14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style



Similar documents
Chapter 7 Outline Math 236 Spring 2001

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Using a table of derivatives

Calculus 1: Sample Questions, Final Exam, Solutions

The Exponential Form of a Complex Number

Euler s Formula Math 220

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

Differentiation and Integration

INTEGRATING FACTOR METHOD

SUBSTITUTION I.. f(ax + b)

a cos x + b sin x = R cos(x α)

Implicit Differentiation

Techniques of Integration

1.7. Partial Fractions Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

Lies My Calculator and Computer Told Me

Microeconomic Theory: Basic Math Concepts

2.2 Separable Equations

Trigonometric Functions and Triangles

2 Integrating Both Sides

The Derivative. Philippe B. Laval Kennesaw State University

6.1. The Exponential Function. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solutions to Homework 10

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style

Lecture 7: Continuous Random Variables

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

is identically equal to x 2 +3x +2

Algebra I Notes Relations and Functions Unit 03a

Second Order Linear Differential Equations

Notes and questions to aid A-level Mathematics revision

Integration ALGEBRAIC FRACTIONS. Graham S McDonald and Silvia C Dalla

Nonhomogeneous Linear Equations

The Method of Partial Fractions Math 121 Calculus II Spring 2015

Techniques of Integration

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS

DRAFT. Further mathematics. GCE AS and A level subject content

Integrating algebraic fractions

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Introduction to Complex Fourier Series

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)

LIES MY CALCULATOR AND COMPUTER TOLD ME

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

MATH 132: CALCULUS II SYLLABUS

Integrals of Rational Functions

2.2 Derivative as a Function

TRIGONOMETRY Compound & Double angle formulae

Integration by substitution

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals

Mathematics I, II and III (9465, 9470, and 9475)

Chapter 11. Techniques of Integration

Core Maths C3. Revision Notes

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

ALGEBRA 2/TRIGONOMETRY

Solving DEs by Separation of Variables.

MATH 381 HOMEWORK 2 SOLUTIONS

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

mathcentrecommunityproject

Solving simultaneous equations using the inverse matrix

Week 13 Trigonometric Form of Complex Numbers

Objectives. Materials

15.1. Integration as the limit of a sum. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. RATIONAL EXPRESSIONS

SAT Subject Math Level 2 Facts & Formulas

Evaluating trigonometric functions

Math 432 HW 2.5 Solutions

8.1. Cramer s Rule for Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

10.3. The Exponential Form of a Complex Number. Introduction. Prerequisites. Learning Outcomes

This means there are two equilibrium solutions 0 and K. dx = rx(1 x). x(1 x) dt = r

Oxford Cambridge and RSA Examinations

To differentiate logarithmic functions with bases other than e, use

Separable First Order Differential Equations

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

1 if 1 x 0 1 if 0 x 1

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Linear and quadratic Taylor polynomials for functions of several variables.

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i i 5 6i

Vieta s Formulas and the Identity Theorem

Sample Problems. Practice Problems

1. First-order Ordinary Differential Equations

6 Further differentiation and integration techniques

Unit 6 Trigonometric Identities, Equations, and Applications

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

FX 115 MS Training guide. FX 115 MS Calculator. Applicable activities. Quick Reference Guide (inside the calculator cover)

GCE. Mathematics. Mark Scheme for June Advanced GCE Unit 4723: Core Mathematics 3. Oxford Cambridge and RSA Examinations

Calculus. Contents. Paul Sutcliffe. Office: CM212a.

Expense Management. Configuration and Use of the Expense Management Module of Xpert.NET

3. KINEMATICS IN TWO DIMENSIONS; VECTORS.

5.1 Radical Notation and Rational Exponents

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

ANALYTICAL METHODS FOR ENGINEERS

Partial Fractions Examples

An Introduction to Calculus. Jackie Nicholas

F = ma. F = G m 1m 2 R 2

Approximating functions by Taylor Polynomials.

Recognizing Types of First Order Differential Equations E. L. Lady

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

Transcription:

Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of its derivative. This process is called integration. Applications of integration are numerous and some of these will be explored in subsequent Blocks. For now, what is important is that you practice basic techniques and learn a variety of methods for integrating functions. Prerequisites Before starting this Block you should... Learning Outcomes After completing this Block you should be able to... find some simple integrals by reversing the process of differentiation use a table of integrals explain the need for a constant of integration when finding indefinite integrals use the rules for finding integrals of sums of functions and constant multiples of 1 thoroughly understand the various techniques of differentiation functions Learning Style To achieve what is expected of you... allocate sufficient study time briefly revise the prerequisite material attempt every guided exercise and most of the other exercises

1. Integration as Differentiation in Reverse Suppose we differentiate the function y = x 2. We obtain dy =2x. Integration reverses this dx process and we say that the integral of 2x is x 2. Pictorially we can regard this as shown in Figure 1: differentiate x 2 2x integrate Figure 1. The situation is just a little more complicated because there are lots of functions we can differentiate to give 2x. Here are some of them: Now do this exercise x 2 +4, x 2 15, x 2 +0.5 Write down some more functions which have derivative 2x. Answer All these functions have the same derivative, 2x, because when we differentiate the constant term we obtain zero. Consequently, when we reverse the process, we have no idea what the original constant term might have been. So we include in our answer an unknown constant, c say, called the constant of integration. We state that the integral of 2x is x 2 + c. When we want to differentiate) a function, y(x), we use the notation d as an instruction to dx differentiate, and write dx( d y(x). In a similar way, when we want to integrate a function we use a special notation: y(x)dx. The symbol for integration,, is known as an integral sign. To integrate 2x we write integral sign this term is called the integrand 2x dx = x 2 + c there must always be a term of the form dx constant of integration Note that along with the integral sign there is a term of the form dx, which must always be written, and which indicates the variable involved, in this case x. We say that 2x is being integrated with respect to x. The function being integrated is called the integrand. Technically, integrals of this sort are called indefinite integrals, to distinguish them from definite integrals which are dealt with subsequently. When you find an indefinite integral your answer should always contain a constant of integration. Engineering Mathematics: Open Learning Unit Level 1 2

More exercises for you to try 1 a) Write down the derivatives of each of: x 3, x 3 +17, x 3 21 b) Deduce that 3x 2 dx = x 3 + c. 2. What is meant by the term integrand? 3. Explain why, when finding an indefinite integral, a constant of integration is always needed. Answer 2. A Table of Integrals We could use a table of derivatives to find integrals, but the more common ones are usually found in a Table of Integrals such as that shown below. You could check the entries in this table using your knowledge of differentiation. Try this for yourself. function f(x) Table of integrals indefinite integral f(x)dx constant, k kx+ c 1 x 2 x2 + c x 2 1 3 x3 + c x n x n+1 n +1 + c, n 1 x 1 1 (or x ) ln x + c cos x sin x + c sin x cos x + c cos kx 1 sin kx + c k sin kx 1 cos kx + c k 1 tan kx ln sec kx +c k e x e x + c e x e x + c e kx 1 k ekx + c When dealing with the trigonometric functions the variable x must always be measured in radians and not degrees. Note that the fourth entry in the table is valid for any value of n, positive, negative, or fractional, except n = 1. When n = 1 use the fifth entry in the table. 3 Engineering Mathematics: Open Learning Unit Level 1

Example Use the table above to find the indefinite integral of x 7 : that is, find x 7 dx Solution From the table note that x n dx = xn+1 n +1 + c. In words, this states that to integrate a power of x, increase the power by 1, and then divide the result by the new power. With n = 7 we find x 7 dx = 1 8 x8 + c Example Find the indefinite integral of cos 5x: that is, find cos 5x dx Solution From the table note that With k = 5 we find cos kx dx = sin kx k + c cos 5x dx = 1 sin 5x + c 5 In the table the independent variable is always given as x. However, with a little imagination you will be able to use it when other independent variables are involved. Example Find cos 5t dt Solution We integrated cos 5x in the previous example. Now the independent variable is t, so simply use the table and read every x as a t. With k = 5 we find cos 5t dt = 1 sin 5t + c 5 It follows immediately that, for example, cos 5ω dω = 1 sin 5ω + c, 5 cos 5u du = 1 sin 5u + c 5 and so on. However, note that x cos 5t dt = 1 x sin 5t + c since t is the variable of integration 5 (because of the dt term) and not x. Engineering Mathematics: Open Learning Unit Level 1 4

Example Find the indefinite integral of 1 x : that is, find 1 x dx Solution This integral deserves special mention. You may be tempted to try to write the integrand as x 1 and use the fourth row of the Table. However, the formula x n dx = xn+1 + c is not valid n+1 when n = 1 as the Table makes clear. This is because we can never divide by zero. Look to the fifth entry of the Table and you will see x 1 dx =ln x + c. Example Find 12 dx Solution In this example we are integrating a constant, 12. Using the table we find 12 dx =12x + c Note that 12dt would be 12t + c. Now do this exercise Find t 4 dt Now do this exercise Find 1 dx x 5 Use the laws of indices to write the integrand as x 5 and then use the Table. Now do this exercise Find e 2x dx. Use the entry in the table for integrating e kx. More exercises for you to try 1. Integrate each of the following functions: a) x 9, b) x 1/2, c) x 3, d) 1/x 4, e) 4, f) x, g) e 4x 2. Find a) t 2 dt, b) 6dt, c) sin 3t dt, d) e 7t dt. 3. Find e t dt. Answer Answer Answer Answer 3. Some Rules of Integration To enable us to find integrals of a wider range of functions than those normally given in a table of integrals we can make use of the following rules. 5 Engineering Mathematics: Open Learning Unit Level 1

The integral of kf(x) where k is a constant A constant factor in an integral can be moved outside the integral sign as follows: Key Point kf(x)dx = k f(x)dx Example Find the indefinite integral of 11x 2 : that is, find 11x 2 dx Solution where K is a constant. 11x 2 dx =11 ( ) x x 2 3 dx =11 3 + c = 11x3 + K 3 Example Find the indefinite integral of 5 cos x; that is, find 5 cos x dx Solution 5 cos x dx = 5 cos x dx = 5 (sin x + c) = 5 sin x + K where K is a constant. The integral of f(x)+g(x) or of f(x) g(x) When we wish to integrate the sum or difference of two functions, we integrate each term separately as follows: Key Point [ f(x)+g(x)] dx = f(x)dx + [ f(x) g(x)] dx = f(x)dx g(x)dx g(x)dx Engineering Mathematics: Open Learning Unit Level 1 6

Example Find (x 3 + sin x)dx Solution (x 3 + sin x)dx = x 3 dx + sin x dx = 1 4 x4 cos x + c Note that only a single constant of integration is needed. Now do this exercise Find (3t 4 + t)dt You will need to use both of the rules to deal with this integral. Answer Now do this exercise The hyperbolic sine and cosine functions, sinh x and cosh x are defined as follows: sinh x = ex e x 2 cosh x = ex +e x Note that they are simply combinations of the exponential functions e x and e x. Find the indefinite integrals of sinh x and cosh x. Answer Further rules for finding more complicated integrals are dealt with in subsequent Blocks. 2 More exercises for you to try 1. Find (2x e x )dx 2. Find 3e 2x dx 3. Find 1(x + cos 2x)dx 3 4. Find 7x 2 dx 5. Find (x +3) 2 dx, (be careful!) Answer 7 Engineering Mathematics: Open Learning Unit Level 1

4. Computer Exercise or Activity For this exercise it will be necessary for you to access the computer package DERIVE. DERIVE can be used to obtain the indefinite integrals to most commonly occurring functions. For example to find the indefinite integral of cos 3x you would key in Author:Expression cos(3x) followed by Calculus:Integrate. Then, in the Variable box choose x and in the Integral box choose Indefinite. On hitting the Simplify button DERIVE responds SIN(3 x) 3 Note that the constant of integration is usually omitted. As a useful exercise use DERIVE to check the table of integrals on page 3. Note that the integral for x n is presented as x n+1 1 n +1 which, up to a constant, is the correct expression. Also note that DERIVE gives integrals involving the natural logarithm without using modulus signs: so that the indefinite integral of 1 is presented as ln x. x Engineering Mathematics: Open Learning Unit Level 1 8

End of Block 14.1 9 Engineering Mathematics: Open Learning Unit Level 1

e.g. x 2 7, x 2 +0.1 Back to the theory Engineering Mathematics: Open Learning Unit Level 1 10

1. 3x 2 3x 2 3x 2 Back to the theory 11 Engineering Mathematics: Open Learning Unit Level 1

t 4 dt = 1 5 t5 + c. Back to the theory Engineering Mathematics: Open Learning Unit Level 1 12

1 4 x 4 + c = 1 4x 4 + c. Back to the theory 13 Engineering Mathematics: Open Learning Unit Level 1

With k = 2, we have e 2x dx = 1 2 e 2x + c = 1 2 e 2x + c. Back to the theory Engineering Mathematics: Open Learning Unit Level 1 14

1a) 1 10 x10 + c, b) 2 3 x3/2 + c, c) 1 2 x 2 + c, d) 1 3 x 3 + c, e) 4x + c, f) same as b), g) 1 4 e4x + c 2. a) 1 3 t3 + c, b) 6t + c, c) 1 3 cos 3t + c, d) 1 7 e7t + c 3. e t + c Back to the theory 15 Engineering Mathematics: Open Learning Unit Level 1

3 5 t5 + 2 3 t3/2 + c Back to the theory Engineering Mathematics: Open Learning Unit Level 1 16

( sinh x dx = 1 2 e x dx 1 2 e x dx = 1 2 ex + 1 2 e x = 1 2 e x +e x) + c = cosh x + c. Similarly cosh x dx = sinh x + c. Back to the theory 17 Engineering Mathematics: Open Learning Unit Level 1

1. x 2 e x + c 2. 3 2 e2x + c 3. 1 6 x2 + 1 6 sin 2x + c 4. 7 x + c 5. 1 3 x3 +3x 2 +9x + c Back to the theory Engineering Mathematics: Open Learning Unit Level 1 18