THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
|
|
|
- Samuel Black
- 9 years ago
- Views:
Transcription
1
2 The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered wth an error ε j : y j = x + ε j ; j = 1, 2,..., n the fundamental assumpton: the errors are normally dstrbuted wth the expected value equal to zero and wth some standard devaton σ ε j N(0, σ); E(ε j ) = 0; E(ε 2 j) = σ 2 f so, the probablty of havng a result n the range (y j, y j + dy j ) equals to: dp j dp (Y j (y j, y j + dy j )) = 1 exp [ (y j x) 2 ] 2πσ 2σ 2 dy j
3 Realsaton: dp j dp (Y j (y j, y j + dy j )) = 1 2πσ exp The lkelhood functon L s then: n 1 L = exp [ (y j x) 2 ] 2πσ 2σ 2 and ts logarthm l s: l = 1 2σ 2 n (y j x) 2 + a constant the demand l = maxmum [ (y j x) 2 2σ 2 n (y j x) 2 = mnmum n ε 2 j = mnmum ] dy j The sum of the squares of the errors should be as small as possble f the determnaton of ˆx s to be the most plausble.
4 Realsaton, cntd. The ML estmator s the arthmetc mean: ˆx = ȳ = 1 n n y j, σ 2 (ˆx) = σ2 n or, f the errors connected wth ndvdual measurements are dfferent: n ˆx = w jy j n w j [ ] w j = 1 n σj 2, σ 2 (ˆx) = 1 σ 2 j Now, f ˆx was the best estmator of X (ML estmator) of RV X then the quanttes ˆε j = y j ˆx are the best estmators of the quanttes ε j!! 1
5 We may construct a statstc: M = n ( ) 2 ˆεj = σ j n (y j ˆx) 2 = σ 2 j n (y j ˆx) 2 w j If the ε j have a normal dstrbuton the RV M should have a χ 2 dstrbuton wth n 1 degrees of freedom. Ths hypothess may be verfed (tested). A postve result of the test supports the data treatment. A negatve one calls for an extra analyss of the determnaton procedure.
6 An example (from: S. Brandt, Data analyss measurng the mass of the K 0 meson: (all data n MeV/c 2 ) m 1 = 498.1; σ 1 = 0.5, m 2 = ; σ 2 = 0.33, m 3 = 498.9; σ 3 = 0.4, m 4 = ; σ 4 = 0.4, ˆx = 4 y j 1 σ 2 j 4 1 = V AR(ˆx) = 1 σ 2 j 1 = 0.20 σ 2 j 4 M = j ˆx) (y 2 1 σj 2 = 7.2 χ ;3 = 7.82 there s no reason for dscredtng the above scheme of establshng the value of x.
7 LINEAR REGRESSION LINEAR REGRESSION s a powerfull tool for studyng fundamental relatonshps between two (or more) RVs Y and X. The method s based on the method of least squares. Let s dscuss the smplest case possble: we have a set of bvarate data,.e. a set of (x, y ) values and we presume a lnear relatonshp between the RV Y (dependent varable, response varable) and the explanatory (or regressor or predctor) varable X. Thus we should be able to wrte: ŷ = B 0 + B 1 x Note: Y are RVs, and y are ther measured values; ŷ are the ftted values,.e. the values resultng from the above relatonshp. We assume ths relatonshp be true and we are nterested n the numercal coeffcents n the proposed dependence. We shall fnd them va an adequate treatement of the measurement data.
8 LINEAR REGRESSION, cntd. As for x these are the values of a random varable too, but of a rather dfferent nature. For the sake of smplcty we should thnk about X (or the values x ) as of RV that take on values practcally free of any errors (uncertantes). We shall return to ths (unrealstc) assumpton later on. 1 The errors ε are to be consdered as dfferences between the measured (y ) and the ftted quanttes: ε = y ŷ y (B 0 + B 1 x ) As n the former case, we shall try to mnmse the sum of the error squares (SSE): Q = ε 2 ; t s not hard to show that ths sum may be decomposed nto 3 summands: ( Q = S yy (1 r 2 ) + B 1 Sxx r ) 2 S yy + n (ȳ B0 + B 1 x) 2. 1 One can magne a stuaton when the values of the predctor varable x had been carefully prepared pror to measurement,.e. any errors connected wth them are neglgble. On the other hand, the y values must be measured on-lne and ther errors should not be dsregarded.
9 LINEAR REGRESSION, cntd. ( Q = S yy (1 r 2 ) + B 1 Sxx r ) 2 S yy + n (ȳ B0 + B 1 x) 2. The symbols used are: = (x x) 2 = x 2 n x 2 S yy = (y ȳ) 2 = y 2 nȳ 2 S xy = (x x)(y ȳ) = x y n xȳ The x and ȳ are the usual arthmetc means; fnally r = S xy Sxx Syy s the sample estmator of the correlaton coeffcent. In order to mnmse Q we are free to adjust properly the values of B 0 and B 1. It s obvous that Q wll be the smallest f the followng equatons are satsfed:
10 LINEAR REGRESSION, cntd. ( Q = S yy (1 r 2 ) + B 1 Sxx r ) 2 S yy + n (ȳ B0 + B 1 x) 2. B 1 Sxx r S yy = 0 ȳ B 0 + B 1 x = 0. We shall denote the solutons for the values of B 0 (ntercept) and B 1 (slope) coeffcents whch mnmse the sum of squares n a specal way: ˆβ 1 = r Syy = S xy ˆβ0 = ȳ ˆβ 1 x Wth the relaton: y = ˆβ 0 + ˆβ 1 x the SSE has mnmum: Q = S yy (1 r 2 ). (N.B. ths may be used to show that r must be 1.) For r > 0 the slope of the straght lne s postve, and for r < 0 negatve.
11 LINEAR REGRESSION, cntd. The r quantty (the sample correlaton coeffcent) gves us a measure of the adequacy of the assumed model (lnear dependence). It can be easly shown that the total sum of squares, SST = (y ȳ) 2 can be decomposed nto a sum of the regresson sum of squares, SSR and the ntroduced already error sum of squares, SSE: (y ȳ) 2 = (ŷ ȳ) 2 + (y ŷ ) 2 or SST = SSR + SSE SST s a quantty that consttutes a measure of total varablty of the true observatons; SSR s a measure of the varablty of the ftted values, and SSE s a measure of false ( erroneous ) varablty. We have: 1 = SSR SST + SSE SST but: SSR = SST SSE = SST SST (1 r 2 ) = r 2 SST. Thus the above unty s a sum of two terms: the frst of them s the square of the sample correlaton coeffcent, r 2 and t s sometmes called the coeffcent of determnaton. The closer s r 2 to 1 the better s the (lnear) model.
12 LINEAR REGRESSION, cntd. Up to now nothng has been sad about the random nature of the ftted coeffcents, B 0, B 1. We tactly assume them to be some real numbers coeffcents n an equaton. But n practce we calculate them from formulae that contan values of some RVs. Concluson: B 0, B 1 should be also perceved as RVs, n that sense that ther determnaton wll be accomplshed also wth some margns of errors. The lnear relatonshp should be wrtten n the form: Y = B 0 + B 1 X + ε, = 1,..., n or perhaps 2 Y = β 0 + β 1 X + ε, = 1,..., n where ε are errors,.e. all possble factors other than the X varable that can produce changes n Y. These errors are normally dstrbuted wth E(ε ) = 0 and V AR(ε ) equal σ 2. From the above relaton we have: E(Y ) = β 0 + β 1 x and V AR(Y ) = σ 2 (remember: any errors on x are to be neglected). The smple lnear regresson model has three unknown parameters: β 0, β 1 and σ 2. 2 Ths change of notaton reflects the change of our attude to the ftted coeffcents; we should thnk about them as about RVs.
13 LINEAR REGRESSION, cntd. The method of least squares allows us to fnd the numercal values of the beta coeffcents theses are the ML estmators and they should be perceved as the expected values: As for the varances we have: E(β 1 ) = ˆβ 1 = r Syy E(β 0 ) = ˆβ 0 = ȳ ˆβ 1 x V AR(β 1 ) = σ2 = S xy V AR(β 0 ) = σ 2 ( 1 n + x2 )
14 verfcaton (some manpulatons? = should be carefully justfed; for β 0 the verfcaton can be done n a smlar manner) The thrd parameter of the smple lnear regresson model s σ 2. It may be shown that the statstc E(β 1 ) = E = { Sxy? = 0 + β 1 } { = E (x x)(β 0 + β 1 x ) } (x x)(y Ȳ ) = β 0? = E { (x x) + β 1 (x x)(x x) = β 1 = β 1 V AR(β 1 ) = { } { SxY V AR = V AR (x x) 2? = S 2 xx (x x)y } (x x)x } (x x)(y Ȳ ) V AR(Y ) = Sxx 2 σ 2 = σ2
15 verfcaton, cntd. s 2 = SSE n 2 = (y ŷ ) 2 n 2 s an unbased estmator of σ 2. (The n 2 n the denomnator reflects the fact that the data are used for determnng two coeffcents). The RV (n 2)s 2 /σ 2 has a ch-square dstrbuton wth n 2 degrees of freedom. Replacng the values of σ 2 n the formulae for the varances of the beta coeffcents by the sample estmator s we conclude that these coeffcents can be regarded as two standardsed random varables: β 1 ˆβ 1 s β 0 and ˆβ 0. 1 s n + x2
16 verfcaton, cntd. Theˆ-values are the ML estmators and the denomnators are the estmated standard errors of our coeffcents. Both standardsed varables have a Student s dstrbuton wth the n 2 degrees of freedom. Ther confdence ntervals can de determned n the usual way.
Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
CHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
SIMPLE LINEAR CORRELATION
SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.
PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12
14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable
STATISTICAL DATA ANALYSIS IN EXCEL
Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 [email protected] Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for
Economic Interpretation of Regression. Theory and Applications
Economc Interpretaton of Regresson Theor and Applcatons Classcal and Baesan Econometrc Methods Applcaton of mathematcal statstcs to economc data for emprcal support Economc theor postulates a qualtatve
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.
PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and m-fle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato
Regression Models for a Binary Response Using EXCEL and JMP
SEMATECH 997 Statstcal Methods Symposum Austn Regresson Models for a Bnary Response Usng EXCEL and JMP Davd C. Trndade, Ph.D. STAT-TECH Consultng and Tranng n Appled Statstcs San Jose, CA Topcs Practcal
How To Calculate The Accountng Perod Of Nequalty
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)
MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total
Portfolio Loss Distribution
Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets hold-to-maturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment
Can Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang
Quantization Effects in Digital Filters
Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value
NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
Calibration and Linear Regression Analysis: A Self-Guided Tutorial
Calbraton and Lnear Regresson Analyss: A Self-Guded Tutoral Part The Calbraton Curve, Correlaton Coeffcent and Confdence Lmts CHM314 Instrumental Analyss Department of Chemstry, Unversty of Toronto Dr.
The OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
1 Example 1: Axis-aligned rectangles
COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton
Recurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification
Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson
1 De nitions and Censoring
De ntons and Censorng. Survval Analyss We begn by consderng smple analyses but we wll lead up to and take a look at regresson on explanatory factors., as n lnear regresson part A. The mportant d erence
Online Appendix for Forecasting the Equity Risk Premium: The Role of Technical Indicators
Onlne Appendx for Forecastng the Equty Rsk Premum: The Role of Techncal Indcators Chrstopher J. Neely Federal Reserve Bank of St. Lous [email protected] Davd E. Rapach Sant Lous Unversty [email protected]
What is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
+ + + - - This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL
Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation
Exhaustve Regresson An Exploraton of Regresson-Based Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The
BERNSTEIN POLYNOMIALS
On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006
Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model
A Probabilistic Theory of Coherence
A Probablstc Theory of Coherence BRANDEN FITELSON. The Coherence Measure C Let E be a set of n propostons E,..., E n. We seek a probablstc measure C(E) of the degree of coherence of E. Intutvely, we want
Lecture 14: Implementing CAPM
Lecture 14: Implementng CAPM Queston: So, how do I apply the CAPM? Current readng: Brealey and Myers, Chapter 9 Reader, Chapter 15 M. Spegel and R. Stanton, 2000 1 Key Results So Far All nvestors should
Texas Instruments 30X IIS Calculator
Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the
L10: Linear discriminants analysis
L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss
Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
A statistical approach to determine Microbiologically Influenced Corrosion (MIC) Rates of underground gas pipelines.
A statstcal approach to determne Mcrobologcally Influenced Corroson (MIC) Rates of underground gas ppelnes. by Lech A. Grzelak A thess submtted to the Delft Unversty of Technology n conformty wth the requrements
How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence
1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh
Finite Math Chapter 10: Study Guide and Solution to Problems
Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount
Forecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye [email protected] [email protected] [email protected] Abstract - Stock market s one of the most complcated systems
The Full-Wave Rectifier
9/3/2005 The Full Wae ectfer.doc /0 The Full-Wae ectfer Consder the followng juncton dode crcut: s (t) Power Lne s (t) 2 Note that we are usng a transformer n ths crcut. The job of ths transformer s to
General Iteration Algorithm for Classification Ratemaking
General Iteraton Algorthm for Classfcaton Ratemakng by Luyang Fu and Cheng-sheng eter Wu ABSTRACT In ths study, we propose a flexble and comprehensve teraton algorthm called general teraton algorthm (GIA)
Analysis of Premium Liabilities for Australian Lines of Business
Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton
Estimation of Dispersion Parameters in GLMs with and without Random Effects
Mathematcal Statstcs Stockholm Unversty Estmaton of Dsperson Parameters n GLMs wth and wthout Random Effects Meng Ruoyan Examensarbete 2004:5 Postal address: Mathematcal Statstcs Dept. of Mathematcs Stockholm
Lecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and
Part 1: quick summary 5. Part 2: understanding the basics of ANOVA 8
Statstcs Rudolf N. Cardnal Graduate-level statstcs for psychology and neuroscence NOV n practce, and complex NOV desgns Verson of May 4 Part : quck summary 5. Overvew of ths document 5. Background knowledge
Efficient Project Portfolio as a tool for Enterprise Risk Management
Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse
total A A reag total A A r eag
hapter 5 Standardzng nalytcal Methods hapter Overvew 5 nalytcal Standards 5B albratng the Sgnal (S total ) 5 Determnng the Senstvty (k ) 5D Lnear Regresson and albraton urves 5E ompensatng for the Reagent
Although ordinary least-squares (OLS) regression
egresson through the Orgn Blackwell Oxford, TEST 0141-98X 003 5 31000 Orgnal Joseph Teachng G. UK Artcle Publshng Esenhauer through Statstcs the Ltd Trust Orgn 001 KEYWODS: Teachng; egresson; Analyss of
8 Algorithm for Binary Searching in Trees
8 Algorthm for Bnary Searchng n Trees In ths secton we present our algorthm for bnary searchng n trees. A crucal observaton employed by the algorthm s that ths problem can be effcently solved when the
where the coordinates are related to those in the old frame as follows.
Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product
"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *
Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789-794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC
Question 2: What is the variance and standard deviation of a dataset?
Queston 2: What s the varance and standard devaton of a dataset? The varance of the data uses all of the data to compute a measure of the spread n the data. The varance may be computed for a sample of
Logistic Regression. Steve Kroon
Logstc Regresson Steve Kroon Course notes sectons: 24.3-24.4 Dsclamer: these notes do not explctly ndcate whether values are vectors or scalars, but expects the reader to dscern ths from the context. Scenaro
Using Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
Section 5.4 Annuities, Present Value, and Amortization
Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today
Stress test for measuring insurance risks in non-life insurance
PROMEMORIA Datum June 01 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq and Erk Elvers Stress test for measurng nsurance rsks n non-lfe nsurance Summary Ths memo descrbes stress testng of nsurance
Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio
Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of
Lecture 2: Single Layer Perceptrons Kevin Swingler
Lecture 2: Sngle Layer Perceptrons Kevn Sngler [email protected] Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses
International University of Japan Public Management & Policy Analysis Program
Internatonal Unversty of Japan Publc Management & Polcy Analyss Program Practcal Gudes To Panel Data Modelng: A Step by Step Analyss Usng Stata * Hun Myoung Park, Ph.D. [email protected] 1. Introducton.
A Practitioner's Guide to Generalized Linear Models
A Practtoner's Gude to Generalzed Lnear Models A CAS Study Note Duncan Anderson, FIA Sholom Feldblum, FCAS Claudne Modln, FCAS Dors Schrmacher, FCAS Ernesto Schrmacher, ASA Neeza Thand, FCAS Thrd Edton
Traffic-light a stress test for life insurance provisions
MEMORANDUM Date 006-09-7 Authors Bengt von Bahr, Göran Ronge Traffc-lght a stress test for lfe nsurance provsons Fnansnspetonen P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax
Support Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada [email protected] Abstract Ths s a note to explan support vector machnes.
ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING
ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 610-519-4390,
Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative.
Queston roblem Set 3 a) We are asked how people wll react, f the nterest rate on bonds s negatve. When
Mean Molecular Weight
Mean Molecular Weght The thermodynamc relatons between P, ρ, and T, as well as the calculaton of stellar opacty requres knowledge of the system s mean molecular weght defned as the mass per unt mole of
CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements
Lecture 3 Densty estmaton Mlos Hauskrecht [email protected] 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there
Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
Prediction of Disability Frequencies in Life Insurance
Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng Fran Weber Maro V. Wüthrch October 28, 2011 Abstract For the predcton of dsablty frequences, not only the observed, but also the ncurred but
Copulas. Modeling dependencies in Financial Risk Management. BMI Master Thesis
Copulas Modelng dependences n Fnancal Rsk Management BMI Master Thess Modelng dependences n fnancal rsk management Modelng dependences n fnancal rsk management 3 Preface Ths paper has been wrtten as part
Chapter 2 The Basics of Pricing with GLMs
Chapter 2 The Bascs of Prcng wth GLMs As descrbed n the prevous secton, the goal of a tarff analyss s to determne how one or more key ratos Y vary wth a number of ratng factors Ths s remnscent of analyzng
In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount in the account, the balance, is
Payout annutes: Start wth P dollars, e.g., P = 100, 000. Over a 30 year perod you receve equal payments of A dollars at the end of each month. The amount of money left n the account, the balance, earns
The Mathematical Derivation of Least Squares
Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell
Scaling Models for the Severity and Frequency of External Operational Loss Data
Scalng Models for the Severty and Frequency of External Operatonal Loss Data Hela Dahen * Department of Fnance and Canada Research Char n Rsk Management, HEC Montreal, Canada Georges Donne * Department
OLA HÖSSJER, BENGT ERIKSSON, KAJSA JÄRNMALM AND ESBJÖRN OHLSSON ABSTRACT
ASSESSING INDIVIDUAL UNEXPLAINED VARIATION IN NON-LIFE INSURANCE BY OLA HÖSSJER, BENGT ERIKSSON, KAJSA JÄRNMALM AND ESBJÖRN OHLSSON ABSTRACT We consder varaton of observed clam frequences n non-lfe nsurance,
Logical Development Of Vogel s Approximation Method (LD-VAM): An Approach To Find Basic Feasible Solution Of Transportation Problem
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME, ISSUE, FEBRUARY ISSN 77-866 Logcal Development Of Vogel s Approxmaton Method (LD- An Approach To Fnd Basc Feasble Soluton Of Transportaton
7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
14.74 Lecture 5: Health (2)
14.74 Lecture 5: Health (2) Esther Duflo February 17, 2004 1 Possble Interventons Last tme we dscussed possble nterventons. Let s take one: provdng ron supplements to people, for example. From the data,
Fixed income risk attribution
5 Fxed ncome rsk attrbuton Chthra Krshnamurth RskMetrcs Group [email protected] We compare the rsk of the actve portfolo wth that of the benchmark and segment the dfference between the two
How To Evaluate A Dia Fund Suffcency
DI Fund Suffcency Evaluaton Methodologcal Recommendatons and DIA Russa Practce Andre G. Melnkov Deputy General Drector DIA Russa THE DEPOSIT INSURANCE CONFERENCE IN THE MENA REGION AMMAN-JORDAN, 18 20
SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:
SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and
NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582
NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!
DEGREES OF EQUIVALENCE IN A KEY COMPARISON 1 Thang H. L., Nguyen D. D. Vietnam Metrology Institute, Address: 8 Hoang Quoc Viet, Hanoi, Vietnam
DEGREES OF EQUIVALECE I A EY COMPARISO Thang H. L., guyen D. D. Vetnam Metrology Insttute, Aress: 8 Hoang Quoc Vet, Hano, Vetnam Abstract: In an nterlaboratory key comparson, a ata analyss proceure for
DO LOSS FIRMS MANAGE EARNINGS AROUND SEASONED EQUITY OFFERINGS?
DO LOSS FIRMS MANAGE EARNINGS AROUND SEASONED EQUITY OFFERINGS? Fernando Comran, Unversty of San Francsco, School of Management, 2130 Fulton Street, CA 94117, Unted States, [email protected] Tatana Fedyk,
PERRON FROBENIUS THEOREM
PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()
Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall
SP 2005-02 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 14853-7801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent
Fisher Markets and Convex Programs
Fsher Markets and Convex Programs Nkhl R. Devanur 1 Introducton Convex programmng dualty s usually stated n ts most general form, wth convex objectve functons and convex constrants. (The book by Boyd and
The Greedy Method. Introduction. 0/1 Knapsack Problem
The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton
An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services
An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsn-yng Wu b a Professor (Management Scence), Natonal Chao
HÜCKEL MOLECULAR ORBITAL THEORY
1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ
