WJM Technologies excellence in material joining
|
|
|
- Kenneth Nelson
- 9 years ago
- Views:
Transcription
1 Girish P. Kelkar, Ph.D. (562) Weld Cracks An Engineer s Worst Nightmare There are a variety of physical defects such as undercut, insufficient fusion, excessive deformation, porosity, and cracks that can affect weld quality. Of those defects, cracks are considered to be the worst since even a small crack can grow and lead to failure. All welding standards show zero tolerance for cracks where as the other defects are tolerated within certain limits. There are three requirements for cracks to form and grow: a stressraising defect, tensile stress, and material with low fracture toughness. Microscopic defect locations are available in practically all welds including geometric features and weld chemistry that can raise the local stress enough to induce a crack. That leaves the engineer to work with the stress environment and toughness: if either of the two can be effectively controlled then cracks can be prevented from initiating and growing. Toughness is a measure of resistance to crack growth; resistance can be provided by blunting of the crack tip in ductile materials. However, if applied strain rate is very high (as would be the case when a spot weld cools at the end of the pulse) and the stress field is multi-axial, even ductile materials exhibit poor toughness and produce rapid crack growth. Hard materials, such as martensite formed during cooling of steels, are brittle and have poor toughness. Toughness can be improved by controlling alloy chemistry and post-weld heat treatment. Stresses can be reduced by changing the joint design to ensure that the weld is under very low tensile load, and preferably, have a compressive load at possible crack locations. Joint deigns and fillet shapes can be controlled to minimize stress concentrators that assist in initiation of cracks. Cracks that form in and around the weld can be distinguished into two main categories, hot cracks and cold cracks. Cracks can also form in and near the weld during use and can be caused due to fatigue or corrosion. Cracks that form during the cooling process are referred to as hot cracks and cracks whose formation is delayed are called cold cracks. To identify how and why a particular crack formed, we need to dig deeper into weld design, identify crack locations, and evaluate related metallurgy. Once the root cause or causes are identified, appropriated action can be taken to avoid crack formation. 1
2 Hot Cracks As the name implies, these cracks form while the weld temperature is high and are usually related to solidification; crack growth is typically assisted by cooling stresses induced in the weld. Solidification cracking occurs when there is low solubility for alloying elements in the primary phases that solidify during cooling. As the solidifying grains grow, they exclude the impurities and/or minor alloying elements and push them towards the center of the weld. The impurities/alloying elements often do react with the dominant element to form low melting phases that generally have poor strength. Typical examples would be Iron-Sulfur compounds in steels and Aluminum-Copper compounds in Aluminum alloys. Hot cracks typically occur in the throat of the weld (see Figure 1) and can extend along the length of the weld, producing longitudinal cracks. In some fusion weld applications, such cracks can also form at the end of the weld line and produce a star-shaped pattern of cracks radiating outwards; such cracks are referred to as crater cracks. In some Aluminum alloys, hot cracks form in the HAZ (heat affected zone) adjacent to the fusion zone. Since the segregation of phases occurs along grain boundaries, hot cracks grow intergranularly. Common alloy systems that suffer from hot cracking are steels and aluminum alloys. Carbon steels with excessive sulfur are prone to hot cracking and such tendencies can be reduced by using either steel with low sulfur or with high enough Manganese that can combine with sulfur and render it inactive. Hot cracks are also found in laser welded 316 austenitic stainless steels that solidify as primary austenite. Weld cracking can be avoided by using a filler such 304 or 308 that provides enough ferrite stabilizers; solidifying ferrite has a greater solubility for impurity sulfur and keeps it out of trouble. Aluminum 6061 suffers similar problems that can be remedied in the fusion zone by mixing with 4047/4043 Al alloys. Hot cracks can also form when the weld is too weak to support the two components and have been observed as root cracks. Analysis of the cracked region under and SEM to identify elemental segregation is the first step in evaluating hot cracks. 2
3 Cold Cracks Cold cracks form in the weld at some point in time after the weld has cooled. Cold cracks usually form either due to excessive stress in the weld or due to hydrogendiffusion in steels. Elemental hydrogen can diffuse and migrate to dislocations and form pockets to create enough pressure to expand the defect and form a crack. But just the presence of hydrogen is not enough; a microstructure conducive to crack growth is also required. Such microstructure can form in steels that undergo transformation from ferrite to austenite as they are heated during welding and subsequently can form martensite during cooling. Matensite formation is encouraged by a combination of carbon content, alloying elements, and cooling rate. Under some circumstances, cold cracks can form up to 48 hours after welding. Hydrogen-assisted cracking can be reduced by preheating to reduce cooling rate after the weld and post-weld heating to encourage diffusion of hydrogen out of the weld. Such cracks can form in the weld zone but are typically found in HAZ Some cold cracks can form due to excessive strain in the weld after cooling and are typically observed in welds of very thick cross-section or if the fusion zone alloy is much stronger than the surrounding base metal. Transverse cracks are typical of such situations. Toe cracks that appear to originate at weld/haz boundary near the free surface are likely to be caused by a combination of excessive stress and a brittle HAZ. Cold cracks are more likely to be transgranular, i.e., going through the grains rather than along grain boundaries. Fatigue Cracks Fatigue cracks can form in regions near the weld due to the residual stress distribution that assists in the formation and growth of such cracks in the presence of external fatigue stress. Fatigue cracks have been observed to grow at locations beyond the HAZ but in a region where the residual surface tensile stresses are produced during weld cooling. 3
4 Corrosion Cracks Stainless steels are considered stainless since they have a protective layer of chromium oxide on the surface that prevents any rusting when exposed to moisture. However, at high temperatures of the order of C, typically those encountered by the HAZ during fusion welding, some of the chromium atoms react with carbon and precipitate out as chromium carbides. These chromium atoms are no longer available to form a protective oxide layer on the surface. In presence of suitable ionic liquid, a galvanic cell corrosion attack can propagate into the matrix along grain boundaries and is evident in cross-sections as a river branching pattern. Such cracks are more likely to form when assisted by tensile stress on the exposed surface. Options to avoid such cracks include use of low-carbon grade steels or if possible, send the entire welded component through a post-weld solution heat treatment to break up the chromium carbides and restore original steel chemistry. Similar cracks are also known to occur in practically all metal systems, for example, corrosion cracks in Al in presence of chlorides, and in brass alloys in the presence of ammonia. Hot Cracks in Welds Crack in HAZ Throat Crack Crater Cracks Longitudinal Cracks Fusion Zone Root Crack Weld Surface View Figure 1. Schematic showing locations of typical hot cracks in welds. 4
5 Cold Cracks in Welds Underbead Crack in HAZ Toe Crack Transverse Crack Fusion Zone Weld Section View Weld Surface View Figure 2. Schematic showing locations of typical cold cracks in welds. Fatigue and Corrosion Cracks (arc and laser welds) Fatigue Crack Corrosion Crack in HAZ (resistance welds) Figure 3. Schematic showing locations of fatigue and corrosion crack in and near the welds. 5
Weld Cracking. An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction. The James F. Lincoln Arc Welding Foundation
Weld Cracking An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction The James F. Lincoln Arc Welding Foundation Weld Cracking Several types of discontinuities may occur in welds
North American Stainless
North American Stainless Flat Products Stainless Steel Grade Sheet 430 (S43000)/ EN 1.4016 Introduction: SS430 is a low-carbon plain chromium, ferritic stainless steel without any stabilization of carbon
The mechanical properties of metal affected by heat treatment are:
Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.
Problems in Welding of High Strength Aluminium Alloys
Singapore Welding Society Newsletter, September 1999 Problems in Welding of High Strength Aluminium Alloys Wei Zhou Nanyang Technological University, Singapore E-mail: [email protected] Pure aluminium has
North American Stainless
Introduction: North American Stainless Flat Products Stainless Steel Grade Sheet 309S (S30908)/ EN1.4833 SS309 is a highly alloyed austenitic stainless steel used for its excellent oxidation resistance,
North American Stainless
North American Stainless Flat Products Stainless Steel Grade Sheet 310S (S31008)/ EN 1.4845 Introduction: SS310 is a highly alloyed austenitic stainless steel designed for elevated-temperature service.
North American Stainless
North American Stainless Long Products Stainless Steel Grade Sheet 2205 UNS S2205 EN 1.4462 2304 UNS S2304 EN 1.4362 INTRODUCTION Types 2205 and 2304 are duplex stainless steel grades with a microstructure,
ATI 2205 ATI 2205. Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205)
ATI 2205 Duplex Stainless Steel (UNS S31803 and S32205) GENERAL PROPERTIES ATI 2205 alloy (UNS S31803 and/or S32205) is a nitrogen-enhanced duplex stainless steel alloy. The nitrogen serves to significantly
Evaluation of the Susceptibility of Simulated Welds In HSLA-100 and HY-100 Steels to Hydrogen Induced Cracking
Evaluation of the Susceptibility of Simulated Welds In HSLA-100 and HY-100 Steels to Hydrogen Induced Cracking R. E. Ricker, M. R. Stoudt, and D. J. Pitchure Materials Performance Group Metallurgy Division
North American Stainless
North American Stainless Long Products Stainless Steel Grade Sheet AISI 316 UNS S31600 EN 1.4401 AISI 316L UNS S31630 EN 1.4404 INTRODUCTION NAS provides 316 and 316L SS, which are molybdenum-bearing austenitic
North American Stainless
North American Stainless Flat Product Stainless Steel Grade Sheet 316 (S31600)/EN 1.4401 316L (S31603)/ EN 1.4404 INTRODUCTION NAS provides 316 and 316L SS, which are molybdenum-bearing austenitic stainless
North American Stainless
North American Stainless Flat Products Stainless Steel Sheet T409 INTRODUCTION NAS 409 is an 11% chromium, stabilized ferritic stainless steel. It is not as resistant to corrosion or high-temperature oxidation
Structural Steel Welding
PDH Course S150 Structural Steel Welding Semih Genculu, P.E. 2007 PDH Center 2410 Dakota Lakes Drive Herndon, VA 20171-2995 Phone: 703-478-6833 Fax: 703-481-9535 www.pdhcenter.com An Approved Continuing
North American Stainless
North American Stainless Flat Products Stainless Steel Grade Sheet 304 (S30400)/ EN 1.4301 304L (S30403) / EN 1.4307 304H (S30409) Introduction: Types 304, 304L and 304H are the most versatile and widely
AUSTENITIC STAINLESS DAMASCENE STEEL
AUSTENITIC STAINLESS DAMASCENE STEEL Damasteel s austenitic stainless Damascene Steel is a mix between types 304L and 316L stainless steels which are variations of the 18 percent chromium 8 percent nickel
Field Welding Inspection Guide
Field Welding Inspection Guide Assistance in interpretation of any specification or questions concerning field welding issues can be obtained from the Office of Materials Management, Structural Welding
Heat Treatment of Steel
Heat Treatment of Steel Steels can be heat treated to produce a great variety of microstructures and properties. Generally, heat treatment uses phase transformation during heating and cooling to change
North American Stainless
North American Stainless Long Products Stainless Steel Grade Sheet AISI 304 UNS S30400 EN 1.4301 AISI 304L UNS S30430 EN 1.4307 INTRODUCTION: Types 304 and 304L are the most versatile and widely used of
Edward D. Basta, Senior Metallurgical Engineer Atlas Steel Products Co. 7990 Bavaria Road Twinsburg, OH 44087 USA
Cost Reductions and Product Consistency Improvements Using Unannealed High- Frequency/Solid State (UHFSS) Welded 409 Stainless Steel Heat Exchanger Tubing BY Edward D. Basta, Senior Metallurgical Engineer
Chapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
Duplex Stainless Steel Fabrication. Gary M. Carinci TMR Stainless Consultant for International Molybdenum Association
Duplex Stainless Steel Fabrication Gary M. Carinci TMR Stainless Consultant for International Molybdenum Association 1 Promoting molybdenum - as a material with superior properties and performance in a
Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular
Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation
North American Stainless
North American Stainless Flat Products Stainless Steel Grade Sheet 2205 (S32205)/ EN 1.4462 (S31803) Introduction: SS2205 is a duplex stainless steel with a microstructure, when heat treated properly,
HEAT TREATMENT OF STEEL
HEAT TREATMENT OF STEEL Heat Treatment of Steel Most heat treating operations begin with heating the alloy into the austenitic phase field to dissolve the carbide in the iron. Steel heat treating practice
LABORATORY EXPERIMENTS TESTING OF MATERIALS
LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective
FATIGUE CONSIDERATION IN DESIGN
FATIGUE CONSIDERATION IN DESIGN OBJECTIVES AND SCOPE In this module we will be discussing on design aspects related to fatigue failure, an important mode of failure in engineering components. Fatigue failure
Welding. ArcelorMittal Europe Flat Products. Definitions of welding and weldability. Consequences of welding
ArcelorMittal Europe Flat Products Welding Definitions of welding and weldability Welding of metal parts is a joining process designed to ensure metallic continuity across the joint. This continuity is
Chapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
Qualification of welding procedures for duplex stainless steels
TIP 0402-29 ISSUED - 2001 2001 TAPPI The information and data contained in this document were prepared by a technical committee of the Association. The committee and the Association assume no liability
Iron-Carbon Phase Diagram (a review) see Callister Chapter 9
Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 University of Tennessee, Dept. of Materials Science and Engineering 1 The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram In their simplest form,
Materials Issues in Fatigue and Fracture
Materials Issues in Fatigue and Fracture 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Finite Life 5.4 Summary FCP 1 5.1 Fundamental Concepts Structural metals Process of fatigue A simple view
Defects Introduction. Bonding + Structure + Defects. Properties
Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of
Overview of Stress Corrosion Cracking in Stainless Steel: Electronic Enclosures in Extreme Environmental Conditions
Overview of Stress Corrosion Cracking in Stainless Steel: Electronic Enclosures in Extreme Environmental Conditions Stephani Gulbrandsen Introduction: Electronic Enclosures 316L stainless steel is found
Phase Transformations in Metals and Alloys
Phase Transformations in Metals and Alloys THIRD EDITION DAVID A. PORTER, KENNETH E. EASTERLING, and MOHAMED Y. SHERIF ( г йс) CRC Press ^ ^ ) Taylor & Francis Group Boca Raton London New York CRC Press
Chapter Outline: Phase Transformations in Metals
Chapter Outline: Phase Transformations in Metals Heat Treatment (time and temperature) Microstructure Mechanical Properties Kinetics of phase transformations Multiphase Transformations Phase transformations
Strengthening. Mechanisms of strengthening in single-phase metals: grain-size reduction solid-solution alloying strain hardening
Strengthening The ability of a metal to deform depends on the ability of dislocations to move Restricting dislocation motion makes the material stronger Mechanisms of strengthening in single-phase metals:
GENERAL PROPERTIES //////////////////////////////////////////////////////
ALLOY 625 DATA SHEET //// Alloy 625 (UNS designation N06625) is a nickel-chromium-molybdenum alloy possessing excellent resistance to oxidation and corrosion over a broad range of corrosive conditions,
Surface Treatments. Corrosion Protective coatings for harsh environments (catalytic converters, electrochemical cells )
Surface Treatments Applications Biomedical (biocompatible coatings on implants, drug coatings for sustained release ) Mechanical Tribological friction and wear (tool steels, implants ) Fatigue minimize
Technical Data BLUE SHEET. Martensitic. stainless steels. Types 410, 420, 425 Mod, and 440A GENERAL PROPERTIES APPLICATIONS PRODUCT FORM
Technical Data BLUE SHEET Allegheny Ludlum Corporation Pittsburgh, PA Martensitic Stainless Steels Types 410, 420, 425 Mod, and 440A GENERAL PROPERTIES Allegheny Ludlum Types 410, 420, 425 Modified, and
8. Technical Heat Treatment
8. Technical Heat Treatment 8. Technical Heat Treatment 95 6 cm 4 2 0-2 -4 C 400 C C -6-14 -12-10 -8-6 -4-2 0 2 cm 6 723 C temperature C 1750 750 250 When welding a workpiece, not only the weld itself,
DX2202 Duplex stainless steel
Stainless Europe Grade DX22 Duplex stainless steel Chemical Composition Elements C Mn Cr Ni Mo N %.25.3 23. 2.5
Dissimilar Metal Corrosion
PDHonline Course S118 (1 PDH) Dissimilar Metal Corrosion Instructor: D. Matthew Stuart, P.E., S.E., F.ASCE, F.SEI, SECB, MgtEng 2013 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658
ASTM A860/A860M-09 Standard Specification for Wrought High Strength. Ferritic Steel Butt Welding Fittings. 1. Scope :- 2. Reference Documents :-
Standard Specification for Wrought High Strength Ferritic Steel Butt Welding Fittings 1. Scope :- 1.1 This specification covers wrought high strength ferritic steel butt-welding fitting of seamless and
High-strength and ultrahigh-strength. Cut sheet from hot-rolled steel strip and heavy plate. voestalpine Steel Division www.voestalpine.
High-strength and ultrahigh-strength TM steels Cut sheet from hot-rolled steel strip and heavy plate Josef Elmer, Key account manager voestalpine Steel Division www.voestalpine.com/steel Weight savings
CERAMICS: Properties 2
CERAMICS: Properties 2 (Brittle Fracture Analysis) S.C. BAYNE, 1 J.Y. Thompson 2 1 University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078 [email protected] 2 Nova Southeastern College of Dental
Autogenous Laser Welding of Aluminum
Hans Leidich OEM Laser Specialist Laser Technology Center TRUMPF Inc. Why Autogenous Simpler Less hardware Easier process Faster speed Should be first approach (if doesn t work, then go to the next step)
FIELD ACCEPTANCE OF FIELD WELDING GUIDE
Page 1 of 17 Oklahoma DOT Materials & Testing January 14, 2004 Publication: GFA-FW (Updated to reference current Structural Materials Branch of the ODOT Materials Division URL 07/06/2016) FIELD ACCEPTANCE
Solution for Homework #1
Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen
ALLOY 2205 DATA SHEET
ALLOY 2205 DATA SHEET UNS S32205, EN 1.4462 / UNS S31803 GENERAL PROPERTIES ////////////////////////////////////////////////////// //// 2205 (UNS designations S32205 / S31803) is a 22 % chromium, 3 % molybdenum,
Full Density Properties of Low Alloy Steels
Full Density Properties of Low Alloy Steels Michael L. Marucci & Arthur J. Rawlings Hoeganaes Corporation, Cinnaminson, NJ Presented at PM 2 TEC2005 International Conference on Powder Metallurgy and Particulate
ALLOY C276 DATA SHEET
ALLOY C276 DATA SHEET //// Alloy C276 (UNS designation N10276) is a nickel-molybdenum-chromium-iron-tungsten alloy known for its corrosion resistance in a wide range of aggressive media. It is one of the
Friction Surfacing of Austenitic Stainless Steel on Low Carbon Steel: Studies on the Effects of Traverse Speed
, June 30 - July 2, 2010, London, U.K. Friction Surfacing of Austenitic Stainless Steel on Low Carbon Steel: Studies on the Effects of Traverse Speed H. Khalid Rafi, G. D. Janaki Ram, G. Phanikumar and
Stainless steel grade chart
Stainless steel grade chart ATLAS STEELS METAL DISTRIBUTION Chemical analysis (%) specified C Si Mn P S Cr Mo Ni Other Austenitic stainless steels 253MA S30815 0.05 1.1-2.0 0.8 0.040 0.030 20.0-22.0 10.0-12.0
Avoiding Burning Through: Control the Inside Surface Temperature, Not the Pressure
Originally published in the Canadian Welding Association Journal, Spring 2013, pp 30 39 Welding on In service Pipelines: Dispelling Popular Myths and Misconceptions Bill Amend Sr. Principal Engineer, Welding
Heat Treatment of Steels : Spheroidize annealing. Heat Treatment of Steels : Normalizing
Heat Treatment of Steels :Recrystallization annealing The carbon and alloy steels were treated at a temperature of about 700 C, which is about 20 C below the eutectoid temperature. The holding time should
LASER CUTTING OF STAINLESS STEEL
LASER CUTTING OF STAINLESS STEEL Laser inert gas cutting is the most applicable process type used for cutting of stainless steel. Laser oxygen cutting is also applied in cases where the cut face oxidation
Durcomet 100 CD4MCuN. Bulletin A/7l
Durcomet 100 CD4MCuN Bulletin A/7l Durcomet 100 Introduction Durcomet 100 is a duplex stainless steel produced to ASTM specification A995 or A890, Grade CD4MCuN (1B). It is indicated by the Flowserve casting
Introduction. Keywords: Laser welding, Nd:YAG laser, AISI 316L, Ni-alloys, Thin foils.
Materials Science Forum Vols. 773-774 (2014) pp 784-792 (2014) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.773-774.784 Effects of laser beam energy on the pulsed Nd:YAG laser
X15TN TM. A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS INNOVATION RESEARCH SERVICE.
TM A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS METALLURGICAL SPECIAL STEELS INNOVATION RESEARCH SERVICE DEVELOPMENT Enhancing your performance THE INDUSTRIAL ENVIRONMENT
Austenitic Stainless Steels
Copyright 2008 ASM International. All rights reserved. Stainless Steels for Design Engineers (#05231G) www.asminternational.org CHAPTER 6 Austenitic Stainless Steels Summary AUSTENITIC STAINLESS STEELS
Wear-resistant steels. Technical terms of delivery for heavy plates. voestalpine Grobblech GmbH www.voestalpine.com/grobblech
Wear-resistant steels Technical terms of delivery for heavy plates voestalpine Grobblech GmbH www.voestalpine.com/grobblech Wear-resistant steels durostat durostat 400 durostat 450 durostat 500 durostat
Section 4: NiResist Iron
Section 4: NiResist Iron Section 4 Ni-Resist Description of Grades...4-2 201 (Type 1) Ni-Resist...4-3 202 (Type 2) Ni-Resist...4-6 Stock Listings...4-8 4-1 Ni-Resist Description of Grades Ni-Resist Dura-Bar
KNOCK OUT NAK80 INTRODUCING PLASTIC MOLDS RUBBER MOLDS JIGS & FIXTURES PRESS DIES. 40 HRC Pre-Hardened High Performance High Precision Mold Steel
INTRODUCING NAK80 40 HRC Pre-Hardened High Performance High Precision Mold Steel KNOCK OUT THE COMPETITION PLASTIC MOLDS RUBBER MOLDS JIGS & FIXTURES PRESS DIES Features: Machines up to 20 percent faster
3.3 Welding and welded connections
3.3 Welding and welded connections Welding is the process of joining two pieces of metal by creating a strong metallurgical bond between them by heating or pressure or both. It is distinguished from other
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the
Alloys & Their Phase Diagrams
Alloys & Their Phase Diagrams Objectives of the class Gibbs phase rule Introduction to phase diagram Practice phase diagram Lever rule Important Observation: One question in the midterm Consider the Earth
9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure
9-13 9.8: 9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure (a) The first liquid forms at the temperature at which a vertical line at this composition
2.3. Continuous Hot-Dip Galvanizing versus General (Batch) Galvanizing Rev 1.0 Jan 2011. GalvInfoNote. Introduction. Continuous Galvanizing
2. Coating Processes and Surface Treatments GalvInfoNote 2.3 Introduction Continuous Hot-Dip Galvanizing versus General (Batch) Galvanizing There are two different processes for applying a zinc coating
INDIAN STANDARDS (BIS) ON WELDING
** IS 82:957 Glossary of terms relating to welding and cutting of Sep 2008 metals 2 IS 83:986 Scheme of symbols for welding (revised) Sep 2008 3 IS 84:2004 Covered electrodes for manual metal arc welding
Experiment: Crystal Structure Analysis in Engineering Materials
Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types
The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R
3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated
Ionic and Metallic Bonding
Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose
Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen
Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen Tagung des Arbeitskreises Thermophysik, 4. 5.3.2010 Karlsruhe, Deutschland E. Kaschnitz Österreichisches Gießerei-Institut
Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth
Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Bulk deformation forming (rolling) Rolling is the process of reducing
Atomic Structure. Atoms consist of: Nucleus: Electrons Atom is electrically balanced equal electrons and protons. Protons Neutrons
Basics of Corrosion Performance Metals Sacrificial anode manufacturer Specialize in aluminum alloy anodes All products made in the USA (Berks county, PA) ISO9001/2001 Certified Quality System Also traditional
Aluminum Metallurgy What Metal Finishers Should Know
Help Log-in Site News Home About Us Services Publications Links Contact Us Accreditation Q & A Forums Print This Document Back again for installment #5 of the Omega Update! This past summer we began our
PDHonline Course S174 (2 PDH) Metal Deterioration. Instructor: D. Matthew Stuart, P.E., S.E., F.ASCE, F.SEI, SECB, MgtEng. PDH Online PDH Center
PDHonline Course S174 (2 PDH) Metal Deterioration Instructor: D. Matthew Stuart, P.E., S.E., F.ASCE, F.SEI, SECB, MgtEng 2013 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone
Estimating Welding Preheat Requirements for Unknown Grades of Carbon and Low-Alloy Steels
SUPPLEMENT TO THE WELDING JOURNAL, NOVEMBER 2008 Sponsored by the American Welding Society and the Welding Research Council Estimating Welding Preheat Requirements for Unknown Grades of Carbon and Low-Alloy
Objectives/Introduction Extraction of zinc Physical properties of zinc Zinc casting alloys Wrought zinc alloys Engineering design with zinc alloys
Lecture 7 Zinc and its alloys Subjects of interest Objectives/Introduction Extraction of zinc Physical properties of zinc Zinc casting alloys Wrought zinc alloys Engineering design with zinc alloys Objectives
Welding. Module 19.2.1
Welding Module 19.2.1 Hard Soldering Hard soldering is a general term for silver soldering and brazing. These are very similar thermal joining processes to soft soldering in as much that the parent metal
Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded.
1 Unit 6: EXTRUSION Introduction: Extrusion is a metal working process in which cross section of metal is reduced by forcing the metal through a die orifice under high pressure. It is used to produce cylindrical
Handbook on the Ultrasonic Examination. Austenitic Welds
Handbook on the Ultrasonic Examination Austenitic Welds The International Institute of Welding Edition Handbook On the Ultrasonic Examination of Austenitic Welds Compiled by COMMISSION V Testing, Measurement,
G1RT-CT-2001-05071 A. BASIC CONCEPTS F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION
A. BASIC CONCEPTS 472 PROCESSES LOADING RATE Static or Quasi-Sstatic Dynamic MATERIAL ENVIRONMENT Liquid or Gaseous Environments AGGRESSIVE ENVIRONMENT MECHANIC LOADS Stress corrosion cracking (SCC) Corrosion
SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS. W. Brian James Hoeganaes Corporation. Cinnaminson, NJ 08077
SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS W. Brian James Hoeganaes Corporation Cinnaminson, NJ 08077 Leander F. Pease III Powder-Tech Associates Inc. Andover, MA 01845
www.klmtechgroup.com TABLE OF CONTENT
Page : 1 of 45 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia TABLE OF CONTENT 1.0 SCOPE 2 2.0 CONFLICTS
Stainless Steel and Corrosion
Stainless Europe Stainless Steel and Corrosion What is corrosion? Metals, with the exception of the precious metals such as gold and platinum, that are found in their natural state are always extracted
Experiment: Heat Treatment - Quenching & Tempering
Experiment: Heat Treatment - Quenching & Tempering Objectives 1) To investigate the conventional heat treatment procedures, such as quenching and annealing, used to alter the properties of steels. SAE
Process Parameters Optimization for Friction Stir Welding of Pure Aluminium to Brass (CuZn30) using Taguchi Technique
MATEC Web of Conferences43, 03005 ( 016) DOI: 10.1051/ matecconf/ 016 4303005 C Owned by the authors, published by EDP Sciences, 016 Process Parameters Optimization for Friction Stir Welding of Pure Aluminium
Laser sintering of greens compacts of MoSi 2
Laser sintering of greens compacts of MoSi 2 G. de Vasconcelos 1, R. Cesar Maia 2, C.A.A.Cairo 3, R. Riva 2, N.A.S.Rodrigues 2, F.C.L.Mello 3 Instituto de Estudos Avançados 1, Instituto Tecnológico de
