15.1. Integration as the limit of a sum. Introduction. Prerequisites. Learning Outcomes. Learning Style

Size: px
Start display at page:

Download "15.1. Integration as the limit of a sum. Introduction. Prerequisites. Learning Outcomes. Learning Style"

Transcription

1 Integration as the limit of a sum 15.1 Introduction In Chapter 14, integration was introduced as the reverse of differentiation. A more rigorous treatment would show that integration is a process of adding or summation. Byviewing integration from this perspective it is possible to applythe techniques of integration to finding areas, volumes, centres of gravityand manyother important quantities. The content of this block is important because it is here that integration is defined properly. A thorough understanding of the process involved is essential if you need to apply integration techniques to practical problems. Prerequisites Before starting this Block you should... Learning Outcomes After completing this Block you should be able to... explain integration as the limit of a sum evaluate the limit of a sum in simple cases 1 be able to calculate definite integrals Learning Style To achieve what is expected of you... allocate sufficient studytime brieflyrevise the prerequisite material attempt every guided exercise and most of the other exercises

2 1. The limit of a sum y area required y( x) a b x Figure 1. The area under a curve Consider the graph of the positive function y(x) shown in Figure 1. Suppose we are interested in finding the area under the graph between x = a and x = b. One wayin which this area can be approximated is to divide it into a number of rectangles, find the area of each rectangle, and then add up all these individual rectangular areas. This is illustrated in Figure 2a, which shows the area divided into n rectangles, and Figure 2b which shows the dimensions of a typical rectangle which is located at x = x k. y y n rectangles y( x) y(x k ) δx y(x) a (a) b x (b) x k x Figure 2. a) The area approximated by n rectangles. b) A typical rectangle. Try each part of this exercise Part (a) Firstly, refer to Figure 2a and state the distance from a to b: Part (b) In Figure 2a) the area has been divided into n rectangles. If n rectangles span the distance from a to b state the width of each rectangle: Part (c) It is conventional to label the width of each rectangle as δx, i.e. δx = b a. Suppose n we label the x coordinates at the left hand side of the rectangles as x 1, x 2 up to x n (here x 1 = a and x n+1 = b). A typical rectangle, the kth rectangle, is shown in Figure 2b). Note that its height is y(x k ). Calculate its area: Engineering Mathematics: Open Learning Unit Level 1 2

3 The sum of the areas of all n rectangles is then y(x 1 )δx + y(x 2 )δx + y(x 3 )δx + + y(x n )δx which we write conciselyusing sigma notation as n y(x k )δx This quantitygives us an estimate of the area under the curve but it is not exact. To improve the estimate we must take a large number of verythin rectangles. So, what we want to find is the value of this sum when n tends to infinityand δx tends to zero. We write this value as lim n n y(x k )δx The lower and upper limits on the sum correspond to the first and last rectangle where x = a and x = b respectivelyand so we can write this limit in the equivalent form x=b lim δx 0 x=a y(x)δx (1) Here, as the number of rectangles increase without bound we drop the subscript k from x k and write y(x) which is the value of y at a typical value of x. If this sum can actuallybe found, it is called the definite integral of y(x), from x = a to x = b and it is written b y(x)dx. You a are alreadyfamiliar with the technique for evaluating definite integrals which was studied in Chapter 14, Block 2. Therefore we have the following definition: The definite integral b a Key Point x=b y(x)dx is defined as lim y(x)δx δx 0 x=a Note that the quantity δx represents the thickness of a small but finite rectangle. When we have taken the limit as δx tends to zero to obtain the integral, we write dx. This process of dividing an area into verysmall regions, performing a calculation on each region, and then adding the results bymeans of an integral is veryimportant. This will become apparent when finding volumes, centres of gravity, moments of inertia etc in the following blocks where similar procedures are followed. Example The area under the graph of y = x 2 between x = 0 and x = 1 is to be found using the technique just described. If the required area is approximated bya large number of thin rectangles, the limit of the sum of their areas is given from Equation 1 as x=1 lim δx 0 x=0 y(x) δx Write down the integral which this sum defines and evaluate it to obtain the area under the curve. 3 Engineering Mathematics: Open Learning Unit Level 1

4 Solution The limit of the sum defines the integral 1 y(x)dx. Here y = 0 x2 and so 1 [ ] x x dx = = To show that the process of taking the limit of a sum actuallyworks we discuss the problem in detail. Example Use the idea of the limit of a sum to find the area under the graph of y = x 2 between x = 0 and x =1. Solution y 1 y =x 2 n rectangles 0 1 x Figure 3. The area under y = x 2 is approximated bya number of thin rectangles. Try each part of this exercise Refer to the graph in Figure 3 to help you answer the questions. Part (a) If the interval between x = 0 and x = 1 is divided into n rectangles what is the width of each rectangle? Part (b) What is the x coordinate at the left-hand side of the first rectangle? Part (c) What is the x coordinate at the left-hand side of the second rectangle? Part (d) What is the x coordinate at the left-hand side of the third rectangle? Engineering Mathematics: Open Learning Unit Level 1 4

5 Part (e) What is the x coordinate at the left-hand side of the kth rectangle? Part (f) Given that y = x 2, what is the y coordinate at the left-hand side of the kth rectangle? Part (g) The area of the kth rectangle is its height its width. Write down the area of the kth rectangle: To find the total area A n of the n rectangles we must add up all these individual rectangular areas: n (k 1) 2 A n = This sum can be simplified and then calculated as follows. You will need to make use of the formulas for the sum of the first k integers, and the sum of the squares of the first k integers: n 3 n 1=n, n k = 1 n n(n +1), 2 k 2 = 1 n(n + 1)(2n +1) 6 Then, the total area of the rectangles is given by A n = n (k 1) 2 n 3 = 1 n 3 n (k 1) 2 = 1 n (k 2 2k +1) n 3 = 1 n 3 ( n k 2 2 n k + ) n 1 = 1 n 3 ( n 6 (n + 1)(2n +1) 2n 2 (n +1)+n ) = 1 ( (n + 1)(2n +1) n 2 6 = 1 ( (n + 1)(2n +1) n 2 6 = 1 ( (n + 1)(2n +1) n 2 6 = 1 ( 2n 2 3n +1 ) 6n 2 = n + 1 6n 2 ) (n +1)+1 ) Note that this is a formula for the total area of the n rectangles. It is an estimate of the area under the graph of y = x 2.Now,asn gets larger, the terms 1 and 1 become small and will 2n 6n 2 eventuallytend to zero. n 6n 6 ) 5 Engineering Mathematics: Open Learning Unit Level 1

6 Part (h) Let n tend to infinityto obtain the exact answer: The required area is 1. 3 The area has been found as the limit of a sum and of course agrees with that calculated by integration. In the calculations which follow in subsequent blocks the need to evaluate complicated limits like this is avoided byperforming the integration using the techniques of Chapter 14. Nevertheless it will still be necessaryto go through the process of dividing a region into small sections, performing a calculation on each section and then adding the results, in order to formulate the integral required. More exercises for you to try There are deliberatelyfew exercises in this Block because in practice integrals are evaluated using the techniques of Chapter 14 and not bytaking explicit limits of sums. What is important though is an understanding of how the appropriate sum is formed. 1. Find the area under y = x + 1 from x =0tox = 10 using the limit of a sum. 2. Find the area under y =3x 2 from x =0tox = 2 using the limit of a sum. 3. Write down, but do not evaluate, the integral defined bythe limit as δx 0, or δt 0 of the following sums: (a) x=1 x 3 δx, x=0 (b) x=4 4πx 2 δx, x=0 (c) t=1 t 3 δt, t=0 (d) x=1 6mx 2 δx. x=0 Engineering Mathematics: Open Learning Unit Level 1 6

7 End of Block Engineering Mathematics: Open Learning Unit Level 1

8 b a Engineering Mathematics: Open Learning Unit Level 1 8

9 b a n 9 Engineering Mathematics: Open Learning Unit Level 1

10 y(x k ) δx Engineering Mathematics: Open Learning Unit Level 1 10

11 1 n 11 Engineering Mathematics: Open Learning Unit Level 1

12 0 Engineering Mathematics: Open Learning Unit Level 1 12

13 1 n 13 Engineering Mathematics: Open Learning Unit Level 1

14 2 n Engineering Mathematics: Open Learning Unit Level 1 14

15 k 1 n 15 Engineering Mathematics: Open Learning Unit Level 1

16 ( k 1 ) 2 n Engineering Mathematics: Open Learning Unit Level 1 16

17 ( k 1 ) 2 n 1 = (k 1)2 n n 3 17 Engineering Mathematics: Open Learning Unit Level 1

18 1 3 Engineering Mathematics: Open Learning Unit Level 1 18

19 (a) 1 0 x3 dx. (b) 4π 4 0 x2 dx, (c) 1 0 t3 dt, (d) 1 0 6mx2 dx. 19 Engineering Mathematics: Open Learning Unit Level 1

15.3. Calculating centres of mass. Introduction. Prerequisites. Learning Outcomes. Learning Style

15.3. Calculating centres of mass. Introduction. Prerequisites. Learning Outcomes. Learning Style Calculating centres of mass 15.3 Introduction In this block we show how the idea of integration as the limit of a sum can be used to find the centre of mass of an object such as a thin plate, like a sheet

More information

Estimating the Average Value of a Function

Estimating the Average Value of a Function Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

More information

10.2 Series and Convergence

10.2 Series and Convergence 10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

More information

APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS

APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS Now that we are starting to feel comfortable with the factoring process, the question becomes what do we use factoring to do? There are a variety of classic

More information

Use finite approximations to estimate the area under the graph of the function. f(x) = x 3

Use finite approximations to estimate the area under the graph of the function. f(x) = x 3 5.1: 6 Use finite approximations to estimate the area under the graph of the function f(x) = x 3 between x = 0 and x = 1 using (a) a lower sum with two rectangles of equal width (b) a lower sum with four

More information

(b)using the left hand end points of the subintervals ( lower sums ) we get the aprroximation

(b)using the left hand end points of the subintervals ( lower sums ) we get the aprroximation (1) Consider the function y = f(x) =e x on the interval [, 1]. (a) Find the area under the graph of this function over this interval using the Fundamental Theorem of Calculus. (b) Subdivide the interval

More information

= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy.

= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy. ERROR PROPAGATION For sums, differences, products, and quotients, propagation of errors is done as follows. (These formulas can easily be calculated using calculus, using the differential as the associated

More information

AP CALCULUS AB 2008 SCORING GUIDELINES

AP CALCULUS AB 2008 SCORING GUIDELINES AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Investigating Area Under a Curve

Investigating Area Under a Curve Mathematics Investigating Area Under a Curve About this Lesson This lesson is an introduction to areas bounded by functions and the x-axis on a given interval. Since the functions in the beginning of the

More information

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

More information

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas. MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

t hours This is the distance in miles travelled in 2 hours when the speed is 70mph. = 22 yards per second. = 110 yards.

t hours This is the distance in miles travelled in 2 hours when the speed is 70mph. = 22 yards per second. = 110 yards. The area under a graph often gives useful information. Velocit-time graphs Constant velocit The sketch shows the velocit-time graph for a car that is travelling along a motorwa at a stead 7 mph. 7 The

More information

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

More information

9.2 Summation Notation

9.2 Summation Notation 9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

Work as the Area Under a Graph of Force vs. Displacement

Work as the Area Under a Graph of Force vs. Displacement Work as the Area Under a Graph of vs. Displacement Situation A. Consider a situation where an object of mass, m, is lifted at constant velocity in a uniform gravitational field, g. The applied force is

More information

Numerical integration of a function known only through data points

Numerical integration of a function known only through data points Numerical integration of a function known only through data points Suppose you are working on a project to determine the total amount of some quantity based on measurements of a rate. For example, you

More information

2-1 Position, Displacement, and Distance

2-1 Position, Displacement, and Distance 2-1 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:

More information

Numerical methods for American options

Numerical methods for American options Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

More information

Freely Falling Bodies & Uniformly Accelerated Motion

Freely Falling Bodies & Uniformly Accelerated Motion Physics Trinity Valley School Page 1 Lesson 24 Galileo, Freely Falling Bodies & Uniformly Accelerated Motion Galileo argued that a freely falling body is undergoing uniform acceleration. Its speed is increasing

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Characteristics of the Four Main Geometrical Figures

Characteristics of the Four Main Geometrical Figures Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.

More information

MATH 132: CALCULUS II SYLLABUS

MATH 132: CALCULUS II SYLLABUS MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

More information

Linear Equations and Inequalities

Linear Equations and Inequalities Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

More information

7.2 Quadratic Equations

7.2 Quadratic Equations 476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic

More information

2.2. Instantaneous Velocity

2.2. Instantaneous Velocity 2.2. Instantaneous Velocity toc Assuming that your are not familiar with the technical aspects of this section, when you think about it, your knowledge of velocity is limited. In terms of your own mathematical

More information

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

More information

The small increase in x is. and the corresponding increase in y is. Therefore

The small increase in x is. and the corresponding increase in y is. Therefore Differentials For a while now, we have been using the notation dy to mean the derivative of y with respect to. Here is any variable, and y is a variable whose value depends on. One of the reasons that

More information

27.3. Introduction. Prerequisites. Learning Outcomes

27.3. Introduction. Prerequisites. Learning Outcomes olume Integrals 27. Introduction In the previous two sections, surface integrals (or double integrals) were introduced i.e. functions were integrated with respect to one variable and then with respect

More information

MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 3 - NUMERICAL INTEGRATION METHODS

MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 3 - NUMERICAL INTEGRATION METHODS MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL - NUMERICAL INTEGRATION METHODS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these

More information

Chapter 4 One Dimensional Kinematics

Chapter 4 One Dimensional Kinematics Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity

More information

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period: AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

CBE 6333, R. Levicky 1 Differential Balance Equations

CBE 6333, R. Levicky 1 Differential Balance Equations CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,

More information

Free Pre-Algebra Lesson 55! page 1

Free Pre-Algebra Lesson 55! page 1 Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

How To Solve Factoring Problems

How To Solve Factoring Problems 05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

More information

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics

More information

The Basics of Physics with Calculus. AP Physics C

The Basics of Physics with Calculus. AP Physics C The Basics of Physics with Calculus AP Physics C Pythagoras started it all 6 th Century Pythagoras first got interested in music when he was walking past a forge and heard that the sounds of the blacksmiths'

More information

Example 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph

Example 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph The Effect of Taxes on Equilibrium Example 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph Solution to part a: Set the

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Introduction to Quadratic Functions

Introduction to Quadratic Functions Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

vector calculus 2 Learning outcomes

vector calculus 2 Learning outcomes 29 ontents vector calculus 2 1. Line integrals involving vectors 2. Surface and volume integrals 3. Integral vector theorems Learning outcomes In this Workbook you will learn how to integrate functions

More information

Lecture 21 Integration: Left, Right and Trapezoid Rules

Lecture 21 Integration: Left, Right and Trapezoid Rules Lecture 1 Integration: Left, Right and Trapezoid Rules The Left and Right point rules In this section, we wish to approximate a definite integral b a f(x)dx, where f(x) is a continuous function. In calculus

More information

Sequences and Series

Sequences and Series Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation Interpolation, Extrapolation & Polynomial Approximation November 16, 2015 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic

More information

SOL Warm-Up Graphing Calculator Active

SOL Warm-Up Graphing Calculator Active A.2a (a) Using laws of exponents to simplify monomial expressions and ratios of monomial expressions 1. Which expression is equivalent to (5x 2 )(4x 5 )? A 9x 7 B 9x 10 C 20x 7 D 20x 10 2. Which expression

More information

Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

More information

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4. Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than

More information

Maximum and minimum problems. Information sheet. Think about

Maximum and minimum problems. Information sheet. Think about Maximum and minimum problems This activity is about using graphs to solve some maximum and minimum problems which occur in industry and in working life. The graphs can be drawn using a graphic calculator

More information

Student Performance Q&A:

Student Performance Q&A: Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

Determinants can be used to solve a linear system of equations using Cramer s Rule.

Determinants can be used to solve a linear system of equations using Cramer s Rule. 2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

More information

Introduction. Appendix D Mathematical Induction D1

Introduction. Appendix D Mathematical Induction D1 Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

More information

Florida Math for College Readiness

Florida Math for College Readiness Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

a cos x + b sin x = R cos(x α)

a cos x + b sin x = R cos(x α) a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this

More information

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318) Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base

More information

Math 115 Spring 2011 Written Homework 5 Solutions

Math 115 Spring 2011 Written Homework 5 Solutions . Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

More information

Overview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres

Overview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres Cylinders, and Spheres Number of instruction days: 6 8 Overview Content to Be Learned Evaluate the cube root of small perfect cubes. Simplify problems using the formulas for the volumes of cones, cylinders,

More information

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Copyrighted Material. Chapter 1 DEGREE OF A CURVE Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

More information

S. Boyd EE102. Lecture 1 Signals. notation and meaning. common signals. size of a signal. qualitative properties of signals.

S. Boyd EE102. Lecture 1 Signals. notation and meaning. common signals. size of a signal. qualitative properties of signals. S. Boyd EE102 Lecture 1 Signals notation and meaning common signals size of a signal qualitative properties of signals impulsive signals 1 1 Signals a signal is a function of time, e.g., f is the force

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 4 AREAS AND VOLUMES This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions 6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

More information

Homework #10 Solutions

Homework #10 Solutions MAT Fall Homework # Solutions Problems Bolded problems are worth points. Section 5.:, 6, 8,, Section 5.:, 6,, 8,, Notes: On 5.., evaluate the integral using the fnint function (available through MATH 9

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea. BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's

More information

2.4. Factoring Quadratic Expressions. Goal. Explore 2.4. Launch 2.4

2.4. Factoring Quadratic Expressions. Goal. Explore 2.4. Launch 2.4 2.4 Factoring Quadratic Epressions Goal Use the area model and Distributive Property to rewrite an epression that is in epanded form into an equivalent epression in factored form The area of a rectangle

More information

MATH 100 PRACTICE FINAL EXAM

MATH 100 PRACTICE FINAL EXAM MATH 100 PRACTICE FINAL EXAM Lecture Version Name: ID Number: Instructor: Section: Do not open this booklet until told to do so! On the separate answer sheet, fill in your name and identification number

More information

Grade 5 Work Sta on Perimeter, Area, Volume

Grade 5 Work Sta on Perimeter, Area, Volume Grade 5 Work Sta on Perimeter, Area, Volume #ThankATeacher #TeacherDay #TeacherApprecia onweek 6. 12. Folder tab label: RC 3 TEKS 5(4)(H) Perimeter, Area, and Volume Cover: Reporting Category 3 Geometry

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

Calculus with Parametric Curves

Calculus with Parametric Curves Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function

More information

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS Bull Austral Math Soc 77 (2008), 31 36 doi: 101017/S0004972708000038 COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V EROVENKO and B SURY (Received 12 April 2007) Abstract We compute

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

Section 6.4: Work. We illustrate with an example.

Section 6.4: Work. We illustrate with an example. Section 6.4: Work 1. Work Performed by a Constant Force Riemann sums are useful in many aspects of mathematics and the physical sciences than just geometry. To illustrate one of its major uses in physics,

More information

Summation Algebra. x i

Summation Algebra. x i 2 Summation Algebra In the next 3 chapters, we deal with the very basic results in summation algebra, descriptive statistics, and matrix algebra that are prerequisites for the study of SEM theory. You

More information

Factoring Polynomials

Factoring Polynomials UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

Review of Basic Options Concepts and Terminology

Review of Basic Options Concepts and Terminology Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

1 Error in Euler s Method

1 Error in Euler s Method 1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of

More information

Numerical Solution of Differential

Numerical Solution of Differential Chapter 13 Numerical Solution of Differential Equations We have considered numerical solution procedures for two kinds of equations: In chapter 10 the unknown was a real number; in chapter 6 the unknown

More information