# 8.1. Cramer s Rule for Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Size: px
Start display at page:

Download "8.1. Cramer s Rule for Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style"

Transcription

1 Cramer s Rule for Solving Simultaneous Linear Equations 8.1 Introduction The need to solve systems of linear equations arises frequently in engineering. The analysis of electric circuits and the control of systems are two examples. Cramer s rule for solving such systems involves the calculation of determinants and their ratio. For systems containing only a few equations it is a useful method of solution. Prerequisites Before starting this Block you should... Learning Outcomes After completing this Block you should be able to... State and apply Cramer s rule to find the solution of two simultaneous linear equations State and apply Cramer s rule to find the solution of three simultaneous linear equations Recognise cases where the solution is not unique or does not exist 1 be able to evaluate 2 2and 3 3 determinants Learning Style To achieve what is expected of you... allocate sufficient study time briefly revise the prerequisite material attempt every guided exercise and most of the other exercises

2 1. Solving two equations in two unknowns If we have one linear equation ax = b in which the unknown is x and a and b are constants then there are just three possibilities a 0 then x = b a a 1 b. The equation ax = b has a unique solution for x. a =0,b = 0 then the equation ax = b becomes 0 = 0 and any value of x will do. There are infinitely many solutions to the equation ax = b. a = 0 and b 0 then ax = b becomes 0 = b which is a contradiction. In this case the equation ax = b has no solution for x. What happens if we have more than one equation and more than one unknown? We shall find that the solutions to such systems can be characterised in a manner similar to that occurring for a single equation; that is, a system may have a unique solution, an infinity of solutions or no solution at all. In this block we examine a method, known as Cramer s rule and employing determinants, for solving systems of linear equations. Consider the equations ax + by = e (i) cx + dy = f (ii) where a, b, c, d, e, f are given numbers. The variables x and y are unknowns we wish to find. The values of x and y which simultaneously satisfy both equations are called solutions. Simple algebra will eliminate the variable y between these equations. We multiply equation (i) by d, equation (ii) by b and subtract: first, adx+ bdy = ed and bcx + bdy = bf (we multiplied in this way to identify the coefficients of y as clearly equal.) Now subtract to obtain (ad bc)x = ed bf. Now do this exercise Starting with equations (i) and (ii) eliminate x. If we multiply this last equation by 1 we obtain (ad bc)y = af ec (iii) (iv) Dividing equations (iii) and (iv) by ad bc we obtain the solutions x = ed bf ad bc, af ec y = ad bc There is of course one proviso. If ad bc = 0 then neither x nor y has a defined value. If we choose to express these solutions in terms of determinants we have the formulation for the solution of simultaneous equations known as Cramer s rule. (v) Engineering Mathematics: Open Learning Unit Level 1 2

3 If we define as the determinant a c equations is by (v) given by x = x, b d and provided 0 then the unique solution of the ax + by = e cx + dy = f y = y where x = e f b d, y = a c Now is the determinant of coefficients ( ) on the left-hand sides of the equations. In the expression a x the coefficients of x (i.e. which is column 1 of ) are replaced by the terms on the c ( ) e right-hand sides of the equations (i.e. by ). Similarly in f y the coefficients of y (column 2of ) are replaced by the terms on the right-hand sides of the equation. e f Key Point The unique solution to the equations: Cramer s Rule is given by: ax + by = e cx + dy = f x = x, y = y b d, y = in which = a b c d x = e f If = 0 this method of obtaining the solution cannot be used. a c e f Now do this exercise Use Cramer s rule to solve the simultaneous equations 2x + y = 7 3x 4y = 5 Now do this exercise Repeat the process with the equations (a) 2x 3y = 6 4x 6y = 12 (b) 2x 3y = 6 4x 6y = 10 3 Engineering Mathematics: Open Learning Unit Level 1

4 Notation For ease of generalisation to larger systems we write the two-equation system in a different notation: a 11 x 1 + a 12 x 2 = b 1 a 21 x 2 + a 22 x 2 = b 2 Here the unknowns are x 1 and x 2, the right-hand sides are b 1 and b 2 and the coefficients are a ij where, for example, a 21 is the coefficient of x 1 in equation two. In general, a ij is the coefficient of x j in equation i. Cramer s rule can then be stated as follows: If a 11 a 12 a 21 a 22 0, then the equations a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 have solutions x 1 = b 1 a 12 b 2 a 22 a 11 a 12 a 21 a 22, x 2 = a 11 b 1 a 21 b 2 a 11 a 12. a 21 a Solving three equations in three unknowns Cramer s rule can be extended to larger systems of simultaneous equations but the calculational effort increases rapidly as the size of the system increases. We quote Cramer s rule for a system of three equations. Key Point The unique solution to the system of equations: is in which and x1 = b 1 a 12 a 13 b 2 a 22 a 23 b 3 a 32 a 33 a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 x 1 = x 1, x 2 = x 2, x 3 = x 3 = x2 = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 11 b 1 a 13 a 21 b 2 a 23 a 31 b 3 a 33 If = 0 this method of obtaining the solution cannot be used. x3 = a 11 a 12 b 1 a 21 a 22 b 2 a 31 a 32 b 3 Engineering Mathematics: Open Learning Unit Level 1 4

5 Notice that the structure of the fractions is similar to that for the two-equation case. For example, the determinant forming the numerator of x 1 is obtained from the determinant of coefficients,, by replacing the first column by the right-hand sides of the equations. Notice too the increase in calculation: in the two-equation case we had to evaluate three 2 2determinants, whereas in the three-equation case we have to evaluate four 3 3 determinants. Hence Cramer s rule is not really practicable for larger systems. Try each part of this exercise We wish to solve the system x 1 2x 2 + x 3 = 3 2x 1 + x 2 x 3 = 5 3x 1 x 2 +2x 3 = 12. Part (a) First check that 0. Part (b) Now we find the value of x 1. First write down the expression for x 1 in terms of determinants. Part (c) Now calculate x 1 explicitly. Part (d) In a similar way find the values of x 2 and x 3. More exercises for you to try 1. Solve the following using Cramer s rule: (a) 2x 3y = 1 4x + 4y = 2 (b) 2x 5y = 2 4x + 10y = 1 (c) 6x y = 0 2x 4y = 1 2. Using Cramer s rule obtain the solutions to the following sets of equations: (a) 2x 1 + x 2 x 3 = 0 x 1 + x 3 = 4 x 1 + x 2 + x 3 = 0 (b) x 1 x 2 + x 3 = 1 x 1 + x 3 = 1 x 1 + x 2 x 3 = 0 5 Engineering Mathematics: Open Learning Unit Level 1

6 3. Computer Exercise or Activity For this exercise it will be necessary for you to access the computer package DERIVE. Derive can be used to evaluate determinants, and so, indirectly, can be used to solve systems of linear equations using Cramer s rule. To evaluate a determinant it must first be input in matrix form. For example to evaluate: = we would key Author:Matrix. Then choose 2rows and 2columns and click OK. Now input the numbers as the screen directs and hit OK. DERIVE responds with Now copy this expression (using ctrl+c keys) and transfer this into the Author Expression dialog box. DERIVE responds with [[2, 1], [3, 4]] Now put the cursor at the beginning of this line and type det to give the expression det[[2,1],[3,-4]]. Hit the OK button and DERIVE responds DET Now hit SimplifyBasic and DERIVE responds: 11 as we expect. Engineering Mathematics: Open Learning Unit Level 1 6

7 End of Block Engineering Mathematics: Open Learning Unit Level 1

8 Multiply equation (i) by c and equation (ii) by a to obtain acx + bcy = ec and acx + ady = af. Now subtract to obtain (bc ad)y = ec af Engineering Mathematics: Open Learning Unit Level 1 8

9 Calculating = = 11. Since 0 we can proceed with Cramer s solution x =, y = i.e. x = ( 28 5), y = (10 21) ( 8 3) ( 8 3) 33 implying: x = =3, 11 y = =1. 9 Engineering Mathematics: Open Learning Unit Level 1

10 You should have checked first, since = 12 ( 12) = 0. Hence there is no unique solution in either case. In the system (a) the second equation is twice the first so there are infinitely many solutions. (Here we can give y any value we wish, t say; but then the x value is always (6 + 3t)/2. So for each value of t there are values for x and y which simultaneously satisfy both equations. There are an infinite number of possible solutions). In (b) the equations are inconsistent (since the first is 2x 3y = 6 and the second is 2x 3y = 5 which is not possible.) Hence there are no solutions. Engineering Mathematics: Open Learning Unit Level 1 10

11 1 2 1 = Expanding along the top row, = ( 2) = 1 (2 1) + 2 (4 + 3) + 1 ( 2 3) = =10 11 Engineering Mathematics: Open Learning Unit Level 1

12 x 1 = Engineering Mathematics: Open Learning Unit Level 1 12

13 The numerator is found by expanding along the top row to be ( 2) = ( 17) = 30. Hence x 1 = =3 13 Engineering Mathematics: Open Learning Unit Level 1

14 x 2 = 1 10 = { } = 1 { } =1 10 x 3 = 1 { ( 2) = 1 { ( 5)} = } Engineering Mathematics: Open Learning Unit Level 1 14

15 1. (a) x = 1 1,y= 0 (b) = 0, no solution (c) x =,y= (a) x 1 = 8 3,x 2 = 4, x 3 = 4 3 (b) x 1 = 1 2,x 2 = 1 2,x 3 =1 15 Engineering Mathematics: Open Learning Unit Level 1

### Solving simultaneous equations using the inverse matrix

Solving simultaneous equations using the inverse matrix 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix

### 8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes

Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us

### 3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

### is identically equal to x 2 +3x +2

Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

### 3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

### Equations, Inequalities & Partial Fractions

Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

### 3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

### 2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

### 1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

### Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

### SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

### is identically equal to x 2 +3x +2

Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

### No Solution Equations Let s look at the following equation: 2 +3=2 +7

5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

### 7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Style. Learning Outcomes

The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a 0 has a reciprocal b written as a or such that a ba = ab =. Similarly a square matrix A may have an inverse B = A where AB =

### What is Linear Programming?

Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

### Linear Equations ! 25 30 35\$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development

MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!

### Linear Equations in One Variable

Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve

### COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.1-1

10 TH EDITION COLLEGE ALGEBRA LIAL HORNSBY SCHNEIDER 1.1-1 1.1 Linear Equations Basic Terminology of Equations Solving Linear Equations Identities 1.1-2 Equations An equation is a statement that two expressions

### Typical Linear Equation Set and Corresponding Matrices

EWE: Engineering With Excel Larsen Page 1 4. Matrix Operations in Excel. Matrix Manipulations: Vectors, Matrices, and Arrays. How Excel Handles Matrix Math. Basic Matrix Operations. Solving Systems of

### Lecture 1: Systems of Linear Equations

MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables

### 1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

### Mathematical goals. Starting points. Materials required. Time needed

Level A3 of challenge: C A3 Creating and solving harder equations equations Mathematical goals Starting points Materials required Time needed To enable learners to: create and solve equations, where the

### Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices

Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices Solving square systems of linear equations; inverse matrices. Linear algebra is essentially about solving systems of linear equations,

### Linear Programming. March 14, 2014

Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

### 1 Solving LPs: The Simplex Algorithm of George Dantzig

Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### Solutions of Linear Equations in One Variable

2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

### Integrating algebraic fractions

Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate

### To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to

### Question 2: How do you solve a matrix equation using the matrix inverse?

Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

### Systems of Linear Equations

Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

### 1 Review of Least Squares Solutions to Overdetermined Systems

cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

### Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

### Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

### A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

### DIVISIBILITY AND GREATEST COMMON DIVISORS

DIVISIBILITY AND GREATEST COMMON DIVISORS KEITH CONRAD 1 Introduction We will begin with a review of divisibility among integers, mostly to set some notation and to indicate its properties Then we will

### Row Echelon Form and Reduced Row Echelon Form

These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

### Summary of important mathematical operations and formulas (from first tutorial):

EXCEL Intermediate Tutorial Summary of important mathematical operations and formulas (from first tutorial): Operation Key Addition + Subtraction - Multiplication * Division / Exponential ^ To enter a

### Linear Programming. Solving LP Models Using MS Excel, 18

SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

### MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

### Introduction to Matrix Algebra

Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

### Operation Count; Numerical Linear Algebra

10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point

### 4.3-4.4 Systems of Equations

4.3-4.4 Systems of Equations A linear equation in 2 variables is an equation of the form ax + by = c. A linear equation in 3 variables is an equation of the form ax + by + cz = d. To solve a system of

### 1 Introduction to Matrices

1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

### 1.2 Solving a System of Linear Equations

1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

### Notes on Determinant

ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

### LINEAR EQUATIONS IN TWO VARIABLES

66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### Solving Linear Systems, Continued and The Inverse of a Matrix

, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### MATH 10034 Fundamental Mathematics IV

MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

### Solving Systems of Linear Equations

LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

### LS.6 Solution Matrices

LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

### Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination)

Section 8. Solving a System of Equations Using Matrices (Guassian Elimination) x + y + z = x y + 4z = x 4y + z = System of Equations x 4 y = 4 z A System in matrix form x A x = b b 4 4 Augmented Matrix

### Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule.

Sequences A sequence is a list of numbers, or a pattern, which obeys a rule. Each number in a sequence is called a term. ie the fourth term of the sequence 2, 4, 6, 8, 10, 12... is 8, because it is the

### Name: Section Registered In:

Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

### Systems of Linear Equations

Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11-]. Main points in this section: 1. Definition of Linear

### Linear Algebra Notes

Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### EXCEL SOLVER TUTORIAL

ENGR62/MS&E111 Autumn 2003 2004 Prof. Ben Van Roy October 1, 2003 EXCEL SOLVER TUTORIAL This tutorial will introduce you to some essential features of Excel and its plug-in, Solver, that we will be using

### Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

### 14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

### Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

### 7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

### 6.1. The Exponential Function. Introduction. Prerequisites. Learning Outcomes. Learning Style

The Exponential Function 6.1 Introduction In this block we revisit the use of exponents. We consider how the expression a x is defined when a is a positive number and x is irrational. Previously we have

### Introduction to Engineering Analysis - ENGR1100 Course Description and Syllabus Monday / Thursday Sections. Fall '15.

Introduction to Engineering Analysis - ENGR1100 Course Description and Syllabus Monday / Thursday Sections Fall 2015 All course materials are available on the RPI Learning Management System (LMS) website.

### Methods for Finding Bases

Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

### University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

### Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

### 7.7 Solving Rational Equations

Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

### LAB 11: MATRICES, SYSTEMS OF EQUATIONS and POLYNOMIAL MODELING

LAB 11: MATRICS, SYSTMS OF QUATIONS and POLYNOMIAL MODLING Objectives: 1. Solve systems of linear equations using augmented matrices. 2. Solve systems of linear equations using matrix equations and inverse

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### Math 215 HW #6 Solutions

Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### Elements of a graph. Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

### Absolute Value Equations and Inequalities

. Absolute Value Equations and Inequalities. OBJECTIVES 1. Solve an absolute value equation in one variable. Solve an absolute value inequality in one variable NOTE Technically we mean the distance between

### 1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational

### The Graphical Method: An Example

The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

### 9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

### Systems of Equations Involving Circles and Lines

Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system

### Here are some examples of combining elements and the operations used:

MATRIX OPERATIONS Summary of article: What is an operation? Addition of two matrices. Multiplication of a Matrix by a scalar. Subtraction of two matrices: two ways to do it. Combinations of Addition, Subtraction,

### 1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### 1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

### Limits. Graphical Limits Let be a function defined on the interval [-6,11] whose graph is given as:

Limits Limits: Graphical Solutions Graphical Limits Let be a function defined on the interval [-6,11] whose graph is given as: The limits are defined as the value that the function approaches as it goes

### Solving Systems of Two Equations Algebraically

8 MODULE 3. EQUATIONS 3b Solving Systems of Two Equations Algebraically Solving Systems by Substitution In this section we introduce an algebraic technique for solving systems of two equations in two unknowns

### 5.5. Solving linear systems by the elimination method

55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve

### Matrix algebra for beginners, Part I matrices, determinants, inverses

Matrix algebra for beginners, Part I matrices, determinants, inverses Jeremy Gunawardena Department of Systems Biology Harvard Medical School 200 Longwood Avenue, Cambridge, MA 02115, USA jeremy@hmsharvardedu

### Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

### The Standard Normal distribution

The Standard Normal distribution 21.2 Introduction Mass-produced items should conform to a specification. Usually, a mean is aimed for but due to random errors in the production process we set a tolerance

### 0.8 Rational Expressions and Equations

96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

### 10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

### Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

### Review of Fundamental Mathematics

Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools