Energy Storage Technologies & Applications

Similar documents
Evaluation of mobile storage systems for heat transport. G. Storch, A. Hauer, A. Krönauer ZAE Bayern, Walther-Meißner-Str. 6, Garching, Germany

Storage technologies/research, from physics and chemistry to engineering

Energy Storage Procurement Phase II Backgrounder November 23, 2015

Anwendungen mit der Fronius Energiezelle

STORAGE IS THE FUTURE: MAKING THE MOST OF BATTERIES

Feasibility Study for Mobile Sorption Storage in Industrial Applications

Capacitors for Power Grid Storage

AREVA's Energy Storage Solutions

Oportunidades en almacenamiento de electricidad. Juan Ramón Morante IREC, Catalonia Institute for Energy Research and University of Barcelona.

Smart Energy Systems Energy Efficient Buildings and the Design of future Sustainable Energy Systems

Physics and Economy of Energy Storage

Thermal Storage: Challenges and Opportunities. Ravi Prasher Sheetak Inc., Austin, Texas

Overview of Electric Energy Storage Options for the Electric Enterprise

Sodium Sulfur Battery. ENERGY STORAGE SYSTEM for Reducing CO2 Emissions

Battery Energy Storage

The potential of Solid Hydrogen for Renewable Energy Storage & valorization

Energy storage systems Characteristics and comparisons

Power to Gas - an economic approach?

Power-to-heat. DIW - Forum on Flexibility Options Berlin,

Integrating End-User and Grid Focused Batteries and Long-Term Power-to-Gas Storage for Reaching a 100 % Renewable Energy Supply

STORAGE ELECTRICITY. Improving the world through engineering

Addressing the challenge of modelling energy storage in a whole energy system Sheila Samsatli, Nouri Samsatli, Nilay Shah

CLCF /Chatham House Workshop: Energy Storage - The Next Disruptive Technology. Professor Yulong Ding

Grid-Scale Energy Storage

Power-to-Gas: Technology and Business Model Progress Presentation to the IPHE Workshop

Comparison of Recent Trends in Sustainable Energy Development in Japan, U.K., Germany and France

Gasförmige und flüssige synthetische Energieträger aus Biomasse Stand der Entwicklungen an der TU Wien. Hermann HOFBAUER, TU Wien

Energy Storage Technologies & Their Role in Renewable Integration

Electrical energy storage systems for energy networks

Merit Order of Energy Storages by 2030 The Impact of Technological Megatrends on Future Electricity Prices. Berlin, November 27, 2012

Solving the fluctuation problems in a land with 100% of renewable energy. Prof. Damien Ernst University of Liège dernst@ulg.ac.

Energy Storage Systems Li-ion Philippe ULRICH

Energy Storage for the Grid

Thermal Energy Storage

Stephen Bennington CELLA ENERGY

GENERATION TECHNOLOGY ASSESSMENT

Baterías de flujo: conceptos y aplicación futura. Catalonia Institute for Energy Research

Wind-Diesel Hybrid System Options for Alaska. Steve Drouilhet National Renewable Energy Laboratory Golden, CO

BPMN Process Design for Complex Product Development and Production

From today s systems to the future renewable energy systems. Iva Ridjan US-DK summer school AAU Copenhagen 17 August 2015

Electricity Storage Technologies, impacts, and prospects

1 April 22, 2013 RHC conference, Dublin MERITS presentation. More Effective use of Renewables including compact seasonal Thermal energy Storage

Practical Examples of Galvanic Cells

BATTERY STORAGE SYSTEMS IN ELECTRIC POWER SYSTEMS

Recent Advances in Compressed Air Energy Storage and Thermo-Mechanical Electricity Storage Technologies

D2.1 Report summarizing the current Status, Role and Costs of Energy Storage Technologies

Technologies and Perspectives of Solar Cooling Systems

Technological developments and market perspectives for renewable energy cooling systems

Sustainable Schools Renewable Energy Technologies. Andrew Lyle RD Energy Solutions

Half the cost Half the carbon

Introduction to energy storage

Solid Oxide Fuel Cell Gas Turbine Hybrid Power Plant. M. Henke, C. Willich, M. Steilen, J. Kallo, K. A. Friedrich

Hydrogen Powered Bus Fleets Hydrogen Supply & Fueling. National Fuel Cell Bus Workshop October 5, New Orleans, LA

Assessing the Electricity Storage for Renewable Energy in Saudi Arabia

Electrolysis for grid balancing Where are we?

GAS HEAT PUMPS WORKSHOP 01 st & 02 nd December 2011 Saint-Denis/Paris. Dr. Belal Dawoud. Viessmann Werke Allendorf GmbH Viessmann Strasse, 1

A Critical Review of Thermochemical Energy Storage Systems

Hydrogen as Storage Option in the Energy System of the Future

Energy Storage Technology Roadmap. Technology Annex

NAS Battery Application

Comparison of different energy storage systems for renewable energies on a Caribbean island

Elektrolyse - Potenziale zur Integration regenerativer Stromproduktion

Introduction to Non- Conventional Energy Systems

LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS

To conclude with recommendations for a second project phase, where one or more demonstration storage systems will be tested experimentally.

The Energy Transition in Germany Past, Present and Future

Electrical Energy Storage

Challenges of Electricity Storage Technologies

Seasonal Thermal Energy Storage in Germany

Solar Thermal TECHNOLOGY. Eric Buchanan Renewable Energy Scientist West Central Research and Outreach Center Wcroc.cfans.umn.edu

Thermische Speicherung von Solarenergie

Cella Energy Safe, low cost hydrogen storage. Chris Hobbs

CRITICAL COOLING FOR DATA CENTERS

High temperature electrolysis (SOEC) for the production of renewable fuels

ESA and ABAQUE Joint Webinar. August 27, 2015

BCCES. Assessing the value of distributed Energy Storage systems: A case study of the University of Birmingham. University of Birmingham

Danmark satser på konvertering og lagring

HYDROPOWER AND POWER-TO-GAS STORAGE OPTIONS: THE BRAZILIAN ENERGY SYSTEM CASE

Renewable energy technology forecast: what can we expect from the technology evolution?

The Future Role of Thermal Energy Storage in the UK Energy System: An Assessment of the Technical Feasibility and Factors Influencing Adoption

Workshop Putting Science into Standards: Power-to-Hydrogen and HCNG

SAMPLE CHAPTERS UNESCO EOLSS MECHANICAL ENERGY STORAGE. Prof. Dr. Yalçın A. Gőğűş Middle East Technical University, Turkey

Zentrum für Sonnenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)

Research in energy storage technologies: a University perspective

FLEXIBILITY FROM HEAT FOR POWER SYSTEMS - FUTURE APPLICATIONS FOR CHP AND P2H

Solar cooling with highly efficient absorption chillers

As you learned in the previous activity, energy is either potential energy or kinetic energy. Each can take many forms.

Transcription:

Bayerisches Zentrum für Angewandte Energieforschung e.v. Energy Technologies & Applications IEA Energy Technology Roadmap Stakeholder Engagement Workshop ZAE Bayern Andreas Hauer

13 Minutes on Energy Three points I want to make: Many storage technologies at hand Comparison only possible in an actual application Economics of storage also application dependent

Energy Technologies

Electrical Energy s as Electrical Energy Super-conducting Magnetic Energy (SMES) Super-Capacitor as Electro-chemical Energy Sodium-Sulfate Battery (NaS-Cells) Lead-Acid Battery Redox-Flow Battery as Mechanical Energy Pumped Hydro Compressed Air Energy (CAES) Flywheel

Thermal Energy s Thermal Energy can be stored as sensible heat Hot Water Tank Underground Thermal Energy (UTES) Thermal Energy can be stored as latent heat Macro- / Microencapsulated Phase Change Materials (PCM) Thermal Energy can be stored thermo-chemically Adsorption (Zeolite) and Absorption (LiCl) ThermoChemical Materials (TCM)

Chemical Energy Energy by Hydrogen Production and Hydrogen is the most powerful fuel with regard to its mass Loss-free long-term storage possible Electricity production by fuel cells / H 2 turbines Energy by Methane Production and Methane from Hydrogen (and CO 2 ) Efficiency >80 % (Sabatier-Process) Existing Infrastructure (natural gas)

Comparison of Different Energy Technologies

Comparison of Energy Technologies technology Lithium Ion (Li Ion) Sodium Sulfur (NAS) battery Lead Acid battery Redox/Flow battery Compressed air energy storage (CAES) Pumped hydro energy storage (PHES) Mechanism Power Capacity Period Density Efficiency Lifetime Cost MW MWh time kwh/ton kwh/m 3 % # cycles $/kw $/kwh < 1,7 < 22 day - month 84-160 190-375 0,89-0,98 1-60 7-450 day 99-150 156-255 0,75-0,86 0.1-30 < 30 day - month 22-34 25-65 0,65-0,85 < 7 < 10 day - month 18-28 21-34 0,72-0,85 Mechanical 2-300 14-2050 day - Mechanical 450-2500 8000-190000 day - month 0,27 at 100m 2-7 at 20-80 bar 0,27 at 100m 0,4-0,75 0,63-0,85 2960-5440 1620-4500 160-1060 1510-2780 8620-17100 12800-33000 1230-3770 260-2560 350-850 650-2730 15-2050 540-2790 620-2760 210-920 130-1100 120-1600 /kwhdelivere d 17-102 9-55 21-102 5-88 30-100 2-35 40-160 0,1-18 2,7-160 at 384 - Hydrogen Chemical varies varies indefinite 34000 0,22-0,50 1-25 - 64 1-700 bar 1408 Methane There Chemical is a strong varies varies influence indefinite 16000 of 10 the at 1 bar actual 0,24-0,42 application 1 - - on 16-44 Sensible Thermal < 10 < 100 hour - year 10-50 < 60 0,5-0,9 ~5000-0,1-13 0,01 storage - Water Phase change materials (PCM) Comparison of storage technolgies is difficult. the storage properties! Thermal < 10 < 10 hour - week 50-150 < 120 0,75-0,9 ~5000-13 - 65 1,3-6 Thermochemica l storage (TCS) Thermal < 1 < 10 hour - week 120-250 120-250 0,8-1 ~3500-10 - 130 1-5

Application: Long Term technology Lithium Ion (Li Ion) Sodium Sulfur (NAS) battery Lead Acid battery Redox/Flow battery Compressed air energy storage (CAES) Pumped hydro energy storage (PHES) Mechanism Power Capacity Period Density Efficiency Lifetime Cost MW MWh time kwh/ton kwh/m 3 % # cycles $/kw $/kwh < 1,7 < 22 day - month 84-160 190-375 0,89-0,98 1-60 7-450 day 99-150 156-255 0,75-0,86 0.1-30 < 30 day - month 22-34 25-65 0,65-0,85 < 7 < 10 day - month 18-28 21-34 0,72-0,85 Mechanical 2-300 14-2050 day - Mechanical 450-2500 8000-190000 day - month 0,27 at 100m Hydrogen Chemical varies varies indefinite 34000 2-7 at 20-80 bar 0,27 at 100m 2,7-160 at 1-700 bar 0,4-0,75 0,63-0,85 2960-5440 1620-4500 160-1060 1510-2780 8620-17100 12800-33000 0,22-0,50 1 1230-3770 260-2560 350-850 650-2730 15-2050 540-2790 384-1408 620-2760 210-920 130-1100 120-1600 /kwhdelivere d 17-102 9-55 21-102 5-88 30-100 2-35 40-160 0,1-18 - 25-64 Methane Chemical varies varies indefinite 16000 10 at 1 bar 0,24-0,42 1 - - 16-44 Sensible storage - Water Thermal < 10 < 100 hour - year 10-50 < 60 0,5-0,9 ~5000-0,1-13 0,01 Phase change materials (PCM) Thermochemica l storage (TCS) Thermal < 10 < 10 hour - week 50-150 < 120 0,75-0,9 ~5000-13 - 65 1,3-6 Thermal < 1 < 10 hour - week 120-250 120-250 0,8-1 ~3500-10 - 130 1-5

Application: Long Term Hydrogen: Efficiency: Electrolysis ~ 70 % Compression ~ 90 % Transport ~ 90 % ~ 90 % Fuel: Overall Efficiency 50% Electricity (Fuel Cell): Overall Efficiency 30 % Heating: Overall Efficiency 50 % Total ~ 51% 61.7 % U. Stimming, TUM M. Sterner

Application: Long Term Hot Water: COP th > 3 Total ~ 225% Efficiency: Heat Pump ~ 300 % ~ 75 % Fuel: not possible! Electricity: not possible! Heating: Overall Efficiency 225 %

Important: Look at the whole efficiency chain! Take the value of the stored energy ( exergy!) into account! Take the final energy demand into account! Also Power-to-Heat is an option! Try to identify the most suitable technology for the application!

Economics of Energy What is the maximum acceptable storage cost ($/kwh) for a certain application?

Annuity Method Acceptable annuity factor of capital costs for different users Example: in the building sector a payback period of 15 to 20 years and an interest rate of 3% to 6% can be accepted, resulting in an annuity factor of 7% to 8%.

Acceptable Cost Acceptable energy storage costs as a function of annuity factor, energy price, cycle period Seasonal Example Building: Cycle period = 365 days Annuity factor = 10% Price of substituted Energy = 0,06 /kwh Result: Max. Accept. Cost = 0,61 /kwh = 0,79 $/kwh Enthusiast: Max. Accept. Cost = 3.2 /kwh = 4,2 $/kwh

Energiespeicher Technologien technology Lithium Ion (Li Ion) Sodium Sulfur (NAS) battery Lead Acid battery Redox/Flow battery Compressed air energy storage (CAES) Pumped hydro energy storage (PHES) Mechanism Power Capacity Period Density Efficiency Lifetime Cost MW MWh time kwh/ton kwh/m 3 % # cycles $/kw $/kwh < 1,7 < 22 day - month 84-160 190-375 0,89-0,98 1-60 7-450 day 99-150 156-255 0,75-0,86 0.1-30 < 30 day - month 22-34 25-65 0,65-0,85 < 7 < 10 day - month 18-28 21-34 0,72-0,85 Mechanical 2-300 14-2050 day - Mechanical 450-2500 8000-190000 day - month 0,27 at 100m Hydrogen Chemical varies varies indefinite 34000 2-7 at 20-80 bar 0,27 at 100m 2,7-160 at 1-700 bar 0,4-0,75 0,63-0,85 2960-5440 1620-4500 160-1060 1510-2780 8620-17100 12800-33000 0,22-0,50 1 1230-3770 260-2560 350-850 650-2730 15-2050 540-2790 384-1408 620-2760 210-920 130-1100 120-1600 /kwhdelivere d 17-102 9-55 21-102 5-88 30-100 2-35 40-160 0,1-18 - 25-64 Methane Chemical varies varies indefinite 16000 10 at 1 bar 0,24-0,42 1 - - 16-44 Sensible storage - Water Thermal < 10 < 100 hour - year 10-50 < 60 0,5-0,9 ~5000-0,1-13 0,01 Phase change materials (PCM) Thermochemica l storage (TCS) Thermal < 10 < 10 hour - week 50-150 < 120 0,75-0,9 ~5000-13 - 65 1,3-6 Thermal < 1 < 10 hour - week 120-250 120-250 0,8-1 ~3500-10 - 130 1-5

Acceptable Cost Acceptable energy storage costs as a function of annuity factor, energy price, cycle period Industrial Processes Example Industry: Cycle period = 1 day Annuity factor = 25% Price of substituted Energy = 0,04 /kwh Result: Max. Accept. Cost = 60 /kwh = 78 $/kwh Cycle period = 0.1 day Max. Accept. Cost = 300 /kwh = 390 $/kwh

Energiespeicher Technologien technology Lithium Ion (Li Ion) Sodium Sulfur (NAS) battery Lead Acid battery Redox/Flow battery Compressed air energy storage (CAES) Pumped hydro energy storage (PHES) Mechanism Power Capacity Period Density Efficiency Lifetime Cost MW MWh time kwh/ton kwh/m 3 % # cycles $/kw $/kwh < 1,7 < 22 day - month 84-160 190-375 0,89-0,98 1-60 7-450 day 99-150 156-255 0,75-0,86 0.1-30 < 30 day - month 22-34 25-65 0,65-0,85 < 7 < 10 day - month 18-28 21-34 0,72-0,85 Mechanical 2-300 14-2050 day - Mechanical 450-2500 8000-190000 day - month 0,27 at 100m Hydrogen Chemical varies varies indefinite 34000 2-7 at 20-80 bar 0,27 at 100m 2,7-160 at 1-700 bar 0,4-0,75 0,63-0,85 2960-5440 1620-4500 160-1060 1510-2780 8620-17100 12800-33000 0,22-0,50 1 1230-3770 260-2560 350-850 650-2730 15-2050 540-2790 384-1408 620-2760 210-920 130-1100 120-1600 /kwhdelivere d 17-102 9-55 21-102 5-88 30-100 2-35 40-160 0,1-18 - 25-64 Methane Chemical varies varies indefinite 16000 10 at 1 bar 0,24-0,42 1 - - 16-44 Sensible storage - Water Thermal < 10 < 100 hour - year 10-50 < 60 0,5-0,9 ~5000-0,1-13 0,01 Phase change materials (PCM) Thermochemica l storage (TCS) Thermal < 10 < 10 hour - week 50-150 < 120 0,75-0,9 ~5000-13 - 65 1,3-6 Thermal < 1 < 10 hour - week 120-250 120-250 0,8-1 ~3500-10 - 130 1-5

Conclusions

Final energy demand and complete efficiency chain important to identify appropriate storage technology Application Environment and cycle number in operation are crucial for the economics The best fitting storage technology has to be found for each application

Thank you very much for your attention! ZAE Bayern