/ DSM / IRAMIS / LLB)



Similar documents
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS

Chapter Outline Dislocations and Strengthening Mechanisms

Lecture 14. Chapter 8-1

Damage due to fatigue occurs when loading is markedly varying in time. R decreases with time S T. MSÚ F max

Chapter Outline Dislocations and Strengthening Mechanisms

Mechanical Properties - Stresses & Strains

Elasticity Theory Basics

The elements used in commercial codes can be classified in two basic categories:

ES240 Solid Mechanics Fall Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y,

7.2.4 Seismic velocity, attenuation and rock properties

ME 612 Metal Forming and Theory of Plasticity. 1. Introduction

3D plasticity. Write 3D equations for inelastic behavior. Georges Cailletaud, Ecole des Mines de Paris, Centre des Matériaux

NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures

Tensile fracture analysis of blunt notched PMMA specimens by means of the Strain Energy Density

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS

Ultrasonic Technique and Device for Residual Stress Measurement

Lecture 4: Thermodynamics of Diffusion: Spinodals

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

Heat Treatment of Aluminum Foundry Alloys. Fred Major Rio Tinto Alcan

Defects Introduction. Bonding + Structure + Defects. Properties

Modèles thermomécaniques de grenaillage

Handbook on the Ultrasonic Examination. Austenitic Welds

AN EFFICIENT MODEL TO PREDICT GUIDED WAVE RADIATION BY FINITE-SIZED SOURCES IN MULTILAYERED ANISOTROPIC PLATES WITH ACCOUNT OF CAUSTICS

Fatigue crack propagation

RESIDUAL STRESSES AND THEIR EFFECTS ON FATIGUE RESISTANCE

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Lecture 12: Fundamental Concepts in Structural Plasticity

Chapter 7: Basics of X-ray Diffraction

Size effects. Lecture 6 OUTLINE

Material Deformations. Academic Resource Center

THE DETERMINATION OF DELAMINATION STRAIN ENERGY RELEASE RATE OF COMPOSITE BI-MATERIAL INTERFACE

Stress Strain Relationships

TIE-31: Mechanical and thermal properties of optical glass

Structure Factors

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

σ y ( ε f, σ f ) ( ε f

This is an author-deposited version published in: Handle ID:.

CH 6: Fatigue Failure Resulting from Variable Loading

FATIGUE CONSIDERATION IN DESIGN

MSE PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY

CAE -Finite Element Method

Numerical Analysis of Transient Phenomena in Electromagnetic Forming Processes

Code_Aster. HSNV129 - Test of compression-thermal expansion for study of the coupling thermal-cracking

Unit 6 Plane Stress and Plane Strain

arxiv: v2 [physics.acc-ph] 27 Oct 2014

FATIGUE FRACTURE IN CONCRETE STRUCTURES

4.3 Results Drained Conditions Undrained Conditions References Data Files Undrained Analysis of

Lap Fillet Weld Calculations and FEA Techniques

Integration of manufacturing process simulation in to the process chain

Free Electron Fermi Gas (Kittel Ch. 6)

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

Experiment: Crystal Structure Analysis in Engineering Materials

ANALYSIS OF THE FATIGUE STRENGTH UNDER TWO LOAD LEVELS OF A STAINLESS STEEL BASED ON ENERGY DISSIPATION

Stanford Rock Physics Laboratory - Gary Mavko. Basic Geophysical Concepts

FINITE ELEMENT : MATRIX FORMULATION. Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V Révision : 9783

Lecture 18 Strain Hardening And Recrystallization

Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen

Feature Commercial codes In-house codes

Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY)

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

Determination of source parameters from seismic spectra

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Multiaxial Fatigue. Professor Darrell Socie Darrell Socie, All Rights Reserved

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Solution for Homework #1

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods

TRANSPORT APERIODIC MEDIA COHERENT & DISSIPATIVE. Jean BELLISSARD 1 2. Collaborators:

Material data sheet. EOS CobaltChrome MP1. Description

Technology of EHIS (stamping) applied to the automotive parts production

Structural Integrity Analysis

AN EXPLANATION OF JOINT DIAGRAMS

ENGINEERING COUNCIL CERTIFICATE LEVEL

Fundamentals of grain boundaries and grain boundary migration

G1RT-CT D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Science Standard Articulated by Grade Level Strand 5: Physical Science

Comparisons of numerical modelling of the Selective Laser Melting Laurent VAN BELLE 1, 2, a, Guillaume VANSTEENKISTE 2, b Jean-Claude BOYER 1, c

Introduction to X-Ray Powder Diffraction Data Analysis

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Modelling plasticity in forming processes

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

MECHANICS OF MATERIALS

Stress and deformation of offshore piles under structural and wave loading

Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

PREDICTION OF DISTORTIONS IN THROUGH HARDENING OF CYLINDRICAL STEEL WORKPIECES BY DIMENSIONAL ANALYSIS

Measurement of Residual Stress in Plastics

Martensite in Steels

Relevant Reading for this Lecture... Pages

WJM Technologies excellence in material joining

Transcription:

RESIDUAL STRESSES ANF Métallurgie Fondamentale Vincent Klosek (CEA / DSM / IRAMIS / LLB) 23/10/2012 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 1

INTRODUCTION Residual Stresses? Static multiaxial stresses within an isolated solid in mechanical equilibrium, neither subjected to external force nor to external moment Result from the thermo-mechanical history of the considered material 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 2

REMINDERS (?) A da M n B T (M, n) =σ n 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 3

REMINDERS (?) 1 t ε( X ) = ( ξ ( X ) + ξ ( X )) 2 1D ε = lim x 0 u x = du dx M 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 4

REMINDERS (?) Constitutive Laws Local relations between σ, ε and T Thermoelasticity in the framework of infinitesimal strain theory ( linearized relation): σ = A : ε k ( T T 0 ) Isotropic elastic material, isothermal transformation: ij = λ ( ε ε ε ) 11 + 22 + 33 δij + µε ij σ 2 Young modulus: Poisson ratio: µ (3λ + 2µ ) E = λ + µ ν = λ 2 ( λ + µ ) 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 5

RESIDUAL STRESSES? g rot (rot d ε) = 0 total stress free ε = ε + ε elastic accommodation 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 6

RESIDUAL STRESSES? Strain Incompatibility Application of a compatible strain field to a heterogeneous material: σ B A B A A+B A A σ res 0 B σ res ε RESIDUAL STRESSES 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 7

RESIDUAL STRESSES? Main sources various scales Atomic scale: point defects (very local influence) Single crystal scale: dislocations, precipitates, etc Polycrystal scale: Plastic strain incompatibilities phase transformations thermal strains Badulescu et al. (2011) 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 8

RESIDUAL STRESSES? Various scales res I σ ( X) = σ ( X) + σ ( X) + σ ( X) II III 1st order stresses: in equilibrium at the whole sample scale ( scale considered by engineers for structures calculations) I 1 res σ ( X ) = σ ( X ) V 2 nd order stresses: in equilibrium at the scale of a group of crystallites σ II 3 rd order stresses: in equilibrium at the scale of a crystallite Defects of crystallographic lattice (dislocations, precipitates, vacancies, grain boundaries, etc ) III V 1 res ( X) = v σ ( X) res σ ( X) = σ ( X) ( σ ( X) + σ ( X)) v I II 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 9

RESIDUAL STRESSES? Why evaluating them is so important?... Strongly influence the mechanical behaviour of a component - harmful: premature fracture (fatigue, cracking, etc ) - favourable: example of prestress treatments (shot peening, etc ) Significant effects on performance, safety, reliabillity of a component, a structure. Improvement of the processes (thermal or mechanical treatment required?...) At a more fundamental point of view: Understanding of the physical deformation mechanisms, and how they interact 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 10

RESIDUAL STRESSES? Examples of significant manifestations Drying of wood Silver Bridge (WV, USA), 1967 Stress-induced corrosion 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 11

DETERMINATION METHODS Experimental determination of elastic strains Destructive or semi-destructive methods Non destructive methods 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 12

DETERMINATION METHODS (semi-) destructive methods Principle: some matter is removed mechanical equilibrium is affected system tends to reach a new equilibrium it changes its shape Hole drilling method (incremental or not) or ring core method plane stress approximation, isotropic elasticity law, empirical coefs to determine Contour method 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 13

DETERMINATION METHODS Non destructive methods Ultrasonic technique dependence of the propagation velocity of ultrasonic waves on stress state (non linear elasticity, use of acoustoelastic coefficients) Barkhausen noise (ferromagnetic materials) Discontinuous motion of Bloch walls stress inverse magnetostrictive effect technique very sensitive to microstructural defects ( tricky to isolate contributions) Raman spectrometry dependence of optic phonon frequencies on stress state Diffraction Crystal lattice is used as a strain gauge 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 14

DIFFRACTION METHODS Theory of diffraction by distorted crystals (Krivoglaz, 1969) Diffraction vector K = g + s Bragg: I 0 s = 0 (non distorted perfect crystal) Scattered intensity (normalised): I ( K ) 2πin s 2πi u K = e e dxdn deformed 8 NOVEMBRE initial atom 2012 positions CEA 23 OCTOBRE 2012 PAGE 15 u( x, n) = u( x) u( x n)

DIFFRACTION METHODS -Intensity distribution I(K) directly related to the projection of the relative displacement between atoms u along K Directional measurement! ε KK ( x) = 1 K ² K ε(x) K = u K lim n 0 nk - Homogeneous deformation diffraction peak shift (back to Bragg law!) - Diffraction technique only sensitive to elastic strains! 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 16

DIFFRACTION METHODS Selectivity of diffraction methods: Strain is measured for grains in diffraction condition only!!! K 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 17

DIFFRACTION METHODS Selectivity of diffraction methods: Strain is measured for grains in diffraction condition only!!! K 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 18

DIFFRACTION METHODS What do we measure?... 1st order moment 2 nd order (centered) moment (1) µ + = s I( s) ds (pos. of the «gravity centre» of the peak (2) µ + = s ² I( s) ds («peak width») Strain along K averaged over the diffracting volume Variance of elastic strains along K over the diffracting volume ε KK = d d hkl 0 hkl ε KK Ω = θ = tanθ 0 (1) µ K If homogeneous strain over Ω! ε = 2 KK Ω µ K ² (2) Ideal for coupling with homogenization techniques! 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 19

DIFFRACTION METHODS Interpretation of peak shifts Stress at a given point x: = with σ = 0 σ( x) B( x) : σ + σ ( x) res res σ σ = 0 + General Formulation : Strain: ε ( x) = S( x) : σ( x) K K K K K K < ε KK > Ω = : S : B : σ + : S : σ 2 Ω 2 res Ω 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 20

DIFFRACTION METHODS The «sin² ψ law» 1st approximation σ res = 0 < ε KK > Ω = K K : K S : B 2 Ω : σ 2 nd approximation: isotropic elasticity ε < KK > Ω = K K 2 K : S : σ 1+ ν ε KK = ( σ cos ² ϕ + σ sin 2ϕ + σ sin ² ϕ σ )sin ² ψ Ω 11 12 22 33 E 1+ ν ν + σ 33 ( σ11 + σ 22 + σ 33) E E 1+ ν + ( σ13 cosϕ + σ 23 sinϕ)sin 2ψ E σ, σ σ 11 22, 33 Too often applied out of hypothesis validity 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 21

EXAMPLES Example 1: welding Process involving melting Temperature gradients Withdrawal during solidification Residual stresses If no cohesion (incompatibility strain field) 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 22

EXAMPLES Determination by means of neutron diffraction Tensile residual stress tangential stress depth from inner surface (mm) axial stress (MPa) distance from centre (mm) (coll. CEA/DEN) 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 23

EXAMPLES Example 2: Intergranular stresses in Zr SC estimates isotropic elastic behaviour T = -600 C, σ = {00.2} reflections 0 Isotropic texture αc 2α a 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 24 Coll. O. Castelnau (PIMM)

EXAMPLES Example 2: Intergranular stresses in Zr Experimental observations (neutron diffraction) Σ = 450 MPa (Coll. O. Castelnau (PIMM)) Importance to take microstructure into account for data analysis!!! 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 25

CONCLUSIONS Various scales various mechanisms : need to consider physical, chemical and mechanical phenomena (i.e. metallurgical phenomena!) Stress fields are most of the time complex and heterogeneous Characterization of residual stresses is of fundamental and applied importances (but relevant scales are not the same!) Various techniques to determine residual stresses Diffraction (RX & neutrons) allows to characterize intra- and intergranular heterogeneities ideal for coupling with micromechanical modelling BUT in every case: interpretating measurement results is far from being trivial RESIDUAL STRESS MEASUREMENT! Numerical prediction of residual stresses within components? optimization of geometries, processes, performances (ex: LASMIS @UTT ) 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 26

PAGE 27 CEA 23 OCTOBRE 2012 Commissariat à l énergie atomique et aux énergies alternatives Centre de Saclay 91191 Gif-sur-Yvette Cedex T. +33 (0)1 XX XX XX XX F. +33 (0)1 XX XX XX XX DSM IRAMIS LLB 8 NOVEMBRE 2012 Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019