PERRON FROBENIUS THEOREM
|
|
|
- Clemence O’Neal’
- 9 years ago
- Views:
Transcription
1 PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, () each row has some nonzero entry (t s possble to make a transton to each of the th -states from some other state), and (v) some column has more than one nonzero entry (from one of the th -states there are two possble followng states). The entry m s the probablty that somethng taken from the th -state s returned to the th -state. In probablty, usually the rows are assumed to sum to one rather than the columns. However, n that stuaton, the columns are wrtten as rows and the matrx s multpled on the rght of the vector. We retan column vectors whch are multpled on the left by the matrx. A stochastc matrx M s called regular or eventually postve provded there s a q 0 > 0 such that M q 0 has all postve entres. Ths means that for ths terate, t s possble to make a transton from any state to any other state. It then follows that M q has all postve entres for q q 0. A regular stochastc matrx automatcally satsfes condtons () and (v) n the defnton of a stochastc matrx. Let x (0) 0 s the amount of the materal at the th -locaton at tme 0. Then m x (0) s the amount of materal from the th -locaton that s returned to the th -locaton at tme. The total amount at the th -locaton at tme s the sum of the materal from all the stes, x () = m x (0). Let x (q) = x (q). x (q) n be the vector of the amount of materal at all the stes. By the above formula, x () = Mx (0) and more generally x (q+) = Mx (q). Date: Aprl 2, 2002.
2 2 R. CLARK ROBINSON Notce that the total amount of materal at tme s the same as at tme 0: x () = m x (0) = ( ) m x (0) Call ths amount X. Then, = p (q) x (0). = x(q) X s the proporton of the materal at the th -ste at tme q. Lettng ( ) p (q) = = X x(q) be the vector of these proportons, p (q) Mp (q) = M x(q) X = X Mx(q) = X x(q+) = p (q+) also transforms by multplcaton by the matrx M. For a stochastc matrx M, s always an egenvalue of the the transpose of M, M T, wth egenvector. : M T m.. =.. m n Snce M T and M have the same egenvalues, M always has as an egenvalue. Before statng the general result, we gve some examples. Example. Let M = Ths has egenvalues, 0.5, and 0.2. (We do not gve the characterstc polynomal, but do derve an egenvector for each of these values.)
3 PERRON FROBENIUS THEOREM 3 For λ =, M I = Thus, v = 3v 3 and v 2 = 6v 3. Snce we want = v + v 2 + v 3 = ( )v 3 = 0v 3, v 3 = 0., and v = For λ 2 = 0.5, M 0.5 I = Thus, 2v = v 3 and 2v 2 = 3v 3, and v 2 = 3. 2 Notce that v 2 + v2 2 + v2 3 = = 0. Ths s always the case for the egenvectors of the other egenvalues.
4 4 R. CLARK ROBINSON For λ 3 = 0.2, Thus, v = v 3 and v 2 = 0, and M 0.2 I = v 3 = 0. Notce that v 3 + v3 2 + v3 3 = + 0 = 0 s true n ths case as well. If the orgnal dstrbuton s gven by p (0) = = , then M q p (0) = ( ) q 3 + ( ) q whch converges to the dstrbuton v = Take any ntal dstrbuton p (0) wth p(0) =. Wrtng p (0) = y v + y 2 v 2 + y 3 v 3, = p (0) ) ) ) = y ( v + y 2 ( v 2 + y 3 ( v 3 Thus, = y () + y 2 (0) + y 3 (0) = y. p (0) = v + y 2 v 2 + y 3 v 3,
5 PERRON FROBENIUS THEOREM 5 and M q p (0) = v + y 2 (0.5) q v 2 + y 3 (0.2) q v 3 converges to v, the egenvector for λ =. Example 2 (Complex Egenvalues). The followng stochastc matrx llustrates the fact that a regular stochastc matrx can have complex egenvalues. Let M = The egenvalues are λ = and 0.4 ± Notce that 0.4 ± 0. 3 = = 0.9 <. Example 3 (Not Regular). An example of a stochastc matrx whch s not regular (nor transtve) s gven by M = , whch has egenvalues λ =,, 0.5, and 0.3. Notce that states and 2 nterchange wth each other and states 3 and 4 nterchange, but there s no nterchange between the par of stes and 2 wth the par of stes 3 and 4. An example of a stochastc matrx whch s transtve but not regular s gven by M = , whch has egenvalues λ =,, and ± 0.5. Here s s possble to get from any ste to any other ste, but startng at ste one, the even terates are always at ether stes 3 or 4 and the odd terates are always at ether stes or 2. Thus there s no one power for whch all the transton probabltes are postve. Thus, M s not regular. The followng theorem summarzes some of the results about regular stochastc matrces whch the above examples llustrated. Theorem 0.. Let M be a regular stochastc matrx. (a) The matrx M has as a egenvalue of multplcty one. The egenvector v can be chosen wth all postve entres and v =. (It must have ether all postve entres or all negatve entres.) (b) All the other egenvalues λ have λ <. If v s the egenvector for λ, then v = 0. (c) If p s any probablty dstrbuton wth =, then p = v + y v. Also, M q p goes to v as q goes to nfnty. =2
6 6 R. CLARK ROBINSON Sketch of the proof. We assume below that all the m > 0, whch can be done by takng a power f necessary. (a) The multplcty of the egenvalue s one. We noted above M T always has as an egenvalues so t s always an egenvalue of M. Agan, to dscuss the multplcty, we look at M T. Assume M T v = v and not all the v are equal. Assume that k s the ndex for whch v k s largest. By scalar multplcaton by f necessary we can take v k postve. Thus, v k = v k v for all and v k > v l for some l. Then, v k = m k v < m k v k = v k. The second strct nequalty uses the fact that all the m > 0,.e., that M s regular. Snce ths shows v k > v k, the contradcton mples that there are no such other vectors,.e., that there can only be one egenvector for the egenvalue. To complete the proof, we would have to consder the case wth only one egenvector but an algebrac multplcty of the characterstc equaton. We leave ths detal to the references. (b) Case (): Assume λ s a real egenvalue. We show that λ <. Agan, assume that M T v = λv. Let k be such that v k = v k v for all and v k > v l for some l. Then, λv k = m k v < m k v k = v k. Ths shows that λv k < v k, so λ <. Case (): Assume λ s a real egenvalue. We show that λ >. Agan, assume that M T v = λv. Let k be such that v k = v k v for all and v k > v l for some l,.e., v v k for all and v l > v k for some l. Then, λv k = > m k v m k ( v k ) = v k. Ths shows that λv k > v k, so λ >.
7 PERRON FROBENIUS THEOREM 7 Care () Assume λ = r e 2πω s a complex egenvalue wth complex egenvector v. Assume the v are chosen wth v k real and v k Re(v ) for all. Then, Re(λ q v k ) = Re(r q e 2πqω v k ) = Re((M q v) k ) = (M q v)re(v) = ( ) m (q) k Re(v ) < ( ) m (q) k v k = v k. Therefore, r q Re(e 2πqω ) < for all q. Snce we can fnd a q for whch Re(e 2πqω ) s very close to, we need r q < so r = λ <. (c) Let p be a probablty dstrbuton wth p =. The egenvectors are a bass, so there exst y,... y n such that p = y v. Then, = = p Thus, = y v + = y + = y. y =2 y (0) =2 p = v + y v =2 as clamed. Wrtng the teraton as f all the egenvalues are real, M q p = M q v + v y M q v = v + =2 y λ q v =2 whch tends to v because all the λ q < for 2.
8 8 R. CLARK ROBINSON References. Gantmacher, F.R., The Theory of Matrces, Volume I, II, Chelsea Publ. Co., New York, Strang, G., Lnear Algebra and Its Applcatons, Thrd Edton, Harcourt Brace Jovanovch Publshers, San Dego, 988. Department of Mathematcs, Northwestern Unversty, Evanston IL E-mal address:
8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
v a 1 b 1 i, a 2 b 2 i,..., a n b n i.
SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are
Recurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
where the coordinates are related to those in the old frame as follows.
Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia
To appear n Journal o Appled Probablty June 2007 O-COSTAT SUM RED-AD-BLACK GAMES WITH BET-DEPEDET WI PROBABILITY FUCTIO LAURA POTIGGIA, Unversty o the Scences n Phladelpha Abstract In ths paper we nvestgate
+ + + - - This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
BERNSTEIN POLYNOMIALS
On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
21 Vectors: The Cross Product & Torque
21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl
n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)
MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total
Series Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3
Royal Holloway Unversty of London Department of Physs Seres Solutons of ODEs the Frobenus method Introduton to the Methodology The smple seres expanson method works for dfferental equatons whose solutons
1 Example 1: Axis-aligned rectangles
COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton
Support Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada [email protected] Abstract Ths s a note to explan support vector machnes.
Loop Parallelization
- - Loop Parallelzaton C-52 Complaton steps: nested loops operatng on arrays, sequentell executon of teraton space DECLARE B[..,..+] FOR I :=.. FOR J :=.. I B[I,J] := B[I-,J]+B[I-,J-] ED FOR ED FOR analyze
An Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
What is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
The OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence
1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh
On Lockett pairs and Lockett conjecture for π-soluble Fitting classes
On Lockett pars and Lockett conjecture for π-soluble Fttng classes Lujn Zhu Department of Mathematcs, Yangzhou Unversty, Yangzhou 225002, P.R. Chna E-mal: [email protected] Nanyng Yang School of Mathematcs
OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL. Thomas S. Ferguson and C. Zachary Gilstein UCLA and Bell Communications May 1985, revised 2004
OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL Thomas S. Ferguson and C. Zachary Glsten UCLA and Bell Communcatons May 985, revsed 2004 Abstract. Optmal nvestment polces for maxmzng the expected
How Much to Bet on Video Poker
How Much to Bet on Vdeo Poker Trstan Barnett A queston that arses whenever a gae s favorable to the player s how uch to wager on each event? Whle conservatve play (or nu bet nzes large fluctuatons, t lacks
A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression
Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy S-curve Regresson Cheng-Wu Chen, Morrs H. L. Wang and Tng-Ya Hseh Department of Cvl Engneerng, Natonal Central Unversty,
Section 5.4 Annuities, Present Value, and Amortization
Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today
Section 5.3 Annuities, Future Value, and Sinking Funds
Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme
Stochastic epidemic models revisited: Analysis of some continuous performance measures
Stochastc epdemc models revsted: Analyss of some contnuous performance measures J.R. Artalejo Faculty of Mathematcs, Complutense Unversty of Madrd, 28040 Madrd, Span A. Economou Department of Mathematcs,
On Leonid Gurvits s proof for permanents
On Leond Gurvts s proof for permanents Monque Laurent and Alexander Schrver Abstract We gve a concse exposton of the elegant proof gven recently by Leond Gurvts for several lower bounds on permanents.
L10: Linear discriminants analysis
L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss
The Mathematical Derivation of Least Squares
Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell
The Distribution of Eigenvalues of Covariance Matrices of Residuals in Analysis of Variance
JOURNAL OF RESEARCH of the Natonal Bureau of Standards - B. Mathem atca l Scence s Vol. 74B, No.3, July-September 1970 The Dstrbuton of Egenvalues of Covarance Matrces of Resduals n Analyss of Varance
Using Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
Ring structure of splines on triangulations
www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon
Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008
Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t
Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set
1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)
6.3 / -- Communcaton Networks II (Görg) SS20 -- www.comnets.un-bremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes
Rate Monotonic (RM) Disadvantages of cyclic. TDDB47 Real Time Systems. Lecture 2: RM & EDF. Priority-based scheduling. States of a process
Dsadvantages of cyclc TDDB47 Real Tme Systems Manual scheduler constructon Cannot deal wth any runtme changes What happens f we add a task to the set? Real-Tme Systems Laboratory Department of Computer
Calculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample
Generalizing the degree sequence problem
Mddlebury College March 2009 Arzona State Unversty Dscrete Mathematcs Semnar The degree sequence problem Problem: Gven an nteger sequence d = (d 1,...,d n ) determne f there exsts a graph G wth d as ts
Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
Logical Development Of Vogel s Approximation Method (LD-VAM): An Approach To Find Basic Feasible Solution Of Transportation Problem
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME, ISSUE, FEBRUARY ISSN 77-866 Logcal Development Of Vogel s Approxmaton Method (LD- An Approach To Fnd Basc Feasble Soluton Of Transportaton
Lecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and
Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.
Producer Theory Producton ASSUMPTION 2.1 Propertes of the Producton Set The producton set Y satsfes the followng propertes 1. Y s non-empty If Y s empty, we have nothng to talk about 2. Y s closed A set
How To Calculate The Accountng Perod Of Nequalty
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT
Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the
THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
Section C2: BJT Structure and Operational Modes
Secton 2: JT Structure and Operatonal Modes Recall that the semconductor dode s smply a pn juncton. Dependng on how the juncton s based, current may easly flow between the dode termnals (forward bas, v
Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio
Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of
Extending Probabilistic Dynamic Epistemic Logic
Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set
Implied (risk neutral) probabilities, betting odds and prediction markets
Impled (rsk neutral) probabltes, bettng odds and predcton markets Fabrzo Caccafesta (Unversty of Rome "Tor Vergata") ABSTRACT - We show that the well known euvalence between the "fundamental theorem of
Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION
Vson Mouse Saurabh Sarkar a* a Unversty of Cncnnat, Cncnnat, USA ABSTRACT The report dscusses a vson based approach towards trackng of eyes and fngers. The report descrbes the process of locatng the possble
Fisher Markets and Convex Programs
Fsher Markets and Convex Programs Nkhl R. Devanur 1 Introducton Convex programmng dualty s usually stated n ts most general form, wth convex objectve functons and convex constrants. (The book by Boyd and
SIMPLE LINEAR CORRELATION
SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.
Economic Interpretation of Regression. Theory and Applications
Economc Interpretaton of Regresson Theor and Applcatons Classcal and Baesan Econometrc Methods Applcaton of mathematcal statstcs to economc data for emprcal support Economc theor postulates a qualtatve
Formulating & Solving Integer Problems Chapter 11 289
Formulatng & Solvng Integer Problems Chapter 11 289 The Optonal Stop TSP If we drop the requrement that every stop must be vsted, we then get the optonal stop TSP. Ths mght correspond to a ob sequencng
Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks
Bulletn of Mathematcal Bology (21 DOI 1.17/s11538-1-9517-4 ORIGINAL ARTICLE Product-Form Statonary Dstrbutons for Defcency Zero Chemcal Reacton Networks Davd F. Anderson, Gheorghe Cracun, Thomas G. Kurtz
Compiling for Parallelism & Locality. Dependence Testing in General. Algorithms for Solving the Dependence Problem. Dependence Testing
Complng for Parallelsm & Localty Dependence Testng n General Assgnments Deadlne for proect 4 extended to Dec 1 Last tme Data dependences and loops Today Fnsh data dependence analyss for loops General code
Learning Permutations with Exponential Weights
Journal of Machne Learnng Research 2009 (10) 1705-1736 Submtted 9/08; Publshed 7/09 Learnng Permutatons wth Exponental Weghts Davd P. Helmbold Manfred K. Warmuth Computer Scence Department Unversty of
Luby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
Do Hidden Variables. Improve Quantum Mechanics?
Radboud Unverstet Njmegen Do Hdden Varables Improve Quantum Mechancs? Bachelor Thess Author: Denns Hendrkx Begeleder: Prof. dr. Klaas Landsman Abstract Snce the dawn of quantum mechancs physcst have contemplated
Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
A Master Time Value of Money Formula. Floyd Vest
A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.
Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
Question 2: What is the variance and standard deviation of a dataset?
Queston 2: What s the varance and standard devaton of a dataset? The varance of the data uses all of the data to compute a measure of the spread n the data. The varance may be computed for a sample of
Regression Models for a Binary Response Using EXCEL and JMP
SEMATECH 997 Statstcal Methods Symposum Austn Regresson Models for a Bnary Response Usng EXCEL and JMP Davd C. Trndade, Ph.D. STAT-TECH Consultng and Tranng n Appled Statstcs San Jose, CA Topcs Practcal
Performance Analysis of Energy Consumption of Smartphone Running Mobile Hotspot Application
Internatonal Journal of mart Grd and lean Energy Performance Analyss of Energy onsumpton of martphone Runnng Moble Hotspot Applcaton Yun on hung a chool of Electronc Engneerng, oongsl Unversty, 511 angdo-dong,
Pricing Overage and Underage Penalties for Inventory with Continuous Replenishment and Compound Renewal Demand via Martingale Methods
Prcng Overage and Underage Penaltes for Inventory wth Contnuous Replenshment and Compound Renewal emand va Martngale Methods RAF -Jun-3 - comments welcome, do not cte or dstrbute wthout permsson Junmn
Texas Instruments 30X IIS Calculator
Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the
PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12
14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
The Power of Slightly More than One Sample in Randomized Load Balancing
The Power of Slghtly More than One Sample n Randomzed oad Balancng e Yng, R. Srkant and Xaohan Kang Abstract In many computng and networkng applcatons, arrvng tasks have to be routed to one of many servers,
A Probabilistic Theory of Coherence
A Probablstc Theory of Coherence BRANDEN FITELSON. The Coherence Measure C Let E be a set of n propostons E,..., E n. We seek a probablstc measure C(E) of the degree of coherence of E. Intutvely, we want
A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm
Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(7):1884-1889 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 A hybrd global optmzaton algorthm based on parallel
1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors
Pont cloud to pont cloud rgd transformatons Russell Taylor 600.445 1 600.445 Fall 000-014 Copyrght R. H. Taylor Mnmzng Rgd Regstraton Errors Typcally, gven a set of ponts {a } n one coordnate system and
Rotation Kinematics, Moment of Inertia, and Torque
Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute
Matrix Multiplication I
Matrx Multplcaton I Yuval Flmus February 2, 2012 These notes are based on a lecture gven at the Toronto Student Semnar on February 2, 2012. The materal s taen mostly from the boo Algebrac Complexty Theory
On the Optimal Control of a Cascade of Hydro-Electric Power Stations
On the Optmal Control of a Cascade of Hydro-Electrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;
1.1 The University may award Higher Doctorate degrees as specified from time-to-time in UPR AS11 1.
HIGHER DOCTORATE DEGREES SUMMARY OF PRINCIPAL CHANGES General changes None Secton 3.2 Refer to text (Amendments to verson 03.0, UPR AS02 are shown n talcs.) 1 INTRODUCTION 1.1 The Unversty may award Hgher
Daily O-D Matrix Estimation using Cellular Probe Data
Zhang, Qn, Dong and Ran Daly O-D Matrx Estmaton usng Cellular Probe Data 0 0 Y Zhang* Department of Cvl and Envronmental Engneerng, Unversty of Wsconsn-Madson, Madson, WI 0 Phone: -0-- E-mal: [email protected]
Simple Interest Loans (Section 5.1) :
Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part
Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)
Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton
Binomial Link Functions. Lori Murray, Phil Munz
Bnomal Lnk Functons Lor Murray, Phl Munz Bnomal Lnk Functons Logt Lnk functon: ( p) p ln 1 p Probt Lnk functon: ( p) 1 ( p) Complentary Log Log functon: ( p) ln( ln(1 p)) Motvatng Example A researcher
How To Assemble The Tangent Spaces Of A Manfold Nto A Coherent Whole
CHAPTER 7 VECTOR BUNDLES We next begn addressng the queston: how do we assemble the tangent spaces at varous ponts of a manfold nto a coherent whole? In order to gude the decson, consder the case of U
HÜCKEL MOLECULAR ORBITAL THEORY
1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ
DEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
CHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
5.74 Introductory Quantum Mechanics II
MIT OpenCourseWare http://ocw.mt.edu 5.74 Introductory Quantum Mechancs II Sprng 9 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 4-1 4.1. INTERACTION OF LIGHT
Research Article Enhanced Two-Step Method via Relaxed Order of α-satisfactory Degrees for Fuzzy Multiobjective Optimization
Hndaw Publshng Corporaton Mathematcal Problems n Engneerng Artcle ID 867836 pages http://dxdoorg/055/204/867836 Research Artcle Enhanced Two-Step Method va Relaxed Order of α-satsfactory Degrees for Fuzzy
copyright 1997 Bruce A. McCarl and Thomas H. Spreen.
Appendx I: Usng Summaton Notaton Wth GAMS... AI-1 AI.1 Summaton Mechancs... AI-1 AI.1.1 Sum of an Item.... AI-1 AI.1.2 Multple Sums... AI-2 AI.1.3 Sum of Two Items... AI-2 AI.2 Summaton Notaton Rules...
Analysis of Energy-Conserving Access Protocols for Wireless Identification Networks
From the Proceedngs of Internatonal Conference on Telecommuncaton Systems (ITC-97), March 2-23, 1997. 1 Analyss of Energy-Conservng Access Protocols for Wreless Identfcaton etworks Imrch Chlamtac a, Chara
CALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS
CALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS Novella Bartoln 1, Imrch Chlamtac 2 1 Dpartmento d Informatca, Unverstà d Roma La Sapenza, Roma, Italy [email protected] 2 Center for Advanced
THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS
IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,
J. Parallel Distrib. Comput.
J. Parallel Dstrb. Comput. 71 (2011) 62 76 Contents lsts avalable at ScenceDrect J. Parallel Dstrb. Comput. journal homepage: www.elsever.com/locate/jpdc Optmzng server placement n dstrbuted systems n
