QUESTION BANK 5 MATHEMATICS II

6 RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT IV - COMPLEX INTEGRATION. State Cauchy s Theorem. PART A 2. Evaluate C (z a) dz where C is a simple closed curve and the point z = a is (i) outside C, (ii) inside C. 3. Prove that C (z a)n dz = 0, [n ] where C is the circle z a = r. 4. Find the Taylor s series expansion of z 2 in z <. 5. Find the Taylor s series expansion of sin z in about z = π Find the poles of f(z) = (z )2 z(z 2) Find the zeros of f(z) = (z2 +) 2 ( z 2 ). 8. What are the critical points of the transformation w = z + z. 9. State Cauchy s integral formula. 0. State Cauchy s Residue formula. PART B. Find the Laurent s series of f(z) z( z) valid in the region (i) z+ <, (ii) < z + < 2 and (iii) z + > 2. z 2. Find the Laurent s series of f(z) 2 (ii)2 < z < 3 and (iii) z > 3. z 2 +5z+6 valid in the region (i) z < 2, 3. Find the Taylor s series expansion of f(z) = State the region of convergence of the series. z 4. Find the Taylors series expansion of f(z) = state the region of convergence. z( z) (z+)(z+2) about z =. about z = i and 5. Using Cauchy s residue theorem evaluate C circle z 2 = Using Cauchy s residue theorem evaluate C circle z 2 = 2. zdz (z )(z 2) 2 where C is the (3z 2 +z)dz where C is the (z )(z 2 +9) QUESTION BANK 6 MATHEMATICS II

7 RAJALAKSHMI ENGINEERING COLLEGE MA Evaluate 8. Evaluate 0 9. Evaluate 0. Evaluate 0 x 2 dx using contour integration, where a > b > 0. (x 2 +a 2 )(x 2 +b 2 ) dx (x 2 +a 2 ) 3 using contour integration, where a > 0. cos xdx using contour integration, where a > b > 0. (x 2 +a 2 )(x 2 +b 2 ) x sin xdx (x 2 +a 2 ) using contour integration. QUESTION BANK 7 MATHEMATICS II

8 RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT V - LAPLACE TRANSFORM. Define Laplace transform. PART A 2. State the change of scale property in Laplace transformation. 3. State the first shifting property in Laplace transformation. 4. State the second shifting property in Laplace transformation. 5. Find the Laplace of unit step function. 6. Find the Laplace of unit impulse function. 7. Find the Laplace transforms of (a) sin 2t sin 3t (b) cos 2 2t (c) sin 3 2t (d) e 3t 2 cos 5t 3 sin 5t (e) e 3t sin 2 t (f) t cos at (g) t 2 sin at (h) et t (i) t 3 e 3t (j) te t sin 3t (k) sin kt kt cos kt sin at (l) t (m) sin2 t t 8. Find L{f(t)}, if f(t) = 9. Find L( t) and L πt. 0. Find L (F (s)) if F (s) is : (a) (s+) 3 2 { sin 2t, 0 < t < 2π ; 0, t > π. QUESTION BANK 8 MATHEMATICS II

9 RAJALAKSHMI ENGINEERING COLLEGE MA 26 (b) s2 +2s+3 s 3 s (c) (s 4) 5 (d) (3s 4) 4 (e) 2s+3 s 2 +4 (f) s(s+a) (g) s 3 s 2 6s+0 (h) s 2 +2s+5 (i) log s+ s (j) cot s (k) log s2 + s Find the Laplace transforms of (a) e 3t (2t + 3) 3 (b) e t sin 3t cos t (c) te t cos t (d) te 2t sin 3t (e) t cos 2t (f) (t sin t) 2 (g) ( + te t ) 3 (h) cosh at cos at PART B 2. Find the inverse Laplace transforms of (a) s s 2 +4 (b) s 3 + (c) s 4 +4a 4 (d) s 2 s (e) s 2 + s 4 +s 2 + (f) s+ s 2 +s+ (g) log( + a2 s 2 ) QUESTION BANK 9 MATHEMATICS II

10 RAJALAKSHMI ENGINEERING COLLEGE MA 26 (h) tan (s 2 ) (i) tan ( s+2 3 ) 3. Use convolution theorem to find the inverse Laplace transforms of the following functions: (a) (b) (s+)(s+2) s (s 2 +a 2 ) 2 (c) s 2 (s 2 +a 2 ) 2 (s 2 +b 2 ) 2 (d) (s 4 +4) 4. Solve y 4y + 8y = e 2t, y(0) = 2, y (0) = 2 5. Solve y + 4y = sin ωt, y(0) = 0, y (0) = 0 6. Solve y + 9y = cos 2t, y(0) =, y( π 2 ) = 7. Solve the simultaneous differential equations dy dt + 2x = cos 2t, x(0) =, y(0) = 0. dy dt 8. Solve y + y = t cos 2t, y(0) = y (0) = 0 + 2x = sin 2t and 9. Solve y + 4y = cos 2t, y(π) = y (π) = 0 0. Solve x 2x + x = t 2 e t, x(0) = 2, x (0) = 3 QUESTION BANK 0 MATHEMATICS II

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

MATH 381 HOMEWORK 2 SOLUTIONS

MATH 381 HOMEWORK 2 SOLUTIONS MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e

More information

Differentiation of vectors

Differentiation of vectors Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

vector calculus 2 Learning outcomes

vector calculus 2 Learning outcomes 29 ontents vector calculus 2 1. Line integrals involving vectors 2. Surface and volume integrals 3. Integral vector theorems Learning outcomes In this Workbook you will learn how to integrate functions

More information

FINAL EXAM SOLUTIONS Math 21a, Spring 03

FINAL EXAM SOLUTIONS Math 21a, Spring 03 INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5 1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

3 Contour integrals and Cauchy s Theorem

3 Contour integrals and Cauchy s Theorem 3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of

More information

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w. hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,

More information

Homework #1 Solutions

Homework #1 Solutions MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From

More information

PHY 301: Mathematical Methods I Curvilinear Coordinate System (10-12 Lectures)

PHY 301: Mathematical Methods I Curvilinear Coordinate System (10-12 Lectures) PHY 301: Mathematical Methods I Curvilinear Coordinate System (10-12 Lectures) Dr. Alok Kumar Department of Physical Sciences IISER, Bhopal Abstract The Curvilinear co-ordinates are the common name of

More information

AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss

AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss AB2.5: urfaces and urface Integrals. Divergence heorem of Gauss epresentations of surfaces or epresentation of a surface as projections on the xy- and xz-planes, etc. are For example, z = f(x, y), x =

More information

Math 21a Curl and Divergence Spring, 2009. 1 Define the operator (pronounced del ) by. = i

Math 21a Curl and Divergence Spring, 2009. 1 Define the operator (pronounced del ) by. = i Math 21a url and ivergence Spring, 29 1 efine the operator (pronounced del by = i j y k z Notice that the gradient f (or also grad f is just applied to f (a We define the divergence of a vector field F,

More information

INTEGRATING FACTOR METHOD

INTEGRATING FACTOR METHOD Differential Equations INTEGRATING FACTOR METHOD Graham S McDonald A Tutorial Module for learning to solve 1st order linear differential equations Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular

More information

Derive 5: The Easiest... Just Got Better!

Derive 5: The Easiest... Just Got Better! Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; mbeaudin@seg.etsmtl.ca 1. Introduction Engineering

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable 4. Complex integration: Cauchy integral theorem and Cauchy integral formulas Definite integral of a complex-valued function of a real variable Consider a complex valued function f(t) of a real variable

More information

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE i93 c J SYSTEMS OF CURVES 695 ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE BY C H. ROWE. Introduction. A system of co 2 curves having been given on a surface, let us consider a variable curvilinear

More information

Complex Function Theory. Second Edition. Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY

Complex Function Theory. Second Edition. Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY Complex Function Theory Second Edition Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY Contents Preface to the Second Edition Preface to the First Edition ix xi Chapter I. Complex Numbers 1 1.1. Definition

More information

Line and surface integrals: Solutions

Line and surface integrals: Solutions hapter 5 Line and surface integrals: olutions Example 5.1 Find the work done by the force F(x, y) x 2 i xyj in moving a particle along the curve which runs from (1, ) to (, 1) along the unit circle and

More information

Mean value theorem, Taylors Theorem, Maxima and Minima.

Mean value theorem, Taylors Theorem, Maxima and Minima. MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.

More information

The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better!

The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better! The Fourth International DERIVE-TI9/89 Conference Liverpool, U.K., -5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue Notre-Dame Ouest Montréal

More information

1 3 4 = 8i + 20j 13k. x + w. y + w

1 3 4 = 8i + 20j 13k. x + w. y + w ) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations

More information

Lecture 17: Conformal Invariance

Lecture 17: Conformal Invariance Lecture 17: Conformal Invariance Scribe: Yee Lok Wong Department of Mathematics, MIT November 7, 006 1 Eventual Hitting Probability In previous lectures, we studied the following PDE for ρ(x, t x 0 ) that

More information

Merton College Maths for Physics Prelims October 10, 2005 MT I. Calculus. { y(x + δx) y(x)

Merton College Maths for Physics Prelims October 10, 2005 MT I. Calculus. { y(x + δx) y(x) Merton College Maths for Physics Prelims October 10, 2005 1. From the definition of the derivative, dy = lim δx 0 MT I Calculus { y(x + δx) y(x) evaluate d(x 2 )/. In the same way evaluate d(sin x)/. 2.

More information

Review Sheet for Test 1

Review Sheet for Test 1 Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

Math 2280 - Assignment 6

Math 2280 - Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

5.3 Improper Integrals Involving Rational and Exponential Functions

5.3 Improper Integrals Involving Rational and Exponential Functions Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a

More information

Fundamental Theorems of Vector Calculus

Fundamental Theorems of Vector Calculus Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use

More information

The Mathematics Diagnostic Test

The Mathematics Diagnostic Test The Mathematics iagnostic Test Mock Test and Further Information 010 In welcome week, students will be asked to sit a short test in order to determine the appropriate lecture course, tutorial group, whether

More information

Availability of a system with gamma life and exponential repair time under a perfect repair policy

Availability of a system with gamma life and exponential repair time under a perfect repair policy Statistics & Probability Letters 43 (1999) 189 196 Availability of a system with gamma life and exponential repair time under a perfect repair policy Jyotirmoy Sarkar, Gopal Chaudhuri 1 Department of Mathematical

More information

MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL

MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL NIKOLAI TARKHANOV AND NIKOLAI VASILEVSKI

More information

If Σ is an oriented surface bounded by a curve C, then the orientation of Σ induces an orientation for C, based on the Right-Hand-Rule.

If Σ is an oriented surface bounded by a curve C, then the orientation of Σ induces an orientation for C, based on the Right-Hand-Rule. Oriented Surfaces and Flux Integrals Let be a surface that has a tangent plane at each of its nonboundary points. At such a point on the surface two unit normal vectors exist, and they have opposite directions.

More information

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0, Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

More information

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.

More information

On Chebyshev interpolation of analytic functions

On Chebyshev interpolation of analytic functions On Chebyshev interpolation of analytic functions Laurent Demanet Department of Mathematics Massachusetts Institute of Technology Lexing Ying Department of Mathematics University of Texas at Austin March

More information

The two dimensional heat equation

The two dimensional heat equation The two dimensional heat equation Ryan C. Trinity University Partial Differential Equations March 6, 2012 Physical motivation Consider a thin rectangular plate made of some thermally conductive material.

More information

Math 265 (Butler) Practice Midterm II B (Solutions)

Math 265 (Butler) Practice Midterm II B (Solutions) Math 265 (Butler) Practice Midterm II B (Solutions) 1. Find (x 0, y 0 ) so that the plane tangent to the surface z f(x, y) x 2 + 3xy y 2 at ( x 0, y 0, f(x 0, y 0 ) ) is parallel to the plane 16x 2y 2z

More information

Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College

Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Equations of Order One: Mdx + Ndy = 0 1. Separate variables. 2. M, N homogeneous of same degree:

More information

CONSERVATION LAWS. See Figures 2 and 1.

CONSERVATION LAWS. See Figures 2 and 1. CONSERVATION LAWS 1. Multivariable calculus 1.1. Divergence theorem (of Gauss). This states that the volume integral in of the divergence of the vector-valued function F is equal to the total flux of F

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Electromagnetism - Lecture 2. Electric Fields

Electromagnetism - Lecture 2. Electric Fields Electromagnetism - Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric

More information

Math 113 HW #7 Solutions

Math 113 HW #7 Solutions Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use

More information

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math 122 Spring 12 Instructor: Jeff Lang Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

More information

Examples of Functions

Examples of Functions Chapter 3 Examples of Functions Obvious is the most dangerous word in mathematics. E. T. Bell 3.1 Möbius Transformations The first class of functions that we will discuss in some detail are built from

More information

4.2. LINE INTEGRALS 1. 2 2 ; z = t. ; y = sin

4.2. LINE INTEGRALS 1. 2 2 ; z = t. ; y = sin 4.2. LINE INTEGRALS 1 4.2 Line Integrals MATH 294 FALL 1982 FINAL # 7 294FA82FQ7.tex 4.2.1 Consider the curve given parametrically by x = cos t t ; y = sin 2 2 ; z = t a) Determine the work done by the

More information

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of

More information

Solutions - Homework sections 17.7-17.9

Solutions - Homework sections 17.7-17.9 olutions - Homework sections 7.7-7.9 7.7 6. valuate xy d, where is the triangle with vertices (,, ), (,, ), and (,, ). The three points - and therefore the triangle between them - are on the plane x +

More information

F = 0. x ψ = y + z (1) y ψ = x + z (2) z ψ = x + y (3)

F = 0. x ψ = y + z (1) y ψ = x + z (2) z ψ = x + y (3) MATH 255 FINAL NAME: Instructions: You must include all the steps in your derivations/answers. Reduce answers as much as possible, but use exact arithmetic. Write neatly, please, and show all steps. Scientists

More information

Method of Green s Functions

Method of Green s Functions Method of Green s Functions 8.303 Linear Partial ifferential Equations Matthew J. Hancock Fall 006 We introduce another powerful method of solving PEs. First, we need to consider some preliminary definitions

More information

G.A. Pavliotis. Department of Mathematics. Imperial College London

G.A. Pavliotis. Department of Mathematics. Imperial College London EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

Vector surface area Differentials in an OCS

Vector surface area Differentials in an OCS Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals

More information

MMGF30, Transformteori och analytiska funktioner

MMGF30, Transformteori och analytiska funktioner MATEMATIK Göteborgs universitet Tentamen 06-03-8, 8:30-:30 MMGF30, Transformteori och analytiska funktioner Examiner: Mahmood Alaghmandan, tel: 77 53 74, Email: mahala@chalmers.se Telefonvakt: 07 97 5630

More information

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

More information

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3 CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

More information

This is the second in a series of two papers investigating the solitary wave solutions of the integrable model wave equation

This is the second in a series of two papers investigating the solitary wave solutions of the integrable model wave equation CONVERGENCE OF SOLITARY-WAVE SOLUTIONS IN A PERTURBED BI-HAMILTONIAN DYNAMICAL SYSTEM. II. COMPLEX ANALYTIC BEHAVIOR AND CONVERGENCE TO NON-ANALYTIC SOLUTIONS. Y. A. Li 1 and P. J. Olver 1, Abstract. In

More information

1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics 1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

More information

Coffeyville Community College #MATH 202 COURSE SYLLABUS FOR DIFFERENTIAL EQUATIONS. Ryan Willis Instructor

Coffeyville Community College #MATH 202 COURSE SYLLABUS FOR DIFFERENTIAL EQUATIONS. Ryan Willis Instructor Coffeyville Community College #MATH 202 COURSE SYLLABUS FOR DIFFERENTIAL EQUATIONS Ryan Willis Instructor COURSE NUMBER: MATH 202 COURSE TITLE: Differential Equations CREDIT HOURS: 3 INSTRUCTOR: OFFICE

More information

Viscous flow through pipes of various cross-sections

Viscous flow through pipes of various cross-sections IOP PUBLISHING Eur. J. Phys. 28 (2007 521 527 EUROPEAN JOURNAL OF PHYSICS doi:10.1088/0143-0807/28/3/014 Viscous flow through pipes of various cross-sections John Lekner School of Chemical and Physical

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

Paper II ( CALCULUS ) Shahada. College, Navapur. College, Shahada. Nandurbar

Paper II ( CALCULUS ) Shahada. College, Navapur. College, Shahada. Nandurbar Paper II ( CALCULUS ) Prof. R. B. Patel Dr. B. R. Ahirrao Prof. S. M. Patil Prof. A. S. Patil Prof. G. S. Patil Prof. A. D. Borse Art, Science & Comm. College, Shahada Jaihind College, Dhule Art, Science

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015 Harold s s Cheat Sheet 8 December 05 Algebra Constant Linear Identity f(x) c f(x) x Range: [c, c] Undefined (asymptote) Restrictions: c is a real number Ay + B 0 g(x) x Restrictions: m 0 General Fms: Ax

More information

LINEAR MAPS, THE TOTAL DERIVATIVE AND THE CHAIN RULE. Contents

LINEAR MAPS, THE TOTAL DERIVATIVE AND THE CHAIN RULE. Contents LINEAR MAPS, THE TOTAL DERIVATIVE AND THE CHAIN RULE ROBERT LIPSHITZ Abstract We will discuss the notion of linear maps and introduce the total derivative of a function f : R n R m as a linear map We will

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

1. (from Stewart, page 586) Solve the initial value problem.

1. (from Stewart, page 586) Solve the initial value problem. . (from Stewart, page 586) Solve the initial value problem.. (from Stewart, page 586) (a) Solve y = y. du dt = t + sec t u (b) Solve y = y, y(0) = 0., u(0) = 5. (c) Solve y = y, y(0) = if possible. 3.

More information

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

More information

Review of Vector Analysis in Cartesian Coordinates

Review of Vector Analysis in Cartesian Coordinates R. evicky, CBE 6333 Review of Vector Analysis in Cartesian Coordinates Scalar: A quantity that has magnitude, but no direction. Examples are mass, temperature, pressure, time, distance, and real numbers.

More information

Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae 4 0 3 = A y = 3e 4x

Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae 4 0 3 = A y = 3e 4x Particular Solutions If the differential equation is actually modeling something (like the cost of milk as a function of time) it is likely that you will know a specific value (like the fact that milk

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

MODELLING A SATELLITE CONTROL SYSTEM SIMULATOR

MODELLING A SATELLITE CONTROL SYSTEM SIMULATOR National nstitute for Space Research NPE Space Mechanics and Control Division DMC São José dos Campos, SP, Brasil MODELLNG A SATELLTE CONTROL SYSTEM SMULATOR Luiz C Gadelha Souza gadelha@dem.inpe.br rd

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

The Math Circle, Spring 2004

The Math Circle, Spring 2004 The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the

More information

Vector Calculus Solutions to Sample Final Examination #1

Vector Calculus Solutions to Sample Final Examination #1 Vector alculus s to Sample Final Examination #1 1. Let f(x, y) e xy sin(x + y). (a) In what direction, starting at (,π/), is f changing the fastest? (b) In what directions starting at (,π/) is f changing

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

More information

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis Series FOURIER SERIES Graham S McDonald A self-contained Tutorial Module for learning the technique of Fourier series analysis Table of contents Begin Tutorial c 004 g.s.mcdonald@salford.ac.uk 1. Theory.

More information

r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t)

r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t) Solutions HW 9.4.2 Write the given system in matrix form x = Ax + f r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + We write this as ( ) r (t) θ (t) = ( ) ( ) 2 r(t) θ(t) + ( ) sin(t) 9.4.4 Write the given system

More information

ENCOURAGING THE INTEGRATION OF COMPLEX NUMBERS IN UNDERGRADUATE ORDINARY DIFFERENTIAL EQUATIONS

ENCOURAGING THE INTEGRATION OF COMPLEX NUMBERS IN UNDERGRADUATE ORDINARY DIFFERENTIAL EQUATIONS Texas College Mathematics Journal Volume 6, Number 2, Pages 18 24 S applied for(xx)0000-0 Article electronically published on September 23, 2009 ENCOURAGING THE INTEGRATION OF COMPLEX NUMBERS IN UNDERGRADUATE

More information

Complex Numbers. w = f(z) z. Examples

Complex Numbers. w = f(z) z. Examples omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If

More information

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y).

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 =0, x 1 = π 4, x

More information

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

United Arab Emirates University College of Sciences Department of Mathematical Sciences HOMEWORK 1 SOLUTION. Section 10.1 Vectors in the Plane

United Arab Emirates University College of Sciences Department of Mathematical Sciences HOMEWORK 1 SOLUTION. Section 10.1 Vectors in the Plane United Arab Emirates University College of Sciences Deartment of Mathematical Sciences HOMEWORK 1 SOLUTION Section 10.1 Vectors in the Plane Calculus II for Engineering MATH 110 SECTION 0 CRN 510 :00 :00

More information

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

More information

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University

More information