Hedging Interest-Rate Risk with Duration

Size: px
Start display at page:

Download "Hedging Interest-Rate Risk with Duration"

Transcription

1 FIXED-INCOME SECURITIES Chapter 5 Hedgng Interest-Rate Rsk wth Duraton

2 Outlne Prcng and Hedgng Prcng certan cash-flows Interest rate rsk Hedgng prncples Duraton-Based Hedgng Technques Defnton of duraton Propertes of duraton Hedgng wth duraton

3 Prcng and Hedgng Motvaton Fxed-ncome products can pay ether Fxed cash-flows (e.g., fxed-rate Treasury coupon bond) Random cash-flows: depend on the future evoluton of nterest rates (e.g., floatng rate note) or other varables (prepayment rate on a mortgage pool) Objectve for ths chapter Hedge the value of a portfolo of fxed cash-flows Valuaton and hedgng of random cash-flow s a somewhat more complex task Leave t for later

4 Prcng and Hedgng Notaton B(t,T) : prce at date t of a unt dscount bond payng off $1 at date T («dscount factor») R a (t,) : zero coupon rate or pure dscount rate, or yeld-to-maturty on a zero-coupon bond wth maturty date t + B( t, t θ) 1 (1 R ( t, θ)) R(t,) : contnuously compounded pure dscount rate wth maturty t + : B( t, t θ) exp θ R( t, θ) Equvalently, 1 R( t, θ) lnb( t, t θ) θ a θ

5 The value at date t (V t ) of a bond payng cash-flows F() s gven by: m m F V ( t) F B( t, t ) Ra ( t, ) Example: $100 bond wth a 5% coupon F F m cn cn 5% N 5% Therefore, the value s a functon of tme and nterest rates Value changes as nterest rates fluctuate Prcng and Hedgng Prcng Certan Cash-Flows

6 Example Assume today a flat structure of nterest rates R a (0,) = 10% for all Bond wth 10 years maturty, coupon rate = 10% Prce: $100 If the term structure shfts up to 12% (parallel shft) Bond prce : $88.7 Captal loss: $11.3, or 11.3% Implcatons Prcng and Hedgng Interest Rate Rsk Hedgng nterest rate rsk s economcally mportant Hedgng nterest rate rsk s a complex task: 10 rsk factors n ths example!

7 Basc prncple: attempt to reduce as much as possble the dmensonalty of the problem Frst step: duraton hedgng Consder only one rsk factor Assume a flat yeld curve Assume only small changes n the rsk factor Beyond duraton Relax the assumpton of small nterest rate changes Relax the assumpton of a flat yeld curve Relax the assumpton of parallel shfts Prcng and Hedgng Hedgng Prncples

8 Use a proxy for the term structure: the yeld to maturty of the bond It s an average of the whole terms structure If the term structure s flat, t s the term structure We wll study the senstvty of the prce of the bond to changes n yeld: Change n TS means change n yeld Prce of the bond: (actually y/2) m F V y 1 1 Duraton Hedgng Duraton

9 Interest rate rsk Rates change from y to y+dy dv V dv V '( y) dy V ( y) Duraton Hedgng Senstvty dy s a small varaton, say 1 bass pont (e.g., from 5% to 5.01%) Change n bond value dv followng change n rate value dy V( y dy) V( y) For small changes, can be approxmated by Relatve varaton dv V'( y) dy Sens dy

10 Duraton Hedgng Duraton The relatve senstvty, denoted as Sens, s the partal dervatve of the bond prce wth respect to yeld, dvded by the bond prce m Formally 1 F V '( y) 1 y 1 1 y Sens / V ( y) V ( y) In plan Englsh: tells you how much relatve change n prce follows a gven small change n yeld mpact It s always a negatve number Bond prce goes down when yeld goes up

11 Duraton Hedgng Termnology The opposte of the senstvty Sens s referred to as «Modfed Duraton» The absolute senstvty V (y) = Sens x V(y) s referred to as «$ Duraton» Example: Bond wth 10 year maturty Coupon rate: 6% Quoted at 5% yeld or equvalently $ prce The $ Duraton of ths bond s and the modfed duraton s Interpretaton Rate goes up by 0.1% (10 bass ponts) Absolute P&L: x.0.1% = -$ Relatve P&L: -7.52x0.1% = %

12 Defnton of Duraton D: 1 Also known as Macaulay duraton It s a measure of average maturty Duraton Hedgng Duraton Relatonshp wth senstvty and modfed duraton: D m F (1 V y) D Sens ( 1 y) MD (1 y)

13 Duraton Hedgng Example Tme of Cash Flow () Cash Flow F w 1 V F 1 y w Example: m = 10, c = 5.34%, y = 5.34% D m 1 w Total

14 Duraton of a zero coupon bond s Equal to maturty For a gven maturty and yeld, duraton ncreases as coupon rate Decreases For a gven coupon rate and yeld, duraton ncreases as maturty Increases For a gven maturty and coupon rate, duraton ncreases as yeld rate Decreases Duraton Hedgng Propertes of Duraton

15 Duraton Hedgng Propertes of Duraton - Example Bond Maturty Coupon YTM Prce Sens D Bond 1 1 7% 6% Bond 2 1 6% 6% Bond 3 5 7% 6% Bond 4 5 6% 6% Bond % 6% Bond % 6% Bond % 6% Bond % 7% Bond % 6% Bond % 6%

16 Duraton Hedgng Propertes of Duraton - Lnearty Duraton of a portfolo of n bonds D P n 1 D where w s the weght of bond n the portfolo, and: n w 1 1 Ths s true f and only f all bonds have same yeld,.e., f yeld curve s flat If that s the case, n order to attan a gven duraton we only need two bonds w

17 Prncple: mmunze the value of a bond portfolo wth respect to changes n yeld Denote by P the value of the portfolo Denote by H the value of the hedgng nstrument Hedgng nstrument may be Bond Swap Future Opton Assume a flat yeld curve Duraton Hedgng Hedgng

18 Changes n value Portfolo Hedgng nstrument dp P'( y) dy dp qdh Duraton Hedgng Hedgng dh H'( y) dy Strategy: hold q unts of the hedgng nstrument so that qh' ( y) P'( y) dy 0 Soluton q P'( y) H'( y) P Sens H Sens H P P Dur H Dur H P

19 Example: Duraton Hedgng Hedgng At date t, a portfolo P has a prce $328635, a 5.143% yeld and a duraton Hedgng nstrument, a bond, has a prce $ , a 4.779% yeld and a duraton Hedgng strategy nvolves a buyng/sellng a number of bonds q = -(328635x7.108)/( x5.748) = If you hold the portfolo P, you want to sell 3421 unts of bonds

20 Duraton Hedgng Lmts Duraton hedgng s Very smple Bult on very restrctve assumptons Assumpton 1: small changes n yeld The value of the portfolo could be approxmated by ts frst order Taylor expanson OK when changes n yeld are small, not OK otherwse Ths s why the hedge portfolo should be re-adjusted reasonably often Assumpton 2: the yeld curve s flat at the orgn In partcular we suppose that all bonds have the same yeld rate In other words, the nterest rate rsk s smply consdered as a rsk on the general level of nterest rates Assumpton 3: the yeld curve s flat at each pont n tme In other words, we have assumed that the yeld curve s only affected only by a parallel shft

Interest Rate Futures

Interest Rate Futures Interest Rate Futures Chapter 6 6.1 Day Count Conventons n the U.S. (Page 129) Treasury Bonds: Corporate Bonds: Money Market Instruments: Actual/Actual (n perod) 30/360 Actual/360 The day count conventon

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt. Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces

More information

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuity Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

More information

ADVA FINAN QUAN ADVANCED FINANCE AND QUANTITATIVE INTERVIEWS VAULT GUIDE TO. Customized for: Jason ([email protected]) 2002 Vault Inc.

ADVA FINAN QUAN ADVANCED FINANCE AND QUANTITATIVE INTERVIEWS VAULT GUIDE TO. Customized for: Jason (jason.barquero@cgu.edu) 2002 Vault Inc. ADVA FINAN QUAN 00 Vault Inc. VAULT GUIDE TO ADVANCED FINANCE AND QUANTITATIVE INTERVIEWS Copyrght 00 by Vault Inc. All rghts reserved. All nformaton n ths book s subject to change wthout notce. Vault

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression. Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook

More information

Hedge accounting within IAS39

Hedge accounting within IAS39 Economc and Fnancal Report 2002/02 Hedge accountng wthn IAS39 Alessandro Ross, Gudo Bchsao and Francesca Campolongo Economc and Fnancal Studes European Investment Bank 00, boulevard Konrad Adenauer L-2950

More information

Interest Rate Forwards and Swaps

Interest Rate Forwards and Swaps Interest Rate Forwards and Swaps Forward rate agreement (FRA) mxn FRA = agreement that fxes desgnated nterest rate coverng a perod of (n-m) months, startng n m months: Example: Depostor wants to fx rate

More information

Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative.

Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative. Queston roblem Set 3 a) We are asked how people wll react, f the nterest rate on bonds s negatve. When

More information

Stock Profit Patterns

Stock Profit Patterns Stock Proft Patterns Suppose a share of Farsta Shppng stock n January 004 s prce n the market to 56. Assume that a September call opton at exercse prce 50 costs 8. A September put opton at exercse prce

More information

ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C White Emerson Process Management

ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C White Emerson Process Management ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C Whte Emerson Process Management Abstract Energy prces have exhbted sgnfcant volatlty n recent years. For example, natural gas prces

More information

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important

More information

Section 5.4 Annuities, Present Value, and Amortization

Section 5.4 Annuities, Present Value, and Amortization Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

The Application of Fractional Brownian Motion in Option Pricing

The Application of Fractional Brownian Motion in Option Pricing Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn [email protected]

More information

Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio

Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of

More information

Fixed income risk attribution

Fixed income risk attribution 5 Fxed ncome rsk attrbuton Chthra Krshnamurth RskMetrcs Group [email protected] We compare the rsk of the actve portfolo wth that of the benchmark and segment the dfference between the two

More information

IS-LM Model 1 C' dy = di

IS-LM Model 1 C' dy = di - odel Solow Assumptons - demand rrelevant n long run; assumes economy s operatng at potental GDP; concerned wth growth - Assumptons - supply s rrelevant n short run; assumes economy s operatng below potental

More information

AS 2553a Mathematics of finance

AS 2553a Mathematics of finance AS 2553a Mathematcs of fnance Formula sheet November 29, 2010 Ths ocument contans some of the most frequently use formulae that are scusse n the course As a general rule, stuents are responsble for all

More information

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant

More information

Stress test for measuring insurance risks in non-life insurance

Stress test for measuring insurance risks in non-life insurance PROMEMORIA Datum June 01 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq and Erk Elvers Stress test for measurng nsurance rsks n non-lfe nsurance Summary Ths memo descrbes stress testng of nsurance

More information

The Cox-Ross-Rubinstein Option Pricing Model

The Cox-Ross-Rubinstein Option Pricing Model Fnance 400 A. Penat - G. Pennacc Te Cox-Ross-Rubnsten Opton Prcng Model Te prevous notes sowed tat te absence o arbtrage restrcts te prce o an opton n terms o ts underlyng asset. However, te no-arbtrage

More information

Mathematics of Finance

Mathematics of Finance Mathematcs of Fnance 5 C H A P T E R CHAPTER OUTLINE 5.1 Smple Interest and Dscount 5.2 Compound Interest 5.3 Annutes, Future Value, and Snkng Funds 5.4 Annutes, Present Value, and Amortzaton CASE STUDY

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Joe Pimbley, unpublished, 2005. Yield Curve Calculations

Joe Pimbley, unpublished, 2005. Yield Curve Calculations Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward

More information

Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts

Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts Power-of-wo Polces for Sngle- Warehouse Mult-Retaler Inventory Systems wth Order Frequency Dscounts José A. Ventura Pennsylvana State Unversty (USA) Yale. Herer echnon Israel Insttute of echnology (Israel)

More information

A Model of Private Equity Fund Compensation

A Model of Private Equity Fund Compensation A Model of Prvate Equty Fund Compensaton Wonho Wlson Cho Andrew Metrck Ayako Yasuda KAIST Yale School of Management Unversty of Calforna at Davs June 26, 2011 Abstract: Ths paper analyzes the economcs

More information

Finite Math Chapter 10: Study Guide and Solution to Problems

Finite Math Chapter 10: Study Guide and Solution to Problems Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount

More information

Problems and Solutions

Problems and Solutions 1 CHAPTER 1 Problems 1.1 Problems on Bonds Exercise 1.1 On 12/04/01, consider a fixed-coupon bond whose features are the following: face value: $1,000 coupon rate: 8% coupon frequency: semiannual maturity:

More information

Application of Quasi Monte Carlo methods and Global Sensitivity Analysis in finance

Application of Quasi Monte Carlo methods and Global Sensitivity Analysis in finance Applcaton of Quas Monte Carlo methods and Global Senstvty Analyss n fnance Serge Kucherenko, Nlay Shah Imperal College London, UK skucherenko@mperalacuk Daro Czraky Barclays Captal DaroCzraky@barclayscaptalcom

More information

Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining

Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining Rsk Model of Long-Term Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,

More information

On the pricing of illiquid options with Black-Scholes formula

On the pricing of illiquid options with Black-Scholes formula 7 th InternatonalScentfcConferenceManagngandModellngofFnancalRsks Ostrava VŠB-TU Ostrava, Faculty of Economcs, Department of Fnance 8 th 9 th September2014 On the prcng of llqud optons wth Black-Scholes

More information

10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest

10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest 1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual e ectve

More information

Traffic-light a stress test for life insurance provisions

Traffic-light a stress test for life insurance provisions MEMORANDUM Date 006-09-7 Authors Bengt von Bahr, Göran Ronge Traffc-lght a stress test for lfe nsurance provsons Fnansnspetonen P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy S-curve Regresson Cheng-Wu Chen, Morrs H. L. Wang and Tng-Ya Hseh Department of Cvl Engneerng, Natonal Central Unversty,

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

YIELD CURVE FITTING 2.0 Constructing Bond and Money Market Yield Curves using Cubic B-Spline and Natural Cubic Spline Methodology.

YIELD CURVE FITTING 2.0 Constructing Bond and Money Market Yield Curves using Cubic B-Spline and Natural Cubic Spline Methodology. YIELD CURVE FITTING 2.0 Constructng Bond and Money Market Yeld Curves usng Cubc B-Splne and Natural Cubc Splne Methodology Users Manual YIELD CURVE FITTING 2.0 Users Manual Authors: Zhuosh Lu, Moorad Choudhry

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

(SOCIAL) COST-BENEFIT ANALYSIS IN A NUTSHELL

(SOCIAL) COST-BENEFIT ANALYSIS IN A NUTSHELL (SOCIAL) COST-BENEFIT ANALYSIS IN A NUTSHELL RUFUS POLLOCK EMMANUEL COLLEGE, UNIVERSITY OF CAMBRIDGE 1. Introducton Cost-beneft analyss s a process for evaluatng the merts of a partcular project or course

More information

3. Present value of Annuity Problems

3. Present value of Annuity Problems Mathematcs of Fnance The formulae 1. A = P(1 +.n) smple nterest 2. A = P(1 + ) n compound nterest formula 3. A = P(1-.n) deprecaton straght lne 4. A = P(1 ) n compound decrease dmshng balance 5. P = -

More information

Pragmatic Insurance Option Pricing

Pragmatic Insurance Option Pricing Paper to be presented at the XXXVth ASTIN Colloquum, Bergen, 6 9th June 004 Pragmatc Insurance Opton Prcng by Jon Holtan If P&C Insurance Company Ltd Oslo, Norway Emal: [email protected] Telephone: +47960065

More information

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 610-519-4390,

More information

0.02t if 0 t 3 δ t = 0.045 if 3 < t

0.02t if 0 t 3 δ t = 0.045 if 3 < t 1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual effectve

More information

Using Series to Analyze Financial Situations: Present Value

Using Series to Analyze Financial Situations: Present Value 2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

More information

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008 Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn

More information

Pricing Overage and Underage Penalties for Inventory with Continuous Replenishment and Compound Renewal Demand via Martingale Methods

Pricing Overage and Underage Penalties for Inventory with Continuous Replenishment and Compound Renewal Demand via Martingale Methods Prcng Overage and Underage Penaltes for Inventory wth Contnuous Replenshment and Compound Renewal emand va Martngale Methods RAF -Jun-3 - comments welcome, do not cte or dstrbute wthout permsson Junmn

More information

Lecture 14: Implementing CAPM

Lecture 14: Implementing CAPM Lecture 14: Implementng CAPM Queston: So, how do I apply the CAPM? Current readng: Brealey and Myers, Chapter 9 Reader, Chapter 15 M. Spegel and R. Stanton, 2000 1 Key Results So Far All nvestors should

More information

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem. Producer Theory Producton ASSUMPTION 2.1 Propertes of the Producton Set The producton set Y satsfes the followng propertes 1. Y s non-empty If Y s empty, we have nothng to talk about 2. Y s closed A set

More information

Level Annuities with Payments Less Frequent than Each Interest Period

Level Annuities with Payments Less Frequent than Each Interest Period Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Symoblc approach

More information

Chapter 15: Debt and Taxes

Chapter 15: Debt and Taxes Chapter 15: Debt and Taxes-1 Chapter 15: Debt and Taxes I. Basc Ideas 1. Corporate Taxes => nterest expense s tax deductble => as debt ncreases, corporate taxes fall => ncentve to fund the frm wth debt

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

Efficient Project Portfolio as a tool for Enterprise Risk Management

Efficient Project Portfolio as a tool for Enterprise Risk Management Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse

More information

Problems and Solutions

Problems and Solutions Problems and Solutions CHAPTER Problems. Problems on onds Exercise. On /04/0, consider a fixed-coupon bond whose features are the following: face value: $,000 coupon rate: 8% coupon frequency: semiannual

More information

Intra-year Cash Flow Patterns: A Simple Solution for an Unnecessary Appraisal Error

Intra-year Cash Flow Patterns: A Simple Solution for an Unnecessary Appraisal Error Intra-year Cash Flow Patterns: A Smple Soluton for an Unnecessary Apprasal Error By C. Donald Wggns (Professor of Accountng and Fnance, the Unversty of North Florda), B. Perry Woodsde (Assocate Professor

More information

Cautiousness and Measuring An Investor s Tendency to Buy Options

Cautiousness and Measuring An Investor s Tendency to Buy Options Cautousness and Measurng An Investor s Tendency to Buy Optons James Huang October 18, 2005 Abstract As s well known, Arrow-Pratt measure of rsk averson explans a ratonal nvestor s behavor n stock markets

More information

An Overview of Financial Mathematics

An Overview of Financial Mathematics An Overvew of Fnancal Mathematcs Wllam Benedct McCartney July 2012 Abstract Ths document s meant to be a quck ntroducton to nterest theory. It s wrtten specfcally for actuaral students preparng to take

More information

An Analysis of Pricing Methods for Baskets Options

An Analysis of Pricing Methods for Baskets Options An Analyss of Prcng Methods for Baskets Optons Martn Krekel, Johan de Kock, Ralf Korn, Tn-Kwa Man Fraunhofer ITWM, Department of Fnancal Mathematcs, 67653 Kaserslautern, Germany, emal: [email protected]

More information

10.2 Future Value and Present Value of an Ordinary Simple Annuity

10.2 Future Value and Present Value of an Ordinary Simple Annuity 348 Chapter 10 Annutes 10.2 Future Value and Present Value of an Ordnary Smple Annuty In compound nterest, 'n' s the number of compoundng perods durng the term. In an ordnary smple annuty, payments are

More information

Quantization Effects in Digital Filters

Quantization Effects in Digital Filters Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value

More information

Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall

Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall SP 2005-02 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 14853-7801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent

More information

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements Lecture 3 Densty estmaton Mlos Hauskrecht [email protected] 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there

More information

I. Readings and Suggested Practice Problems. II. Risks Associated with Default-Free Bonds

I. Readings and Suggested Practice Problems. II. Risks Associated with Default-Free Bonds Prof. Alex Shapiro Lecture Notes 13 Bond Portfolio Management I. Readings and Suggested Practice Problems II. Risks Associated with Default-Free Bonds III. Duration: Details and Examples IV. Immunization

More information

EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR

EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR 8S CHAPTER 8 EXAMPLES EXAMPLE 8.4A THE INVESTMENT NEEDED TO REACH A PARTICULAR FUTURE VALUE What amount must you nvest now at 4% compoune monthly

More information

Series Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3

Series Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3 Royal Holloway Unversty of London Department of Physs Seres Solutons of ODEs the Frobenus method Introduton to the Methodology The smple seres expanson method works for dfferental equatons whose solutons

More information

A G E N E R A L I Z E D H Y B R I D F I X E D I N C O M E AT T R I - B U T I O N M O D E L

A G E N E R A L I Z E D H Y B R I D F I X E D I N C O M E AT T R I - B U T I O N M O D E L A N D R E W C O L I N A N D K ATA L I N K I S S A G E N E R A L I Z E D H Y B R I D F I X E D I N C O M E AT T R I - B U T I O N M O D E L F L A M E T R E E T E C H N O L O G I E S P T Y LT D Copyrght

More information

On the Optimal Control of a Cascade of Hydro-Electric Power Stations

On the Optimal Control of a Cascade of Hydro-Electric Power Stations On the Optmal Control of a Cascade of Hydro-Electrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;

More information

Methods for Constructing a Yield Curve

Methods for Constructing a Yield Curve Methods for Constructng a Yeld Curve Patrck S. Hagan Chef Investment Offce, JP Morgan Wood Street London, EC2V 7AN, England, e-mal: [email protected] Graeme West Fnancal Modellng Agency, 9 Frst

More information

A Master Time Value of Money Formula. Floyd Vest

A Master Time Value of Money Formula. Floyd Vest A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.

More information

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading The Choce of Drect Dealng or Electronc Brokerage n Foregn Exchange Tradng Mchael Melvn Arzona State Unversty & Ln Wen Unversty of Redlands MARKET PARTICIPANTS: Customers End-users Multnatonal frms Central

More information

Lecture 2 Sequence Alignment. Burr Settles IBS Summer Research Program 2008 [email protected] www.cs.wisc.edu/~bsettles/ibs08/

Lecture 2 Sequence Alignment. Burr Settles IBS Summer Research Program 2008 bsettles@cs.wisc.edu www.cs.wisc.edu/~bsettles/ibs08/ Lecture 2 Sequence lgnment Burr Settles IBS Summer Research Program 2008 [email protected] www.cs.wsc.edu/~bsettles/bs08/ Sequence lgnment: Task Defnton gven: a par of sequences DN or proten) a method

More information

A) 3.1 B) 3.3 C) 3.5 D) 3.7 E) 3.9 Solution.

A) 3.1 B) 3.3 C) 3.5 D) 3.7 E) 3.9 Solution. ACTS 408 Instructor: Natala A. Humphreys SOLUTION TO HOMEWOR 4 Secton 7: Annutes whose payments follow a geometrc progresson. Secton 8: Annutes whose payments follow an arthmetc progresson. Problem Suppose

More information

Lecture 2 Bond pricing. Hedging the interest rate risk

Lecture 2 Bond pricing. Hedging the interest rate risk Lecture 2 Bond pricing. Hedging the interest rate risk IMQF, Spring Semester 2011/2012 Module: Derivatives and Fixed Income Securities Course: Fixed Income Securities Lecturer: Miloš Bo ović Lecture outline

More information

Texas Instruments 30X IIS Calculator

Texas Instruments 30X IIS Calculator Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

Time Value of Money Module

Time Value of Money Module Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the

More information

Realistic Image Synthesis

Realistic Image Synthesis Realstc Image Synthess - Combned Samplng and Path Tracng - Phlpp Slusallek Karol Myszkowsk Vncent Pegoraro Overvew: Today Combned Samplng (Multple Importance Samplng) Renderng and Measurng Equaton Random

More information

FINANCIAL MATHEMATICS

FINANCIAL MATHEMATICS 3 LESSON FINANCIAL MATHEMATICS Annutes What s an annuty? The term annuty s used n fnancal mathematcs to refer to any termnatng sequence of regular fxed payments over a specfed perod of tme. Loans are usually

More information

In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount in the account, the balance, is

In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount in the account, the balance, is Payout annutes: Start wth P dollars, e.g., P = 100, 000. Over a 30 year perod you receve equal payments of A dollars at the end of each month. The amount of money left n the account, the balance, earns

More information

Rotation Kinematics, Moment of Inertia, and Torque

Rotation Kinematics, Moment of Inertia, and Torque Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

More information

Section C2: BJT Structure and Operational Modes

Section C2: BJT Structure and Operational Modes Secton 2: JT Structure and Operatonal Modes Recall that the semconductor dode s smply a pn juncton. Dependng on how the juncton s based, current may easly flow between the dode termnals (forward bas, v

More information