3 1. Note that all cubes solve it; therefore, there are no more
|
|
|
- Judith Grace Dennis
- 10 years ago
- Views:
Transcription
1 Math 13 Problem set 5 Artin Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if they factor, they have a root; and they are monic, which means that the root over Q must be an integer. Recall that the numerator of the root (if any) must divide the constant term, so we must test ±1, ±. We observe that and 1 are both roots: x 3 3x = (x )(x + 1). (b) (a) Here, 1 and are both roots: x 3 3x + = (x + )(x 1). Note that this polynomial is f( x), where f is the polynomial of part (a). (c) This is an Eisenstein polynomial for the prime 3, hence irreducible. Artin Let p be a prime integer. Prove that the polynomial x n p is irreducible in Q[x]. Solution: If n = 1 this is trivially true (it s linear), so we ll focus on n > 1. Let f(x) = x n p, then ( ) ( ) n n f(x + p) = (x + p) n p = x n + x n 1 p xp n 1 + (p n p) 1 n 1 Now, this is a monic polynomial, all the non-leading coefficients are divisible by p, and the constant term p n p is not divisible by p (since p p n, but p p): by the Eisenstein criterion, f(x + p) is irreducible. On the other hand, if we had f(x) = g(x)h(x) then f(x + p) = g(x + p)h(x + p): that is, if f(x + p) is irreducible, so is f(x). Artin Let f(x) = x n + a n 1 x n a 1 x + a 0 be a monic polynomial with integer coefficients, and let r Q be a rational root of f(x). Prove that r is an integer. Solution: Didn t we do this in class? Suppose q is the denominator of r, that is, r = p/q in lowest terms. Then q n 1 (f(r) r n ) is an integer, but q n 1 r n has q in the denominator; therefore, their sum is not an integer, and cannot be zero. Artin Factor the following into Gauss primes. (a) 1 3i (b) 10 (c) 6 + 9i Solution: (a) 1 + 3i has norm 10, which factors as 5 = (1 + i)(1 i) (1 + i)(1 i). We have 1 + 3i = (1 + i)( + i). (b) 10 = 5 = i(1 + i) (1 + i)(1 i). Note that all these elements have prime norms, and 1 + i and 1 i are not associates (their ratio in C is /5 + 4/5i, which is not a Gaussian integer). (c) 6 + 9i = 3( + 3i). 3 stays prime because it s a rational prime congruent to 3 modulo 4; and + 3i has norm 13 (prime in Z), so is a prime. Artin Let π be a Gauss prime. Prove that π and π are associate if and only if either π is associate to an integer prime or ππ =. Solution: Only if is easy: if π = n or π = in for n Z then π = ±π; and if ππ = then π (and π) are associate to 1 + i (note that 1 i = ( i)(1 + i)). Conversely, suppose π and π are associate. If π = π then π Z; and if π = π then π iz (if π = a + bi and π = a bi, we must have a = 0 for π = π). It remains to check when π = ±iπ. If π = a + bi, π = a bi then to have π = iπ we must have a = b; to have π = iπ we must have a = b. Now the only way for π to be prime with such coefficients is if a = ±b = ±1; in which case we get the primes of norm. 1
2 Artin Let R be the ring Z[ 3]. Prove that a prime integer p is a prime element of R if and only if the polynomial x 3 is irreducible in F p [x]. Solution: p is a prime element of R iff R/(p) is a domain. Now, R = Z[x]/(x 3), so R/(p) = Z[x]/(x 3, p) = Z/(p)[x]/(x 3) = F p [x]/(x 3). This quotient is a domain iff (x 3) is a prime ideal of F p [x], i.e. iff x 3 is irreducible. Artin Let R = Z[ζ], where ζ = 1( 1 + 3) is a complex cube root of 1. Let ρ be an integer prime 3. Adapt the proof of Theorem (5.1) to prove the following: (a) The polynomial x + x + 1 has a root in F p if and only if p 1 mod 3. (b) (p) is a prime ideal of R if and only if p 1 mod 3. (c) p factors in R if and only if it can be written in the form p = a + ab + b, for some integers a, b. (d) Make a drawing showing the primes of absolute value 10 in R. Solution: (a) Note that x + x + 1 = x3 1, so the statement is equivalent to showing that x 1 x 3 1 has roots other than 1 iff p 1 mod 3. Recall that F p is a group under multiplication. Now, if there is an element of order 3 in F p, then 3 F p = p 1, so p 1 mod 3. To show the converse, suppose p 1 mod 3, so that p F t pimes. If we wish to follow Artin, we now consider the Sylow-3 subgroup of F p, which has order 3 k for some k 1; any nonidentity element g of this group has order 3 d, say, and therefore g 3d 1 has order 3 as required. We could also use the fundamental theorem of abelian groups to find a subgroup of order 3 k. Alternatively, we could follow the same method as for squares: consider the polynomial x p Note that all cubes solve it; therefore, there are no more than p 1 distinct cubes in F 3 p, and in particular there are some distinct elements g, h F p such that g 3 = h 3. Then (g/h) 3 = 1 but g/h 1. (b) Since we aren t considering p = 3, all primes are either 1 or 1 modulo 3. Now, (p) is a prime ideal of R iff R/(p) is a domain. We have R = Z[x]/(x + x + 1) since x + x + 1 is a monic irreducible polynomial that ζ satisfies. Then R/(p) = Z/(p)[x]/(x + x + 1) = F p [x]/(x + x + 1), and we just showed that x + x + 1 is irreducible over F p iff p 1 mod 3; therefore, (x + x + 1) is a prime ideal and R/(p) a domain iff p 1 mod 3; and (p) is a prime ideal of R iff p 1 mod 3. (c) We have the norm function in R: a+bζ = (a+bζ)(a+bζ) = (a+bζ)(a+bζ ) = a ab+b. This norm is multiplicative (since α = αα in C) and a non-negative integer (integer since a + ab + b, nonnegative because it s a C-norm, or because a + ab + b = (a + b/) + 3/b ). Now, suppose p = αβ in R; then p = α β, or p = α β. Now if alpha = 1 then αα = 1, so α is clearly a unit; this is not a satisfactory factorization, so for a nontrivial factorization of p we must have α = β = p, or p = a + ab + b (if α = a + bζ). Conversely, if p = a +ab+b then p = (a+bζ)(a+bζ ) = (a+bζ)(a+b( 1 ζ)).
3 (d) Note that primes in R have norms that are either p Z (if p 1 mod 3) or p Z (if p 1 mod 3); also, the element 3 (and its associates) has norm 3. Indeed, first I claim that π and π are not associates unless π is associate to an integer; note that the units in R are the sixth roots of unity (this is easily checked, since the norm of a unit must be 1). If π = π then π Z. Let π = a + bζ, and π = a bζ. Now, π(1 ζ) = e πi/6 π = a + bζ aζ bζ = (a + b) + (b a)ζ isn t equal to π since we can t have a = b = 0; π(1 ζ) = πζ = aζ + b( 1 ζ) = b + (a b)ζ which would again mean a = b = 0; π(1 ζ) 3 = π = a bζ implies a = 0, so π = pζ is associate to an integer; π(1 ζ) 4 = π(1 ζ) = ( a b) + (a b)ζ implies b = a b so a = b, but a = a b so a = b = 0; π(1 ζ) 5 = πζ = b + (b a)ζ would mean a = b = 0 once more. Thus, by an exhaustive check we ve shown that π and π aren t associates, and are therefore relatively prime, unless they are associate to an integer. We conclude that the norm of π must be a rational prime unless π is associate to an integer, since if p π then π p or π p, but if one of those holds then so does the other (conjugate the division), and (since π, π are relatively prime) we conclude ππ p: that is, π p, so π = p. We are finally ready to tackle the primes in R of absolute value 10. The rational primes in that range that stay prime are and 5; the rational prime 3 splits as 3 = 3. Now for the primes 1 mod 3, which are norms of elements: note that that if p = a + a + 1 then p 1 = a(a + 1); this is not hard to spot. Also, it s worth noting that at least one of a and b must be odd. 7 = = ζ 13 = = 3 ζ 19 = = 3 ζ 31 = = 5 ζ 37 = = 3 4ζ 43 = = 6 ζ 61 = = 5 4ζ 67 = = 7 ζ 73 = = 8 ζ 79 = = 7 3ζ 97 = = 8 3ζ Each of these gets 6 associates from the 6 units, plus 6 more associates for its conjugate (which isn t associate to the prime!). 3
4 4 Text problem In the following exercises we prove the following statement that we claimed in class: the polynomial x is irreducible in Z[x], but its image in F p [x] is reducible for every p. Let a, b Z. Prove that, for every prime integer p, the polynomial P (x) = x 4 + ax + b is reducible, by following the following hints: (a) First, prove the statement for p =, and from now on we assume that p. (b) Consider the map ρ : F p F p given by x x. Show that the image of ρ contains precisely p 1 elements. We call the elements in the image of ρ the quadratic residues modulo p, and the elements which are not in the image of ρ quadratic non-residues. (c) Show that the quadratic non-residues are precisely the elements x F p such that x p 1 = 1. In particular, show that the product of two quadratic non-residues is a quadratic residue. (d) Let s be an integer such that a s mod p. Show that P (x) = (x + s) (s b ) = (x + b) (b s)x = (x b) ( b s)x. (e) Deduce that P (x) is reducible in F p [x]. Prove that x is irreducible in Z[x]. Solution: (a) Every even polynomial over F is a square, since squaring is a ring homomorphism in characteristic, and all constants are squares. Thus x 4 + ax + b is always a square, hence reducible. (b) Note x x for p, but x = ( x). Therefore, the image of ρ contains no more than p 1 elements. On the other hand, every a (F p) has no more than two square roots, since the equation x = a has at most two solutions. Consequently, there are at least p 1 squares, hence exactly that many.
5 (c) Note that for every x we have x p 1 = 1, so x p 1 = ±1 (recall that we have exactly two square roots of 1). Now, if x = a then x p 1 = a p 1 = 1; and as we showed above, there are p 1 squares. Since the equation x p 1 = 1 can have no more than p 1 solutions, the non-residues don t get to solve it: so the non-residues must have x p 1 = 1. Now, if I get two non-residues x and y, then x p 1 = y p 1 = 1, so (xy) p 1 = 1, and xy is a residue. (d) The algebraic computation proper is boring; it works. (No, you aren t allowed to claim this on your solutions!) It s worth noticing that s b = (s + b)(s b) = 1 (b s)( b s). 4 (e) As the remark above points out, one of the three lines factors as a difference of two squares: that is, if b s and b s are both not squares, then the first line must factor as a difference of two squares. (If either of them is a square, that particular line factors as the difference of squares.) Suppose x = fg for f, g nonconstant polynomials. First, note that x has no roots in R (since x 4 > 0), and therefore has no linear factors: therefore, f and g must both have degree. Let f = ax + bx + c and g = a x + b x + c, then fg = aa x 4 + (ab + a b)x 3 + (ac + a c + bb )x + (bc + b c)x + cc Recall that our factorization must be over Z, so from aa = 1 we conclude that a = a = ±1; WLOG we may flip the two signs and assume a = a = 1. Now for the constant term we also get cc = 1, so also c = c = ±1. However, in degree 3 we get b + b = 0 = b = b ; and in degree we therefore get c + c b = 0, or c + c = b. However, c + c = ± is not a square in Z, so the polynomial does not in fact factor. 5
Unique Factorization
Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon
MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao [email protected]
Integer Polynomials June 9, 007 Yufei Zhao [email protected] We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
it is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,
Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials
CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)
a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov [email protected]
Polynomials Alexander Remorov [email protected] Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).
SOLVING POLYNOMIAL EQUATIONS
C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra
7. Some irreducible polynomials
7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
H/wk 13, Solutions to selected problems
H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.
PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
Factoring Polynomials
Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent
EXERCISES FOR THE COURSE MATH 570, FALL 2010
EXERCISES FOR THE COURSE MATH 570, FALL 2010 EYAL Z. GOREN (1) Let G be a group and H Z(G) a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p 2 (p a prime
PROBLEM SET 6: POLYNOMIALS
PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other
Notes on Factoring. MA 206 Kurt Bryan
The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor
ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY
ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY HENRY COHN, JOSHUA GREENE, JONATHAN HANKE 1. Introduction These notes are from a series of lectures given by Henry Cohn during MIT s Independent Activities
ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS
ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for
FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set
FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).
minimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field
Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field 1. Throughout this section, F is a field and F [x] is the ring of polynomials with coefficients in F. We will
Factoring of Prime Ideals in Extensions
Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree
1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
Chapter 13: Basic ring theory
Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
Introduction to Finite Fields (cont.)
Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number
How To Prove The Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number
Number Fields Introduction A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number field K = Q(α) for some α K. The minimal polynomial Let K be a number field and
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of
Die ganzen zahlen hat Gott gemacht
Die ganzen zahlen hat Gott gemacht Polynomials with integer values B.Sury A quote attributed to the famous mathematician L.Kronecker is Die Ganzen Zahlen hat Gott gemacht, alles andere ist Menschenwerk.
FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project
9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module
5. Factoring by the QF method
5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the
3 Factorisation into irreducibles
3 Factorisation into irreducibles Consider the factorisation of a non-zero, non-invertible integer n as a product of primes: n = p 1 p t. If you insist that primes should be positive then, since n could
Factoring Polynomials
Factoring Polynomials Any Any Any natural number that that that greater greater than than than 1 1can can 1 be can be be factored into into into a a a product of of of prime prime numbers. For For For
Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date
Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
Integer roots of quadratic and cubic polynomials with integer coefficients
Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.
9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
11 Ideals. 11.1 Revisiting Z
11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(
SOLVING POLYNOMIAL EQUATIONS BY RADICALS
SOLVING POLYNOMIAL EQUATIONS BY RADICALS Lee Si Ying 1 and Zhang De-Qi 2 1 Raffles Girls School (Secondary), 20 Anderson Road, Singapore 259978 2 Department of Mathematics, National University of Singapore,
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9
Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of
Prime Numbers and Irreducible Polynomials
Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a
Factorization in Polynomial Rings
Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important
1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
Factorization Algorithms for Polynomials over Finite Fields
Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is
Galois Theory. Richard Koch
Galois Theory Richard Koch April 2, 2015 Contents 1 Preliminaries 4 1.1 The Extension Problem; Simple Groups.................... 4 1.2 An Isomorphism Lemma............................. 5 1.3 Jordan Holder...................................
Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
0.4 FACTORING POLYNOMIALS
36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use
Factoring Polynomials and Solving Quadratic Equations
Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3
FACTORING AFTER DEDEKIND
FACTORING AFTER DEDEKIND KEITH CONRAD Let K be a number field and p be a prime number. When we factor (p) = po K into prime ideals, say (p) = p e 1 1 peg g, we refer to the data of the e i s, the exponents
Applications of Fermat s Little Theorem and Congruences
Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4
Partial Fractions. (x 1)(x 2 + 1)
Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +
SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
Chapter 7 - Roots, Radicals, and Complex Numbers
Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
Factoring Polynomials
Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring
March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial
1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]
1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not
Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
3.6 The Real Zeros of a Polynomial Function
SECTION 3.6 The Real Zeros of a Polynomial Function 219 3.6 The Real Zeros of a Polynomial Function PREPARING FOR THIS SECTION Before getting started, review the following: Classification of Numbers (Appendix,
Alex, I will take congruent numbers for one million dollars please
Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 [email protected] One of the most alluring aspectives of number theory
Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
GALOIS THEORY AT WORK: CONCRETE EXAMPLES
GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples Example 1.1. The field extension Q(, 3)/Q is Galois of degree 4, so its Galois group has order 4. The elements of the Galois group are
The Division Algorithm for Polynomials Handout Monday March 5, 2012
The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,
OSTROWSKI FOR NUMBER FIELDS
OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for
NSM100 Introduction to Algebra Chapter 5 Notes Factoring
Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the
Field Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma
Chapter 3 Field Fundamentals 3.1 Field Extensions If F is a field and F [X] is the set of all polynomials over F, that is, polynomials with coefficients in F, we know that F [X] is a Euclidean domain,
Factoring Polynomials
Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations
Factoring Cubic Polynomials
Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than
6.1 Add & Subtract Polynomial Expression & Functions
6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic
1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).
.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational
Cyclotomic Extensions
Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate
Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).
Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32
MA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
Factoring Polynomials
UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can
The van Hoeij Algorithm for Factoring Polynomials
The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style
Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with
Zeros of Polynomial Functions
Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate
As we have seen, there is a close connection between Legendre symbols of the form
Gauss Sums As we have seen, there is a close connection between Legendre symbols of the form 3 and cube roots of unity. Secifically, if is a rimitive cube root of unity, then 2 ± i 3 and hence 2 2 3 In
expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.
A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are
The Factor Theorem and a corollary of the Fundamental Theorem of Algebra
Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside
4. FIRST STEPS IN THE THEORY 4.1. A
4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31
2.5 ZEROS OF POLYNOMIAL FUNCTIONS. Copyright Cengage Learning. All rights reserved.
2.5 ZEROS OF POLYNOMIAL FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.
Basics of Polynomial Theory
3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where
