Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm
|
|
|
- Louisa Vivien Wilson
- 9 years ago
- Views:
Transcription
1 MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor
2 Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following conditions are satisfied. 1 d 0. 2 d a and d b. 3 If c a and c b then c d. Notation If d is the gcd of a and b we may write (a, b) = d. My Convention It is sometimes useful to define (0, 0) = 0.
3 Theorem Let a, b Z with at least one of them nonzero. Then there exists a unique gcd d of a and b. Moreover d can be realized as an integral linear combination of a and b. That is, there are m, n Z such that d = am + bn. Further, d is the smallest positive integer of this form.
4 Proof Suppose that a, b Z with at least one being nonzero. Existence: First we note that if a = 0 then (a, b) = (0, b) = b and b = a 0 + (±1) b. The case that b = 0 is similar. So, we now assume that a and b are nonzero. Let S = {ax + by x, y Z; ax + by > 0}. Note that either a or a is in S. So, S. Using the well ordering principle, let d be the least element of S. Since, d S, there are x, y Z such that d = ax + by. It is also clear that d is the smallest such number which is positive. By the division algorithm, we can write a = dq + r with 0 r < d. Then r = a dq = a (ax + by)q = a(1 xq) + b( yq). However, r < d r S, (b/c d is the least element of S). Thus r = 0 and d a. We can prove that d b in a similar way.
5 Proof continued... Finally suppose that c a and c b. Then we have a = ck and b = cm for some k, m Z. Thus d = ax + by = ckx + cmy = c(kx + my) and c d. So, d is the gcd of a and b. Uniqueness: Suppose now that we have two gcd s d and e. Since d a and d b and since e is a gcd, d e. Since e a and e b and since d is a gcd, e d. So, d = ek and e = dm for some k, m Z. d = dmk mk = 1 m, k = ±1. So, d = ±e. However, e, d 0 e = d.
6 Computing the GCD Fact If a = bq + r then (a, b) = (b, r). Exercise Prove this! Hint: Show that any common divisor of a and b is also a divisor of r and that any common divisor of b and r is a divisor of a.
7 Euclidean Algorithm Given a and b not both zero, first note that (a, b) = ( a, b ). So we may replace a and b by a and b respectively. Thus after rearrangement if necessary we can assume that a 0 and that b > 0. Use the division algorithm to write a = bq + r; 0 r < b Then recall that (a, b) = (b, r). Now repeat the process with a replaced by b and b replaced by r. Continue in this manner until you encounter a remainder of 0 and note that (b, 0) = b.
8 Example Compute the (246, 180). 246 = 180(1) + 66 (246, 180) = (180, 66). 180 = 66(2) + 48 (180, 66) = (66, 48). 66 = 48(1) + 18 (66, 48) = (48, 18). 48 = 18(2) + 12 (48, 18) = (18, 12). 18 = 12(1) + 6 (18, 12) = (12, 6). 12 = 6(2) + 0 (12, 6) = (6, 0) = 6!
9 Finding x and y The Euclidean algorithm produces: a = bq 1 + r 1 r 1 = a bq b = r 1 q 2 + r 2 r 2 = b r 1 q 2 r 1 = r 2 q 3 + r 3 r 3 = r 1 r 2 q 3 r 2 = r 3 q 4 + r 4 r 4 = r 2 r 3 q 4.. r i 2 = r i 1 q i + r i r i = r i 2 r i 1 q i.... r n 3 = r n 2 q n 1 + r n 1 r n 1 = r n 3 r n 2 q n 1 r n 2 = r n 1 q n + r n r n = r n 2 r n 1 q n r n 1 = r n q n Note that (a, b) = r n and we can use successive back substitution to write r n in terms of r k and r k 1 eventually expressing r n in terms of a and b.
10 Example Let s reconsider our previous example: (246, 180) = = 180(1) = ( 1) = 66(2) = ( 2)66 66 = 48(1) = 66 + ( 1)48 48 = 18(2) = 48 + ( 2)18 18 = 12(1) = 18 + ( 1)12 12 = 6(2) + 0 Now write 6 = 18 + ( 1)12 = 18 + ( 1)[48 + ( 2)18] = (3)18 + ( 1)48 = (3)[66 + ( 1)48] + ( 1)48 = (3)66 + ( 4)48 = (3)66 + ( 4)[180 + ( 2)66] = (11)66 + ( 4)180 = (11)[246 + ( 1)180] + ( 4)180 = (11)246 + ( 15)180. So, take x = 11 and y = 15.
11 Relatively Prime Integers Definition Two integers a and b are relatively prime or coprime if (a, b) = 1. Theorem If a and b are coprime and a bc then a c.
12 Proof. Since a and b are coprime, there are x, y Z such that ax + by = 1. Since a bc there is k Z such that bc = ak. So, 1 = ax + by c = acx + bcy c = acx + aky (because bc = ak) c = a(cx + ky) a c.
13 Primes Definition An integer p is a prime if p > 1 and if the only positive divisors of p are 1 and p. Theorem (Euclid s Lemma) If p is a prime and p ab then p a or p b. Proof. Suppose that p ab. If p a then the conclusion of the theorem holds. Now, suppose that p a. Then (a, p) = 1 because the only positive divisors of p are 1 and p. Thus by our previous theorem, p b.
14 Corollary 1 If p (a 1 a 2... a n ) then p a i for some 1 i n. 2 If p a m then p a. Proof. We will prove part 1 by induction on n. The result is trivial when n = 1. Now suppose that the result holds for n = k for some k 1. Now, suppose that p (a 1 a 2... a k+1 ) = (a 1 a 2... a k ) a k+1. If p a k+1 then the conclusion of the theorem holds. If p a k+1 then by Euclid s lemma, p (a 1 a 3... a k ). In thisr case, our induction hypothesis implies that p a i for a i k and the conclusion of the theorem holds. Part 2 follows from part 1.
15 Unique Factorization Theorem (Fundamental Theorem of Arithmetic) Every integer n 2 can be expressed as a product of primes and this factorization is unique up to rearrangement of the factors.
16 Proof Existence: Since 2 is prime, the theorem holds for n=2. Suppose that the theorem holds for 2 n k for some k 2. Let s consider k + 1. If k + 1 is prime then it is already factored. If k + 1 is not prime then it has a divisor other than itself and 1. Thus we can write k + 1 = mr with 1 < m r < k + 1. Since 2 m r k our induction hypothesis implies that both m and r can be factored into primes, say m = p 1 p j, r = q 1 q i. Then k + 1 = mr = p 1 p j q 1 q i is a prime factorization of k + 1. It follows by strong induction than any n 2 has a factorization into primes.
17 Proof continued... Uniqueness: Suppose that we have two factorizations of n: n = p 1... p t and n = q 1... q s with t s. p 1... p t = q 1... q s Thus p 1 (q 1... q s ). By our corollary, p 1 q i for some 1 i s. After relabeling the q i s we may assume that p 1 q 1. Since, q 1 is prime, it follows that p 1 = q 1 and we have p 1... p t = p 1 q 2... q s p 2... p t = q 2... q s. Repeating this argument, we see that after relabeling the q i s, we will have p 1 = q 1, p 2 = q 2,..., p t 1 = q t 1 and p t = q t... q s. Since p t is prime, it follows that there must be only one prime on the right (i.e. s = t) and p t = q t.
18 Corollary If n 2 then there are primes p 1 < p 2 < < p k and positive integers e 1,..., e k such that and this factorization is unique. n = p e pe k k,
19 How many primes? Theorem (Euclid s Theorem) There are infinitely many primes. Proof. We will show that any finite list of primes is incomplete. Suppose that p 1, p 2,..., p k is a list of primes. Consider n = (p 1 p 2... p k ) + 1. Now FTA guarantees us that n has at least one prime factor, say q. If q (p 1... p k ) then we would be able to write (p 1... p k ) = qm and n = qr for some m, r Z, and then we would have 1 = n (p 1... p k ) = qm qr = q(m r) q 1 which cannot be true. Thus q (p 1... p k ), and we have found a prime q which was not on our list. Thus any finite list of primes is incomplete.
GREATEST COMMON DIVISOR
DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their
Today s Topics. Primes & Greatest Common Divisors
Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime
DIVISIBILITY AND GREATEST COMMON DIVISORS
DIVISIBILITY AND GREATEST COMMON DIVISORS KEITH CONRAD 1 Introduction We will begin with a review of divisibility among integers, mostly to set some notation and to indicate its properties Then we will
8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
Section 4.2: The Division Algorithm and Greatest Common Divisors
Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948
GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!
GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!!! Challenge Problem 2 (Mastermind) due Fri. 9/26 Find a fourth guess whose scoring will allow you to determine the secret code (repetitions are
MATH10040 Chapter 2: Prime and relatively prime numbers
MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive
CHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
CS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
MATH 289 PROBLEM SET 4: NUMBER THEORY
MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
SUM OF TWO SQUARES JAHNAVI BHASKAR
SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted
15 Prime and Composite Numbers
15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
The last three chapters introduced three major proof techniques: direct,
CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements
Handout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
Handout NUMBER THEORY
Handout of NUMBER THEORY by Kus Prihantoso Krisnawan MATHEMATICS DEPARTMENT FACULTY OF MATHEMATICS AND NATURAL SCIENCES YOGYAKARTA STATE UNIVERSITY 2012 Contents Contents i 1 Some Preliminary Considerations
Math 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
The Division Algorithm for Polynomials Handout Monday March 5, 2012
The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,
CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12
CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
Discrete Mathematics, Chapter 4: Number Theory and Cryptography
Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility
MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003
MATH 22 Lecture R: 10/30/2003 THE FUNDAMENTAL THEOREM of ARITHMETIC You must remember this, A kiss is still a kiss, A sigh is just a sigh; The fundamental things apply, As time goes by. Herman Hupfeld
Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Lights, Camera, Primes! Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions Today, we re going
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
How To Know If A Domain Is Unique In An Octempo (Euclidean) Or Not (Ecl)
Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness
z 0 and y even had the form
Gaussian Integers The concepts of divisibility, primality and factoring are actually more general than the discussion so far. For the moment, we have been working in the integers, which we denote by Z
Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field
Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field 1. Throughout this section, F is a field and F [x] is the ring of polynomials with coefficients in F. We will
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).
The Euclidean Algorithm
The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have
Homework until Test #2
MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such
Number Theory Hungarian Style. Cameron Byerley s interpretation of Csaba Szabó s lectures
Number Theory Hungarian Style Cameron Byerley s interpretation of Csaba Szabó s lectures August 20, 2005 2 0.1 introduction Number theory is a beautiful subject and even cooler when you learn about it
Elementary Number Theory
Elementary Number Theory A revision by Jim Hefferon, St Michael s College, 2003-Dec of notes by W. Edwin Clark, University of South Florida, 2002-Dec L A TEX source compiled on January 5, 2004 by Jim Hefferon,
Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II
Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II Last week: How to find one solution to a linear Diophantine equation This week: How to find all solutions to a linear Diophantine
CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:
COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative
Applications of Fermat s Little Theorem and Congruences
Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4
SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me
SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines
Settling a Question about Pythagorean Triples
Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:
Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may
Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition
Solving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
Lectures on Number Theory. Lars-Åke Lindahl
Lectures on Number Theory Lars-Åke Lindahl 2002 Contents 1 Divisibility 1 2 Prime Numbers 7 3 The Linear Diophantine Equation ax+by=c 12 4 Congruences 15 5 Linear Congruences 19 6 The Chinese Remainder
PROBLEM SET 6: POLYNOMIALS
PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other
SOLUTIONS FOR PROBLEM SET 2
SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such
1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
17 Greatest Common Factors and Least Common Multiples
17 Greatest Common Factors and Least Common Multiples Consider the following concrete problem: An architect is designing an elegant display room for art museum. One wall is to be covered with large square
Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov [email protected]
Polynomials Alexander Remorov [email protected] Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).
Mathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
CONTENTS 1. Peter Kahn. Spring 2007
CONTENTS 1 MATH 304: CONSTRUCTING THE REAL NUMBERS Peter Kahn Spring 2007 Contents 2 The Integers 1 2.1 The basic construction.......................... 1 2.2 Adding integers..............................
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
11 Ideals. 11.1 Revisiting Z
11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(
Lecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
So let us begin our quest to find the holy grail of real analysis.
1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers
Lecture 13 - Basic Number Theory.
Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted
Unique Factorization
Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon
Systems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.
Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a
The Fundamental Theorem of Arithmetic
The Fundamental Theorem of Arithmetic 1 Introduction: Why this theorem? Why this proof? One of the purposes of this course 1 is to train you in the methods mathematicians use to prove mathematical statements,
Introduction to Finite Fields (cont.)
Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number
The Chinese Remainder Theorem
The Chinese Remainder Theorem Evan Chen [email protected] February 3, 2015 The Chinese Remainder Theorem is a theorem only in that it is useful and requires proof. When you ask a capable 15-year-old why
Grade 7/8 Math Circles Fall 2012 Factors and Primes
1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Factors and Primes Factors Definition: A factor of a number is a whole
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
Page 331, 38.4 Suppose a is a positive integer and p is a prime. Prove that p a if and only if the prime factorization of a contains p.
Page 331, 38.2 Assignment #11 Solutions Factor the following positive integers into primes. a. 25 = 5 2. b. 4200 = 2 3 3 5 2 7. c. 10 10 = 2 10 5 10. d. 19 = 19. e. 1 = 1. Page 331, 38.4 Suppose a is a
Fibonacci Numbers and Greatest Common Divisors. The Finonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...
Fibonacci Numbers and Greatest Common Divisors The Finonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,.... After starting with two 1s, we get each Fibonacci number
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
Factoring Algorithms
Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors
4.2 Euclid s Classification of Pythagorean Triples
178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple
4. FIRST STEPS IN THE THEORY 4.1. A
4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We
Introduction. Appendix D Mathematical Induction D1
Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a
Factoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
Number Theory: A Mathemythical Approach. Student Resources. Printed Version
Number Theory: A Mathemythical Approach Student Resources Printed Version ii Contents 1 Appendix 1 2 Hints to Problems 3 Chapter 1 Hints......................................... 3 Chapter 2 Hints.........................................
Chapter 3. if 2 a i then location: = i. Page 40
Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)
On the largest prime factor of x 2 1
On the largest prime factor of x 2 1 Florian Luca and Filip Najman Abstract In this paper, we find all integers x such that x 2 1 has only prime factors smaller than 100. This gives some interesting numerical
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
Theorem3.1.1 Thedivisionalgorithm;theorem2.2.1insection2.2 If m, n Z and n is a positive
Chapter 3 Number Theory 159 3.1 Prime Numbers Prime numbers serve as the basic building blocs in the multiplicative structure of the integers. As you may recall, an integer n greater than one is prime
Factoring Polynomials
Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent
Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
GENERATING SETS KEITH CONRAD
GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors
6.1 The Greatest Common Factor; Factoring by Grouping
386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.
Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 [email protected].
Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 [email protected] This paper contains a collection of 31 theorems, lemmas,
minimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
k, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
Continued Fractions. Darren C. Collins
Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history
Congruent Number Problem
University of Waterloo October 28th, 2015 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases
An Introductory Course in Elementary Number Theory. Wissam Raji
An Introductory Course in Elementary Number Theory Wissam Raji 2 Preface These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory
(0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4.
11.01 List the elements of Z 2 Z 4. Find the order of each of the elements is this group cyclic? Solution: The elements of Z 2 Z 4 are: (0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order
Public Key Cryptography: RSA and Lots of Number Theory
Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver
Every Positive Integer is the Sum of Four Squares! (and other exciting problems)
Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer
