15. Symmetric polynomials



Similar documents
7. Some irreducible polynomials

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Quotient Rings and Field Extensions

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

1 Lecture: Integration of rational functions by decomposition

it is easy to see that α = a

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

A Systematic Approach to Factoring

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Basics of Polynomial Theory

Gröbner Bases and their Applications

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

SOLVING POLYNOMIAL EQUATIONS

1.7. Partial Fractions Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

Inner Product Spaces

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

PROBLEM SET 6: POLYNOMIALS

The Division Algorithm for Polynomials Handout Monday March 5, 2012

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

The Method of Partial Fractions Math 121 Calculus II Spring 2015

minimal polyonomial Example

9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

3 Monomial orders and the division algorithm

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

Linear and quadratic Taylor polynomials for functions of several variables.

calculating the result modulo 3, as follows: p(0) = = 1 0,

3.2 The Factor Theorem and The Remainder Theorem

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov

1.3 Algebraic Expressions

1.3 Polynomials and Factoring

Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Real Roots of Univariate Polynomials with Real Coefficients

Unique Factorization

Integrals of Rational Functions

3 1. Note that all cubes solve it; therefore, there are no more

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving Cubic Polynomials

Math 4310 Handout - Quotient Vector Spaces

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

Polynomial Invariants

Vieta s Formulas and the Identity Theorem

Factoring Polynomials

1 = (a 0 + b 0 α) (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Continued Fractions and the Euclidean Algorithm

11 Multivariate Polynomials

Chapter 13: Basic ring theory

1 Homework 1. [p 0 q i+j p i 1 q j+1 ] + [p i q j ] + [p i+1 q j p i+j q 0 ]

Zeros of a Polynomial Function

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Factoring Cubic Polynomials

SUM OF TWO SQUARES JAHNAVI BHASKAR

Factorization in Polynomial Rings

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

Partial Fractions. (x 1)(x 2 + 1)

How To Prove The Dirichlet Unit Theorem

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Differentiation and Integration

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

3 Factorisation into irreducibles

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

March 29, S4.4 Theorems about Zeros of Polynomial Functions

DERIVATIVES AS MATRICES; CHAIN RULE

4.3 Lagrange Approximation

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

5 Numerical Differentiation

8 Divisibility and prime numbers

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

MA3D5 Galois theory. Miles Reid. Jan Mar 2004 printed Jan 2014

Some strong sufficient conditions for cyclic homogeneous polynomial inequalities of degree four in nonnegative variables

Recall that two vectors in are perpendicular or orthogonal provided that their dot

MATH Fundamental Mathematics IV

Notes 11: List Decoding Folded Reed-Solomon Codes

Linear Algebra I. Ronald van Luijk, 2012

November 16, Interpolation, Extrapolation & Polynomial Approximation

Constrained optimization.

Partial Fractions. p(x) q(x)

Factorization Algorithms for Polynomials over Finite Fields

The last three chapters introduced three major proof techniques: direct,

Zeros of Polynomial Functions

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

k, then n = p2α 1 1 pα k

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

Click on the links below to jump directly to the relevant section

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Numerical Analysis Lecture Notes

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

Inner product. Definition of inner product

Methods for Finding Bases

Factoring Polynomials

LINEAR ALGEBRA W W L CHEN

Transcription:

15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things. For indeterminates x i, let p S n act on Z[x 1,, x n ] by p(x i ) = x p(i) A polynomial f(x 1,, x n ) Z[x 1,, x n ] is invariant under S n if for all p S n f(p(x 1 ),, p(x n )) = f(x 1,, x n ) The elementary symmetric polynomials in x 1,, x n are s 1 = s 1 (x 1,, x n ) = i x i s 2 = s 2 (x 1,, x n ) = i<j x ix j s 3 = s 3 (x 1,, x n ) = i<j<k x ix j x k s 4 = s 4 (x 1,, x n ) = i<j<k<l x ix j x k x l s t = s t (x 1,, x n ) = i 1<i 2<...<i t x i1 x i2 x it s n = s n (x 1,, x n ) = x 1 x 2 x 3 x n [1.0.1] Theorem: A polynomial f(x 1,, x n ) Z[x 1,, x n ] is invariant under S n if and only if it is a polynomial in the elementary symmetric functions s 1,, s n. [1.0.2] Remark: In fact, the proof shows an algorithm which determines the expression for a given S n -invariant polynomial in terms of the elementary ones. 213

214 Symmetric polynomials Proof: Let f(x 1,, x n ) be S n -invariant. Let be the map which kills off x n, that is If f(x 1,, x n ) is S n -invariant, then q : Z[x 1,, x n 1, x n ] Z[x 1,, x n 1 ] q(x i ) = { xi (1 i < n) 0 (i = n) q(f(x 1,, x n 1, x n )) = f(x 1,, x n 1, 0) is S n 1 -invariant, where we take the copy of S n 1 inside S n that fixes n. And note that q(s i (x 1,, x n )) = { si (x 1,, x n 1 ) (1 i < n) 0 (i = n) By induction on the number of variables, there is a polynomial P in n 1 variables such that q(f(x 1,, x n )) = P (s 1 (x 1,, x n 1 ),, s n 1 (x 1,, x n 1 )) Now use the same polynomial P but with the elementary symmetric functions augmented by insertion of x n, by g(x 1,, x n ) = P (s 1 (x 1,, x n ),, s n 1 (x 1,, x n )) By the way P was chosen, q(f(x 1,, x n ) g(x 1,, x n )) = 0 That is, mapping x n 0 sends the difference f g to 0. Using the unique factorization in Z[x 1,, x n ], this implies that x n divides f g. The S n -invariance of f g implies that every x i divides f g. That is, by unique factorization, s n (x 1,, x n ) divides f g. The total degree of a monomial c x e1 1 xen n is the sum of the exponents total degree (c x e1 1 xen n ) = e 1 + + e n The total degree of a polynomial is the maximum of the total degrees of its monomial summands. Consider the polynomial f g = f(x 1,, x n ) g(x 1,, x n ) s n s n (x 1,, x n ) It is of lower total degree than the original f. By induction on total degree (f g)/s n is expressible in terms of the elementary symmetric polynomials in x 1,, x n. /// [1.0.3] Remark: The proof also shows that if the total degree of an S n -invariant polynomial f(x 1,, x n 1, x n ) in n variables is less than or equal the number of variables, then the expression for f(x 1,, x n 1, 0) in terms of s i (x 1,, x n 1 ) gives the correct formula in terms of s i (x 1,, x n 1, x n ). 2. First examples [2.0.1] Example: Consider f(x 1,, x n ) = x 2 1 + + x 2 n

Garrett: Abstract Algebra 215 The induction on n and the previous remark indicate that the general formula will be found if we find the formula for n = 2, since the total degree is 2. Let q : Z[x, y] Z[x] be the Z-algebra map sending x x and y 0. Then q(x 2 + y 2 ) = x 2 = s 1 (x) 2 Then, following the procedure of the proof of the theorem, (x 2 + y 2 ) s 1 (x, y) 2 = (x 2 + y 2 ) (x + y) 2 = 2xy Dividing by s 2 (x, y) = xy we obtain 2. (This is visible, anyway.) Thus, The induction on the number of variables gives x 2 + y 2 = s 1 (x, y) 2 2s 2 (x, y) x 2 1 + + x 2 n = s 1 (x 1,, x n ) 2 s 2 (x 1,, x n ) [2.0.2] Example: Consider f(x 1,, x n ) = i x 4 i Since the total degree is 4, as in the remark just above it suffices to determine the pattern with just 4 variables x 1, x 2, x 3, x 4. Indeed, we start with just 2 variables. Following the procedure indicated in the theorem, letting q be the Z-algebra homomorphism which sends y to 0, so consider q(x 4 + y 4 ) = x 4 = s 1 (x) 4 (x 4 + y 4 ) s 1 (x, y) 4 = 4x 3 y 6x 2 y 2 4xy 3 = s 1 (x, y) (4x 2 + 6xy + 4y 2 ) The latter factor of lower total degree is analyzed in the same fashion: so consider Going backward, Passing to three variables, so consider q(4x 2 + 6xy + 4y 2 ) = 4x 2 = 4s 1 (x) 2 (4x 2 + 6xy + 4y 2 ) 4s 1 (x, y) 2 = 2xy x 4 + y 4 = s 1 (x, y) 4 s 1 (x, y) (4s 1 (x, y) 2 2s 2 (x, y)) q(x 4 + y 4 + z 4 ) = x 4 + y 4 = s 1 (x, y) 4 s 1 (x, y) (4s 1 (x, y) 2 2s 2 (x, y)) (x 4 + y 4 + z 4 ) ( s 1 (x, y, z) 4 s 1 (x, y, z) (4s 1 (x, y, z) 2 2s 2 (x, y, z)) ) Before expanding this, dreading the 15 terms from the (x + y + z) 4, for example, recall that the only terms which will not be cancelled are those which involve all of x, y, z. Thus, this is 12x 2 yz 12y 2 xz 12z 2 xy + (xy + yz + zx) (4(x + y + z) 2 2(xy + yz + zx)) + (irrelevant) = 12x 2 yz 12y 2 xz 12z 2 xy + (xy + yz + zx) (4x 2 + 4y 2 + 4z 2 + 6xy + 6yz + 6zx) + (irrelevant) = 12x 2 yz 12y 2 xz 12z 2 xy + 4xyz 2 + 4yzx 2 + 4zxy 2 + 6xy 2 z + 6x 2 yz + 6x 2 yz + 6xyz 2 + 6xy 2 z + 6xyz 2

216 Symmetric polynomials Thus, with 3 variables, = 4xyz(x + y + z) = 4s 3 (x, y, z) s 1 (x, y, z) x 4 + y 4 + z 4 = s 1 (x, y, z) 4 s 2 (x, y, z) (4s 1 (x, y, z) 2 2s 2 (x, y, z)) + 4s 3 (x, y, z) s 1 (x, y, z) Abbreviating s i = s i (x, y, z, w), we anticipate that x 4 + y 4 + z 4 + w 4 ( s 4 1 4s 2 1s 2 + 2s 2 2 + 4s 1 s 3 ) = constant xyzw We can save a little time by evaluating the constant by taking x = y = z = w = 1. In that case and or Thus, s 1 (1, 1, 1, 1) = 4 s 2 (1, 1, 1, 1) = 6 s 3 (1, 1, 1, 1) = 4 1 + 1 + 1 + 1 ( 4 4 4 4 2 6 + 2 6 2 + 4 4 4 ) = constant constant = 4 (256 384 + 72 + 64) = 4 x 4 + y 4 + z 4 + w 4 = s 4 1 4s 2 1s 2 + 2s 2 2 + 4s 1 s 3 4s 4 By the remark above, since the total degree is just 4, this shows that for arbitrary n x 4 1 + + x 4 n = s 4 1 4s 2 1s 2 + 2s 2 2 + 4s 1 s 3 4s 4

Garrett: Abstract Algebra 217 3. A variant: discriminants Let x 1,, x n be indeterminates. Their discriminant is D = D(x 1,, x n ) = (x i x j ) i<j Certainly the sign of D depends on the ordering of the indeterminates. But D 2 = i j (x i x j ) 2 is symmetric, that is, is invariant under all permutations of the x i. Therefore, D 2 has an expression in terms of the elementary symmetric functions of the x i. [3.0.1] Remark: By contrast to the previous low-degree examples, the discriminant (squared) has as high a degree as possible. [3.0.2] Example: With just 2 indeterminates x, y, we have the familiar D 2 = (x y) 2 = x 2 2xy + y 2 = (x + y) 2 4xy = s 2 1 4s 2 Rather than compute the general version in higher-degree cases, let s consider a more accessible variation on the question. Suppose that α 1,, α n are roots of an equation X n + ax + b = 0 in a field k, with a, b k. For simplicity suppose a 0 and b 0, since otherwise we have even simpler methods to study this equation. Let f(x) = x n + ax + b. The discriminant D(α 1,, α n ) = i<j (α i α j ) vanishes if and only if any two of the α i coincide. On the other hand, f(x) has a repeated factor in k[x] if and only if gcd(f, f ) 1. Because of the sparseness of this polynomial, we can in effect execute the Euclidean algorithm explicitly. Assume that the characteristic of k does not divide n(n 1). Then (X n + ax + b) X n (nxn 1 + a) = a(1 1 n )X + b That is, any repeated factor of f(x) divides X + (n 1)a, and the latter linear factor divides f (X). Continuing, the remainder upon dividing nx n 1 + a by the linear factor X + is simply the value of nx n 1 + a obtained by evaluating at bn (n 1)a, namely bn bn (n 1)a ( ) n 1 bn n + a = ( n n ( 1) n 1 b n 1 + (n 1) n 1 a n) ((n 1)a) 1 n (n 1)a Thus, (constraining a to be non-zero) if and only if some α i α j = 0. n n ( 1) n 1 b n 1 + (n 1) n 1 a n = 0

218 Symmetric polynomials We obviously want to say that with the constraint that all the symmetric functions of the α i being 0 except the last two, we have computed the discriminant (up to a less interesting constant factor). A relatively graceful approach would be to show that R = Z[x 1,, x n ] admits a universal Z-algebra homomorphism ϕ : R Ω for some ring Ω that sends the first n 2 elementary symmetric functions s 1 = s 1 (x 1,, x n ) = i x i s 2 = s 2 (x 1,, x n ) = i<j x i x j s 3 = s 3 (x 1,, x n ) = i<j<k x i x j x k s l = s l (x 1,, x n ) = i 1<...<i l x i1 x il s n 2 = s n 2 (x 1,, x n ) = i 1<...<i n 2 x i1 x in 2 to 0, but imposes no unnecessary further relations on the images a = ( 1) n 1 ϕ(s n 1 ) b = ( 1) n ϕ(s n ) We do not have sufficient apparatus to do this nicely at this moment. [1] above does tell us something. Nevertheless, the computation Exercises 15.[3.0.1] Express x 3 1 + x 3 2 + + x 3 n in terms of the elementary symmetric polynomials. 15.[3.0.2] Express i j x i x 2 j in terms of the elementary symmetric polynomials. 15.[3.0.3] Let α, β be the roots of a quadratic equation ax 2 + bx + c = 0, Show that the discriminant, defined to be (α β) 2, is b 2 4ac. 15.[3.0.4] Consider f(x) = x 3 + ax + b as a polynomial with coefficients in k(a, b) where k is a field not of characteristic 2 or 3. By computing the greatest common divisor of f and f, give a condition for the roots of f(x) = 0 to be distinct. 15.[3.0.5] Express i,j,k distinct x i x j x 2 k in terms of elementary symmetric polynomials. [1] The key point is that Z[x 1,, x n] is integral over Z[s 1, s 2,, s n] in the sense that each x i is a root of the monic equation X n s 1 X n 2 + s 2 X n 2 + ( 1) n 1 s n 1 X + ( 1) n s n = 0 It is true that for R an integral extension of a ring S, any homomorphism ϕ o : S Ω to an algebraically closed field Ω extends (probably in more than one way) to a homomorphism ϕ : R Ω. This would give us a justification for our hope that, given a, b Ω we can require that ϕ o(s 1 ) = ϕ o(s 2 ) = = ϕ o(s n 2 ) = 0 while ϕ o(s n 1 ) = ( 1) n 1 a ϕ o(s n) = ( 1) n b.