Bayerisches Zentrum für Angewandte Energieforschung e.v. Energy Technologies & Applications IEA Energy Technology Roadmap Stakeholder Engagement Workshop ZAE Bayern Andreas Hauer
13 Minutes on Energy Three points I want to make: Many storage technologies at hand Comparison only possible in an actual application Economics of storage also application dependent
Energy Technologies
Electrical Energy s as Electrical Energy Super-conducting Magnetic Energy (SMES) Super-Capacitor as Electro-chemical Energy Sodium-Sulfate Battery (NaS-Cells) Lead-Acid Battery Redox-Flow Battery as Mechanical Energy Pumped Hydro Compressed Air Energy (CAES) Flywheel
Thermal Energy s Thermal Energy can be stored as sensible heat Hot Water Tank Underground Thermal Energy (UTES) Thermal Energy can be stored as latent heat Macro- / Microencapsulated Phase Change Materials (PCM) Thermal Energy can be stored thermo-chemically Adsorption (Zeolite) and Absorption (LiCl) ThermoChemical Materials (TCM)
Chemical Energy Energy by Hydrogen Production and Hydrogen is the most powerful fuel with regard to its mass Loss-free long-term storage possible Electricity production by fuel cells / H 2 turbines Energy by Methane Production and Methane from Hydrogen (and CO 2 ) Efficiency >80 % (Sabatier-Process) Existing Infrastructure (natural gas)
Comparison of Different Energy Technologies
Comparison of Energy Technologies technology Lithium Ion (Li Ion) Sodium Sulfur (NAS) battery Lead Acid battery Redox/Flow battery Compressed air energy storage (CAES) Pumped hydro energy storage (PHES) Mechanism Power Capacity Period Density Efficiency Lifetime Cost MW MWh time kwh/ton kwh/m 3 % # cycles $/kw $/kwh < 1,7 < 22 day - month 84-160 190-375 0,89-0,98 1-60 7-450 day 99-150 156-255 0,75-0,86 0.1-30 < 30 day - month 22-34 25-65 0,65-0,85 < 7 < 10 day - month 18-28 21-34 0,72-0,85 Mechanical 2-300 14-2050 day - Mechanical 450-2500 8000-190000 day - month 0,27 at 100m 2-7 at 20-80 bar 0,27 at 100m 0,4-0,75 0,63-0,85 2960-5440 1620-4500 160-1060 1510-2780 8620-17100 12800-33000 1230-3770 260-2560 350-850 650-2730 15-2050 540-2790 620-2760 210-920 130-1100 120-1600 /kwhdelivere d 17-102 9-55 21-102 5-88 30-100 2-35 40-160 0,1-18 2,7-160 at 384 - Hydrogen Chemical varies varies indefinite 34000 0,22-0,50 1-25 - 64 1-700 bar 1408 Methane There Chemical is a strong varies varies influence indefinite 16000 of 10 the at 1 bar actual 0,24-0,42 application 1 - - on 16-44 Sensible Thermal < 10 < 100 hour - year 10-50 < 60 0,5-0,9 ~5000-0,1-13 0,01 storage - Water Phase change materials (PCM) Comparison of storage technolgies is difficult. the storage properties! Thermal < 10 < 10 hour - week 50-150 < 120 0,75-0,9 ~5000-13 - 65 1,3-6 Thermochemica l storage (TCS) Thermal < 1 < 10 hour - week 120-250 120-250 0,8-1 ~3500-10 - 130 1-5
Application: Long Term technology Lithium Ion (Li Ion) Sodium Sulfur (NAS) battery Lead Acid battery Redox/Flow battery Compressed air energy storage (CAES) Pumped hydro energy storage (PHES) Mechanism Power Capacity Period Density Efficiency Lifetime Cost MW MWh time kwh/ton kwh/m 3 % # cycles $/kw $/kwh < 1,7 < 22 day - month 84-160 190-375 0,89-0,98 1-60 7-450 day 99-150 156-255 0,75-0,86 0.1-30 < 30 day - month 22-34 25-65 0,65-0,85 < 7 < 10 day - month 18-28 21-34 0,72-0,85 Mechanical 2-300 14-2050 day - Mechanical 450-2500 8000-190000 day - month 0,27 at 100m Hydrogen Chemical varies varies indefinite 34000 2-7 at 20-80 bar 0,27 at 100m 2,7-160 at 1-700 bar 0,4-0,75 0,63-0,85 2960-5440 1620-4500 160-1060 1510-2780 8620-17100 12800-33000 0,22-0,50 1 1230-3770 260-2560 350-850 650-2730 15-2050 540-2790 384-1408 620-2760 210-920 130-1100 120-1600 /kwhdelivere d 17-102 9-55 21-102 5-88 30-100 2-35 40-160 0,1-18 - 25-64 Methane Chemical varies varies indefinite 16000 10 at 1 bar 0,24-0,42 1 - - 16-44 Sensible storage - Water Thermal < 10 < 100 hour - year 10-50 < 60 0,5-0,9 ~5000-0,1-13 0,01 Phase change materials (PCM) Thermochemica l storage (TCS) Thermal < 10 < 10 hour - week 50-150 < 120 0,75-0,9 ~5000-13 - 65 1,3-6 Thermal < 1 < 10 hour - week 120-250 120-250 0,8-1 ~3500-10 - 130 1-5
Application: Long Term Hydrogen: Efficiency: Electrolysis ~ 70 % Compression ~ 90 % Transport ~ 90 % ~ 90 % Fuel: Overall Efficiency 50% Electricity (Fuel Cell): Overall Efficiency 30 % Heating: Overall Efficiency 50 % Total ~ 51% 61.7 % U. Stimming, TUM M. Sterner
Application: Long Term Hot Water: COP th > 3 Total ~ 225% Efficiency: Heat Pump ~ 300 % ~ 75 % Fuel: not possible! Electricity: not possible! Heating: Overall Efficiency 225 %
Important: Look at the whole efficiency chain! Take the value of the stored energy ( exergy!) into account! Take the final energy demand into account! Also Power-to-Heat is an option! Try to identify the most suitable technology for the application!
Economics of Energy What is the maximum acceptable storage cost ($/kwh) for a certain application?
Annuity Method Acceptable annuity factor of capital costs for different users Example: in the building sector a payback period of 15 to 20 years and an interest rate of 3% to 6% can be accepted, resulting in an annuity factor of 7% to 8%.
Acceptable Cost Acceptable energy storage costs as a function of annuity factor, energy price, cycle period Seasonal Example Building: Cycle period = 365 days Annuity factor = 10% Price of substituted Energy = 0,06 /kwh Result: Max. Accept. Cost = 0,61 /kwh = 0,79 $/kwh Enthusiast: Max. Accept. Cost = 3.2 /kwh = 4,2 $/kwh
Energiespeicher Technologien technology Lithium Ion (Li Ion) Sodium Sulfur (NAS) battery Lead Acid battery Redox/Flow battery Compressed air energy storage (CAES) Pumped hydro energy storage (PHES) Mechanism Power Capacity Period Density Efficiency Lifetime Cost MW MWh time kwh/ton kwh/m 3 % # cycles $/kw $/kwh < 1,7 < 22 day - month 84-160 190-375 0,89-0,98 1-60 7-450 day 99-150 156-255 0,75-0,86 0.1-30 < 30 day - month 22-34 25-65 0,65-0,85 < 7 < 10 day - month 18-28 21-34 0,72-0,85 Mechanical 2-300 14-2050 day - Mechanical 450-2500 8000-190000 day - month 0,27 at 100m Hydrogen Chemical varies varies indefinite 34000 2-7 at 20-80 bar 0,27 at 100m 2,7-160 at 1-700 bar 0,4-0,75 0,63-0,85 2960-5440 1620-4500 160-1060 1510-2780 8620-17100 12800-33000 0,22-0,50 1 1230-3770 260-2560 350-850 650-2730 15-2050 540-2790 384-1408 620-2760 210-920 130-1100 120-1600 /kwhdelivere d 17-102 9-55 21-102 5-88 30-100 2-35 40-160 0,1-18 - 25-64 Methane Chemical varies varies indefinite 16000 10 at 1 bar 0,24-0,42 1 - - 16-44 Sensible storage - Water Thermal < 10 < 100 hour - year 10-50 < 60 0,5-0,9 ~5000-0,1-13 0,01 Phase change materials (PCM) Thermochemica l storage (TCS) Thermal < 10 < 10 hour - week 50-150 < 120 0,75-0,9 ~5000-13 - 65 1,3-6 Thermal < 1 < 10 hour - week 120-250 120-250 0,8-1 ~3500-10 - 130 1-5
Acceptable Cost Acceptable energy storage costs as a function of annuity factor, energy price, cycle period Industrial Processes Example Industry: Cycle period = 1 day Annuity factor = 25% Price of substituted Energy = 0,04 /kwh Result: Max. Accept. Cost = 60 /kwh = 78 $/kwh Cycle period = 0.1 day Max. Accept. Cost = 300 /kwh = 390 $/kwh
Energiespeicher Technologien technology Lithium Ion (Li Ion) Sodium Sulfur (NAS) battery Lead Acid battery Redox/Flow battery Compressed air energy storage (CAES) Pumped hydro energy storage (PHES) Mechanism Power Capacity Period Density Efficiency Lifetime Cost MW MWh time kwh/ton kwh/m 3 % # cycles $/kw $/kwh < 1,7 < 22 day - month 84-160 190-375 0,89-0,98 1-60 7-450 day 99-150 156-255 0,75-0,86 0.1-30 < 30 day - month 22-34 25-65 0,65-0,85 < 7 < 10 day - month 18-28 21-34 0,72-0,85 Mechanical 2-300 14-2050 day - Mechanical 450-2500 8000-190000 day - month 0,27 at 100m Hydrogen Chemical varies varies indefinite 34000 2-7 at 20-80 bar 0,27 at 100m 2,7-160 at 1-700 bar 0,4-0,75 0,63-0,85 2960-5440 1620-4500 160-1060 1510-2780 8620-17100 12800-33000 0,22-0,50 1 1230-3770 260-2560 350-850 650-2730 15-2050 540-2790 384-1408 620-2760 210-920 130-1100 120-1600 /kwhdelivere d 17-102 9-55 21-102 5-88 30-100 2-35 40-160 0,1-18 - 25-64 Methane Chemical varies varies indefinite 16000 10 at 1 bar 0,24-0,42 1 - - 16-44 Sensible storage - Water Thermal < 10 < 100 hour - year 10-50 < 60 0,5-0,9 ~5000-0,1-13 0,01 Phase change materials (PCM) Thermochemica l storage (TCS) Thermal < 10 < 10 hour - week 50-150 < 120 0,75-0,9 ~5000-13 - 65 1,3-6 Thermal < 1 < 10 hour - week 120-250 120-250 0,8-1 ~3500-10 - 130 1-5
Conclusions
Final energy demand and complete efficiency chain important to identify appropriate storage technology Application Environment and cycle number in operation are crucial for the economics The best fitting storage technology has to be found for each application
Thank you very much for your attention! ZAE Bayern