# Algebra I Notes Relations and Functions Unit 03a

Size: px
Start display at page:

Transcription

1 OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). F.IF.A.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. F.IF.B.4 Interpret functions that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. F.IF.B.5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. NOTE: This unit can be used as needed (review or introductory) identify and work with functions. BIG IDEA: Relationships among quantities can be represented using tables, graphs, verbal descriptions, equations and inequalities. Symbols are used to represent unknowns and variables. We can interpret and make critical predictions from functional relationships. PREREQUISITE SKILLS: students should understand how to evaluate variable expressions students should understand how to solve equations with one or two variables VOCABULARY: relation: a set of ordered pairs function: a special relation that has a rule that establishes a mathematical relationship between two quantities, called the input and the output. For each input, there is exactly one output domain: the collection of all input values range: the collection of all output values independent variable: the variable in a function with a value that is subject to choice dependent variable: the variable in a relation with a value that depends on the value of the independent variable (input) function notation: a way to name a function that is defined by an equation. In function notation, the y in the equation is replaced with f(x) Alg I Unit 03a Notes Relations and FunctionsAlg I Unit 03a Notes Relations and Functions Page 1 of 8 9/4/2013

2 SKILLS: determine if a given relation is a function describe and model functions using an input-output table, mapping diagram, and writing a function rule with and without technology determine and differentiate between the domain and range of functions use equations of functions to make predictions or interpretations evaluate functions using function notation for given values of the variable translate among verbal descriptions, graphic, tabular, and algebraic representations of a function with and without technology REVIEW AND EXAMPLES: Relation: a set of ordered pairs Domain: the set of input values x in a relation; x is also called the independent variable. Range: the set of output values y in a relation; y is also called the dependent variable. Ex 1. State the domain and range using the relation: 1, 2, 0, 4, 0, 3, 1, 3. To list the domain and range you list them from least to greatest in set notation. Solution: Domain 1, 0,1 ; Range 3, 2, 4 Ex 2. Use the following: Popcorn Prices: Small Medium Large How much would ten large popcorns cost? (1, ), (2, ), (3, ), (10,?) The total cost depends on the number of popcorns you purchase, so the number of popcorns is the independent variable (input) and the cost is the dependent variable (output). We can write a rule for that to find the cost of any number of large popcorns purchased: \$5 multiply # of popcorns Cost equals (per popcorn) by purchased C = \$5 n (10,?) C = \$5 10 = \$50 Three people in front of you in the line all buy some large popcorn: (2, ), (3, ) and (1, ). You order 3 large popcorns and the popcorn guy says, That will be \$ Is everything functioning here? No, the rule was not followed for your order. The input of 3 large popcorns should have exactly 1 output, \$15. Alg I Unit 03a Notes Relations and FunctionsAlg I Unit 03a Notes Relations and Functions Page 2 of 8 9/4/2013

3 Function: a special type of relation in which each input has exactly one output. Functions can be represented in several different ways; ordered pairs, table of values, mapping diagrams, graphs and in function notation. Ordered Pairs: given a relation, it is a function if each input is paired with exactly 1 output (check to see if x repeats). Ex 3. Is the relation a function? If so, state the domain and range. a. 3, 5, 4, 6, 2, 4, 3, 2 b. ( 2, 6), (0,10), (1,12), (3,16) No, the input 3 has 2 output values. range. a. Input Output b Yes, each input has exactly 1 output. Domain: {-2, 0, 1, 3} Range: {6, 10, 12, 16} Table of Values: given a table of values of a relation, it is a function if each input is paired with exactly 1 output (check to see if x repeats). Ex 4. Use the following input-output table. Is the relation a function? If so, state the domain and Yes, each input has exactly 1 output. Domain: {3, 6, 9, 12}; Range: {-4, 0, 4} Input Output No, the input 2 has 2 output values. Mapping Diagrams: given a mapping diagram of a relation, we can tell if it is a function if each input is paired with exactly 1 output. Ex 5. Is the relation a function? If so, state the domain & range. a) Input Output b) Input Output No, the input 4 has two output values. Yes, every input has exactly one output. Domain: 1, 3, 5, 7 ; Range: 2, 4, 6 Alg I Unit 03a Notes Relations and FunctionsAlg I Unit 03a Notes Relations and Functions Page 3 of 8 9/4/2013

4 Graphs of Functions: Given the graph, we can use the vertical line test to determine if a relation is a function. Vertical Line Test: a graph is a function if all vertical lines intersect the graph no more than once. If you can draw a vertical line between any two points on the graph, then it flunks the vertical line test. The two points would have the same x value, but different y values; which means that there is more than one output (y) for that particular input (x). Ex 6. Which of the graphs is a function? Not a function fails the vertical line test Function passes the vertical test Function Rule: A function can be represented by an equation that describes the mathematical relationship that exists between the independent (x) and dependent (y) variables. Ex 7. The equation y = 2x + 1, tells us that the output value is equal to 1 more than twice the input value. We can use the function rule to pair x values with y values and create ordered pairs. Let s input the value 3 into the function rule for x and determine what output (y) value it is paired with. y = 2x + 1 y = 2(3) + 1 y = y = 7 So, the ordered pair (3, 7) is a solution to the function rule. Function Notation: function notation is a way to name a function that is defined by an equation. For an equation in x and y, the symbol f(x) replaces y and is read as the value of the function at x or simply f of x. Remember, that the x value is the independent variable and the y value is dependent on what the value of x is. So, y is a function of x. y = f(x) or in other words y and the function of x are interchangeable. Ex 8. Let s look at the equation y = 2x + 1. To write it using function notation we replace the y with f(x) since they are interchangeable. So, the equation y = 2x + 1 becomes f(x) = 2x + 1. Alg I Unit 03a Notes Relations and FunctionsAlg I Unit 03a Notes Relations and Functions Page 4 of 8 9/4/2013

5 Why use function notation? It helps us to relate the function rule to its graph. Each solution (ordered pair) to the function rule represents a point that falls on the graph of the function. When using function notation we can see the ordered pair. Let s use the function rule expressed in function notation to find the value of the function when the input (x) is 3. f(x) = 2x + 1 f(3) = 2(3) + 1 f(3) = f(3) = 7 Notice that throughout the process you can see what the input value is. In the final result, you can see the ordered pair. Following the function rule; when x has a value of 3, y has a value of 7. Does function notation always have to be expressed as f(x)? No. You can use any letter to represent a function. For example; g(x), h(x) or k(x). When comparing multiple functions or their graphs you need some way to distinguish between them. Ex 9. f(x) = -2x + 3 g(x) = x 4 h(x) = 5 k(x) = x Evaluate the following expressions given the function rules above. g(6) f(-2) h(13) k(0) g(x) = x 4 f(x) = -2x + 3 h(x) = 5 k(x) = x g(6) = (6) 4 g(6) = 2 f(-2) = -2(-2) + 3 f(-2) = f(-2) = 7 h(13) = 5 k(0) = (0) k(0) = k(0) = 1 f(x) - h(x) h(x) g(x) k(h(x)) f(g(x)) (-2x + 3) - (5) -2x - 2 (5) (x 4) 5x 20 k(5) (5) f(x - 4) -2(x - 4) x x + 11 Alg I Unit 03a Notes Relations and FunctionsAlg I Unit 03a Notes Relations and Functions Page 5 of 8 9/4/2013

6 ASSESSMENT ITEMS: 1. Explain using the definition of a function why the vertical line tests determine whether a graph is a function. 2. Which of the following tables represent functions? A. I and IV only B. II and III only C. I, II and III only D. II, III and IV only 3. Determine which of the following are functions: I. II. III. IV. A. I and III only B. II and IV only C. II, III, and IV only D. I, II, III and IV Alg I Unit 03a Notes Relations and FunctionsAlg I Unit 03a Notes Relations and Functions Page 6 of 8 9/4/2013

7 4. What is the range of the following relation? {(3, 5), ( 2,8), (5,1), ( 3, 1)} A. 1, 1, 5, 8 B. 3, 2, 3, 5 C. 1 x 8 D. 3 x 5 5. Use the diagram below when f x 5 and g x 2x 3. f x g x a. Write algebraic expressions for the area and the perimeter. w g( x) f ( x) 2 g( x) b. If the perimeter is 24 inches, what is the value of x? 6. Compare and contrast a relation and a function. Alg I Unit 03a Notes Relations and FunctionsAlg I Unit 03a Notes Relations and Functions Page 7 of 8 9/4/2013

8 7. Which input-output table represents the function f ( x) 2x 3? 8. Let a function be defined as A. 18 B. 6 C. 0 D. 14 f ( x) 4x 2 x 3. What is f (1)? 9. Kathy has two sets of numbers, A and B. The sets are defined as follows: A = {1, 2, 3} B = {10, 20, 30} Kathy created four relations using elements from Set A for the domains and elements from Set B for the ranges. Which of Kathy s relations is NOT a function? A. {(1, 10), (1, 20), (1, 30)} B. {(1, 10), (2, 10), (3, 10)} C. {(1, 10), (2, 20), (3, 30)} D. {(1, 10), (2, 30), (3, 20)} 10. Translate the following statements into coordinate points. f ( 3) 1 g(2) 4 g(0) 7 k (5) 8 Alg I Unit 03a Notes Relations and FunctionsAlg I Unit 03a Notes Relations and Functions Page 8 of 8 9/4/2013

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### Functions. MATH 160, Precalculus. J. Robert Buchanan. Fall 2011. Department of Mathematics. J. Robert Buchanan Functions

Functions MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: determine whether relations between variables are functions, use function

### South Carolina College- and Career-Ready (SCCCR) Algebra 1

South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

### Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

### Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials

### 2.1 Increasing, Decreasing, and Piecewise Functions; Applications

2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.

### Pearson Algebra 1 Common Core 2015

A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).

### Algebra I Teacher Notes Expressions, Equations, and Formulas Review

Big Ideas Write and evaluate algebraic expressions Use expressions to write equations and inequalities Solve equations Represent functions as verbal rules, equations, tables and graphs Review these concepts

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### 7 Relations and Functions

7 Relations and Functions In this section, we introduce the concept of relations and functions. Relations A relation R from a set A to a set B is a set of ordered pairs (a, b), where a is a member of A,

### 5.5. Solving linear systems by the elimination method

55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve

### Algebra II Unit Number 4

Title Polynomial Functions, Expressions, and Equations Big Ideas/Enduring Understandings Applying the processes of solving equations and simplifying expressions to problems with variables of varying degrees.

### 3.1 Solving Systems Using Tables and Graphs

Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

### Toothpick Squares: An Introduction to Formulas

Unit IX Activity 1 Toothpick Squares: An Introduction to Formulas O V E R V I E W Rows of squares are formed with toothpicks. The relationship between the number of squares in a row and the number of toothpicks

### https://williamshartunionca.springboardonline.org/ebook/book/27e8f1b87a1c4555a1212b...

of 19 9/2/2014 12:09 PM Answers Teacher Copy Plan Pacing: 1 class period Chunking the Lesson Example A #1 Example B Example C #2 Check Your Understanding Lesson Practice Teach Bell-Ringer Activity Students

### Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks

### Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010

Section 2.1: Linear Equations Definition of equation An equation is a statement that equates two algebraic expressions. Solving an equation involving a variable means finding all values of the variable

### 2.2 Derivative as a Function

2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x

### Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2

### Math Placement Test Practice Problems

Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

### Factorizations: Searching for Factor Strings

" 1 Factorizations: Searching for Factor Strings Some numbers can be written as the product of several different pairs of factors. For example, can be written as 1, 0,, 0, and. It is also possible to write

### F.IF.7e Analyze functions using different representations. Graph exponential and logarithmic functions, showing intercept and end behavior.

Grade Level/Course: Algebra and Pre-Calculus Lesson/Unit Plan Name: Introduction to Logarithms: A Function Approach Rationale/Lesson Abstract: This lesson is designed to introduce logarithms to students

### Properties of Real Numbers

16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

### DRAFT. Algebra 1 EOC Item Specifications

DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as

### Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade

Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade

### LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables

### Algebra 2 Notes AII.7 Functions: Review, Domain/Range. Function: Domain: Range:

Name: Date: Block: Functions: Review What is a.? Relation: Function: Domain: Range: Draw a graph of a : a) relation that is a function b) relation that is NOT a function Function Notation f(x): Names the

### with functions, expressions and equations which follow in units 3 and 4.

Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

### Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

### High School Functions Interpreting Functions Understand the concept of a function and use function notation.

Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.

### ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals

ALGEBRA REVIEW LEARNING SKILLS CENTER The "Review Series in Algebra" is taught at the beginning of each quarter by the staff of the Learning Skills Center at UC Davis. This workshop is intended to be an

### High School Algebra Reasoning with Equations and Inequalities Solve systems of equations.

Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student

### Unit 1 Equations, Inequalities, Functions

Unit 1 Equations, Inequalities, Functions Algebra 2, Pages 1-100 Overview: This unit models real-world situations by using one- and two-variable linear equations. This unit will further expand upon pervious

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### LINEAR EQUATIONS IN TWO VARIABLES

66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that

### Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

### Algebra II A Final Exam

Algebra II A Final Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Evaluate the expression for the given value of the variable(s). 1. ; x = 4 a. 34 b.

### Charlesworth School Year Group Maths Targets

Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve

### Mathematics Curriculum Guide Precalculus 2015-16. Page 1 of 12

Mathematics Curriculum Guide Precalculus 2015-16 Page 1 of 12 Paramount Unified School District High School Math Curriculum Guides 2015 16 In 2015 16, PUSD will continue to implement the Standards by providing

### Grade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills

Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate

### Pennsylvania System of School Assessment

Pennsylvania System of School Assessment The Assessment Anchors, as defined by the Eligible Content, are organized into cohesive blueprints, each structured with a common labeling system that can be read

### North Carolina Math 2

Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4.

### F.IF.7b: Graph Root, Piecewise, Step, & Absolute Value Functions

F.IF.7b: Graph Root, Piecewise, Step, & Absolute Value Functions F.IF.7b: Graph Root, Piecewise, Step, & Absolute Value Functions Analyze functions using different representations. 7. Graph functions expressed

### Direct Translation is the process of translating English words and phrases into numbers, mathematical symbols, expressions, and equations.

Section 1 Mathematics has a language all its own. In order to be able to solve many types of word problems, we need to be able to translate the English Language into Math Language. is the process of translating

### SAT Math Facts & Formulas Review Quiz

Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions

### CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

### 7 Literal Equations and

CHAPTER 7 Literal Equations and Inequalities Chapter Outline 7.1 LITERAL EQUATIONS 7.2 INEQUALITIES 7.3 INEQUALITIES USING MULTIPLICATION AND DIVISION 7.4 MULTI-STEP INEQUALITIES 113 7.1. Literal Equations

parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL HS America s schools are working to provide higher quality instruction than ever before. The way we taught students in the past simply does

### 14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

### x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

### No Solution Equations Let s look at the following equation: 2 +3=2 +7

5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

### 2 Integrating Both Sides

2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

### Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours

Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours Essential Question: LESSON 4 FINITE ARITHMETIC SERIES AND RELATIONSHIP TO QUADRATIC

### Review of Fundamental Mathematics

Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Such As Statements, Kindergarten Grade 8

Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

### Curriculum Alignment Project

Curriculum Alignment Project Math Unit Date: Unit Details Title: Solving Linear Equations Level: Developmental Algebra Team Members: Michael Guy Mathematics, Queensborough Community College, CUNY Jonathan

### MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will

### Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

### Application of Function Composition

Math Objectives Given functions f and g, the student will be able to determine the domain and range of each as well as the composite functions defined by f ( g( x )) and g( f ( x )). Students will interpret

### 2013 MBA Jump Start Program

2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of

### Greatest Common Factor and Least Common Multiple

Greatest Common Factor and Least Common Multiple Intro In order to understand the concepts of Greatest Common Factor (GCF) and Least Common Multiple (LCM), we need to define two key terms: Multiple: Multiples

### Week 1: Functions and Equations

Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter

### 3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

### Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

### 1 Shapes of Cubic Functions

MA 1165 - Lecture 05 1 1/26/09 1 Shapes of Cubic Functions A cubic function (a.k.a. a third-degree polynomial function) is one that can be written in the form f(x) = ax 3 + bx 2 + cx + d. (1) Quadratic

### Mathematics Georgia Performance Standards

Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by

### Mathematics Common Core Sample Questions

New York State Testing Program Mathematics Common Core Sample Questions Grade The materials contained herein are intended for use by New York State teachers. Permission is hereby granted to teachers and

### Determine If An Equation Represents a Function

Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The

### Linear Equations and Inequalities

Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

### Math Journal HMH Mega Math. itools Number

Lesson 1.1 Algebra Number Patterns CC.3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. Identify and

### Edelen, Gross, Lovanio Page 1 of 5

Lesson Plan Title Lesson Plan Created by Introduction to Inverse Functions (Possible Sentences, p. 69, Beyond the Blueprint) Paul Edelen; David Gross; Marlene Lovanio, CSDE Educational Consultant for Secondary

### Algebra 1 Course Information

Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

### Algebra II. Weeks 1-3 TEKS

Algebra II Pacing Guide Weeks 1-3: Equations and Inequalities: Solve Linear Equations, Solve Linear Inequalities, Solve Absolute Value Equations and Inequalities. Weeks 4-6: Linear Equations and Functions:

### Verbal Phrases to Algebraic Expressions

Student Name: Date: Contact Person Name: Phone Number: Lesson 13 Verbal Phrases to s Objectives Translate verbal phrases into algebraic expressions Solve word problems by translating sentences into equations

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### Exponents. Exponents tell us how many times to multiply a base number by itself.

Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,

### 6.4 Logarithmic Equations and Inequalities

6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### Course Outlines. 1. Name of the Course: Algebra I (Standard, College Prep, Honors) Course Description: ALGEBRA I STANDARD (1 Credit)

Course Outlines 1. Name of the Course: Algebra I (Standard, College Prep, Honors) Course Description: ALGEBRA I STANDARD (1 Credit) This course will cover Algebra I concepts such as algebra as a language,

### Linear Equations ! 25 30 35\$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development

MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!

### Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

### Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

### 5 Systems of Equations

Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

### (Refer Slide Time: 2:03)

Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 11 Models of Industrial Control Devices and Systems (Contd.) Last time we were

### Common Multiples. List the multiples of 3. The multiples of 3 are 3 1, 3 2, 3 3, 3 4,...

.2 Common Multiples.2 OBJECTIVES 1. Find the least common multiple (LCM) of two numbers 2. Find the least common multiple (LCM) of a group of numbers. Compare the size of two fractions In this chapter,

### Algebra 1: Basic Skills Packet Page 1 Name: Integers 1. 54 + 35 2. 18 ( 30) 3. 15 ( 4) 4. 623 432 5. 8 23 6. 882 14

Algebra 1: Basic Skills Packet Page 1 Name: Number Sense: Add, Subtract, Multiply or Divide without a Calculator Integers 1. 54 + 35 2. 18 ( 30) 3. 15 ( 4) 4. 623 432 5. 8 23 6. 882 14 Decimals 7. 43.21