Unit 6 Plane Stress and Plane Strain

Size: px
Start display at page:

Download "Unit 6 Plane Stress and Plane Strain"

Transcription

1 Unit 6 Plane Stress and Plane Strain Readings: T & G 8, 9, 10, 11, 12, 14, 15, 16 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems

2 There are many structural configurations where we do not have to deal with the full 3-D case. First let s consider the models Let s then see under what conditions we can apply them A. Plane Stress This deals with stretching and shearing of thin slabs. Figure 6.1 Representation of Generic Thin Slab Unit 6 - p. 2

3 The body has dimensions such that h << a, b (Key: where are limits to <<??? We ll consider later) Thus, the plate is thin enough such that there is no variation of displacement (and temperature) with respect to y 3 (z). Furthermore, stresses in the z-direction are zero (small order of magnitude). Figure 6.2 Representation of Cross-Section of Thin Slab Unit 6 - p. 3

4 Thus, we assume: σ zz = 0 σ yz = 0 σ xz = 0 z = 0 So the equations of elasticity reduce to: Equilibrium σ 11 + σ 21 + f 1 = 0 (1) y 1 y 2 σ 12 + σ 22 + f 2 = 0 (2) y 1 y 2 (3rd equation is an identity) 0 = 0 (f 3 = 0) In general: σ βα + f α = 0 y β Unit 6 - p. 4

5 Stress-Strain (fully anisotropic) Primary (in-plane) strains 1 ε 1 = [σ 1 ν 12 σ 2 η 16 σ 6 ] (3) E 1 ε 2 = ε 6 = 1 [ ν 21 σ 1 + σ 2 η 26 σ 6 ] E 2 (4) 1 [ η 61 σ 1 η 62 σ 2 + σ 6 ] G 6 (5) Invert to get: * σ αβ = E αβσγ ε σγ Secondary (out-of-plane) strains (they exist, but they are not a primary part of the problem) 1 ε 3 = E3 [ ν 31 σ 1 ν 32 σ 2 η 36 σ 6 ] Unit 6 - p. 5

6 ε 4 = ε 5 = Primary 1 [ η 41 σ 1 η 42 σ 2 η 46 σ 6 ] G 4 1 [ η 51 σ 1 η 52 σ 2 η 56 σ 6 ] G 5 Strain - Displacement Note: can reduce these for orthotropic, isotropic (etc.) as before. ε 11 = ε 22 = ε 12 = u 1 y 1 (6) u 2 y 2 (7) 1 u 1 + u 2 2 y 2 y 1 (8) Unit 6 - p. 6

7 Secondary ε 13 = ε 23 = 1 u 1 + u 3 2 y 3 y 1 1 u 2 + u 3 2 y 3 y 2 ε 33 = u 3 y 3 Note: that for an orthotropic material (ε 23 ) (ε 13 ) ε 4 = ε 5 = 0 (due to stress-strain relations) Unit 6 - p. 7

8 This further implies from above (since = 0) y 3 No in-plane variation u 3 = 0 y α but this is not exactly true INCONSISTENCY Why? This is an idealized model and thus an approximation. There are, in actuality, triaxial (σ zz, etc.) stresses that we ignore here as being small relative to the in-plane stresses! (we will return to try to define small ) Final note: for an orthotropic material, write the tensorial stress-strain equation as: 2-D plane stress σ αβ = E ε σγ (,, αβσγ α β, σ, γ = 1 2) Unit 6 - p. 8

9 There is not a 1-to-1 correspondence between the 3-D E mnpq and the 2-D E * αβσγ. The effect of ε 33 must be incorporated since ε 33 does not appear in these equations by using the (σ 33 = 0) equation. This gives: ε 33 = f(ε αβ ) Also, particularly in composites, another notation will be used in the case of plane stress in place of engineering notation: subscript change x = 1 = L (longitudinal) along major axis y = 2 = T (transverse) along minor axis The other important extreme model is B. Plane Strain This deals with long prismatic bodies: Unit 6 - p. 9

10 Figure 6.3 Representation of Long Prismatic Body Dimension in z - direction is much, much larger than in the x and y directions L >> x, y Unit 6 - p. 10

11 (Key again: where are limits to >>??? we ll consider later) Since the body is basically infinite along z, the important loads are in the x - y plane (none in z) and do not change with z: y 3 = = 0 z This implies there is no gradient in displacement along z, so (excluding rigid body movement): u 3 = w = 0 Equations of elasticity become: Equilibrium: Primary σ 11 + σ 21 + f 1 = 0 (1) y 1 y 2 σ 12 + σ 22 + f 2 = 0 (2) y 1 y 2 Unit 6 - p. 11

12 Secondary σ 13 + σ 23 + f 3 = 0 y 1 y 2 σ and σ exist but do not enter into primary consideration Strain - Displacement ε 11 = ε 22 = ε 12 = u 1 y 1 (3) u 2 y 2 (4) 1 u 1 + u 2 2 y 2 y 1 (5) Assumptions = 0, w = 0 give: y 3 ε 13 = ε 23 = ε 33 = 0 (Plane strain) Unit 6 - p. 12

13 Stress - Strain (Do a similar procedure as in plane stress) 3 Primary σ 11 =... (6) σ 22 =... (7) σ 12 =... (8) Secondary σ 13 = 0 σ 23 = 0 σ 33 0 orthotropic ( 0 for anisotropic) INCONSISTENCY: No load along z, yet σ 33 (σσ zz ) is non zero. Why? Once again, this is an idealization. Triaxial strains (ε 33 ) actually arise. You eliminate σ 33 from the equation set by expressing it in terms of σ αβ via (σ 33 ) stress-strain equation. Unit 6 - p. 13

14 SUMMARY Plane Stress Plane Strain Geometry: thickness (y 3 ) << in-plane dimensions (y 1, y 2 ) length (y 3 ) >> in-plane dimensions (y 1, y 2 ) Loading: Resulting Assumptions: Primary Variables: Secondary Variable(s): Note: σ 33 << σ αβ σ i3 = 0 ε αβ, σ αβ, u α ε 33, u 3 Eliminate ε 33 from eq. set by using σ 33 = 0 σ - ε eq. and expressing ε 33 in terms of ε αβ σ αβ only / y 3 = 0 ε i3 = 0 ε αβ, σ αβ, u α σ 33 Eliminate σ 33 from eq. Set by using σ 33 σ - ε eq. and expressing σ 33 in terms of ε αβ Unit 6 - p. 14

15 Examples Plane Stress: Figure 6.4 Pressure vessel (fuselage, space habitat) Skin in order of 70 MPa (10 ksi) p o 70 kpa (~ 10 psi for living environment) σ zz << σ xx, σ yy, σ xy Unit 6 - p. 15

16 Plane Strain: Figure 6.5 Dams water pressure Figure 6.6 Solid Propellant Rockets high internal pressure Unit 6 - p. 16

17 but when do these apply??? Depends on loading geometry material and its response issues of scale how good do I need the answer what are we looking for (deflection, failure, etc.) We ve talked about the first two, let s look a little at each of the last three: --> Material and its response Elastic response and coupling changes importance / magnitude of primary / secondary factors (Key: are primary dominating the response?) --> Issues of scale What am I using the answer for? at what level? Example: standing on table --overall deflection or reactions in legs are not dependent on way I stand (tip toe or flat foot) Unit 6 - p. 17

18 --> How good do I need the answer? model of top of table as plate in bending is sufficient --stresses under my foot very sensitive to specifics (if table top is foam, the way I stand will determine whether or not I crush the foam) In preliminary design, need ballpark estimate; in final design, need exact numbers Example: as thickness increases when is a plate no longer in plane stress Unit 6 - p. 18

19 Figure 6.7 Representation of the continuum from plane stress to plane strain very thin (plane stress) a continuum very thick (plane strain) No line(s) of demarkation. Numbers approach idealizations but never get to it. Must use engineering judgment AND Clearly identify key assumptions in model and resulting limitations Unit 6 - p. 19

Unit 3 (Review of) Language of Stress/Strain Analysis

Unit 3 (Review of) Language of Stress/Strain Analysis Unit 3 (Review of) Language of Stress/Strain Analysis Readings: B, M, P A.2, A.3, A.6 Rivello 2.1, 2.2 T & G Ch. 1 (especially 1.7) Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

More information

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433

1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433 Stress & Strain: A review xx yz zz zx zy xy xz yx yy xx yy zz 1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433 Disclaimer before beginning your problem assignment: Pick up and compare any set

More information

Høgskolen i Narvik Sivilingeniørutdanningen

Høgskolen i Narvik Sivilingeniørutdanningen Høgskolen i Narvik Sivilingeniørutdanningen Eksamen i Faget STE66 ELASTISITETSTEORI Klasse: 4.ID Dato: 7.0.009 Tid: Kl. 09.00 1.00 Tillatte hjelpemidler under eksamen: Kalkulator Kopi av Boken Mechanics

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

More information

Design MEMO 54a Reinforcement design for RVK 41

Design MEMO 54a Reinforcement design for RVK 41 Page of 5 CONTENTS PART BASIC ASSUMTIONS... 2 GENERAL... 2 STANDARDS... 2 QUALITIES... 3 DIMENSIONS... 3 LOADS... 3 PART 2 REINFORCEMENT... 4 EQUILIBRIUM... 4 Page 2 of 5 PART BASIC ASSUMTIONS GENERAL

More information

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Yun-gang Zhan School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang,

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

Stress-Strain Material Laws

Stress-Strain Material Laws 5 Stress-Strain Material Laws 5 Lecture 5: STRSS-STRAIN MATRIAL LAWS TABL OF CONTNTS Page 5. Introduction..................... 5 3 5.2 Constitutive quations................. 5 3 5.2. Material Behavior

More information

Design MEMO 60 Reinforcement design for TSS 102

Design MEMO 60 Reinforcement design for TSS 102 Date: 04.0.0 sss Page of 5 CONTENTS PART BASIC ASSUMTIONS... GENERAL... STANDARDS... QUALITIES... 3 DIMENSIONS... 3 LOADS... 3 PART REINFORCEMENT... 4 EQUILIBRIUM... 4 Date: 04.0.0 sss Page of 5 PART BASIC

More information

Development of Membrane, Plate and Flat Shell Elements in Java

Development of Membrane, Plate and Flat Shell Elements in Java Development of Membrane, Plate and Flat Shell Elements in Java by Kaushalkumar Kansara Thesis submitted to the Faculty of the Virginia Polytechnic Institute & State University In partial fulfillment of

More information

(Seattle is home of Boeing Jets)

(Seattle is home of Boeing Jets) Dr. Faeq M. Shaikh Seattle, Washington, USA (Seattle is home of Boeing Jets) 1 Pre Requisites for Today s Seminar Basic understanding of Finite Element Analysis Working Knowledge of Laminate Plate Theory

More information

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses 3D Stress Components From equilibrium principles:, z z, z z The most general state of stress at a point ma be represented b 6 components Normal Stresses Shear Stresses Normal stress () : the subscript

More information

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads? Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

More information

Scalars, Vectors and Tensors

Scalars, Vectors and Tensors Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable

More information

The Fundamental Principles of Composite Material Stiffness Predictions. David Richardson

The Fundamental Principles of Composite Material Stiffness Predictions. David Richardson The Fundamental Principles of Composite Material Stiffness Predictions David Richardson Contents Description of example material for analysis Prediction of Stiffness using Rule of Mixtures (ROM) ROM with

More information

Plane Stress Transformations

Plane Stress Transformations 6 Plane Stress Transformations ASEN 311 - Structures ASEN 311 Lecture 6 Slide 1 Plane Stress State ASEN 311 - Structures Recall that in a bod in plane stress, the general 3D stress state with 9 components

More information

Introduction to Plates

Introduction to Plates Chapter Introduction to Plates Plate is a flat surface having considerabl large dimensions as compared to its thickness. Common eamples of plates in civil engineering are. Slab in a building.. Base slab

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

3 Concepts of Stress Analysis

3 Concepts of Stress Analysis 3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements.

More information

BEAMS: SHEAR FLOW, THIN WALLED MEMBERS

BEAMS: SHEAR FLOW, THIN WALLED MEMBERS LECTURE BEAMS: SHEAR FLOW, THN WALLED MEMBERS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering 15 Chapter 6.6 6.7 by Dr. brahim A. Assakkaf SPRNG 200 ENES

More information

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783 Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 SSNP161 Biaxial tests of Summarized Kupfer: Kupfer [1] was interested to characterize the performances of the concrete under biaxial

More information

Thin Walled Pressure Vessels

Thin Walled Pressure Vessels 3 Thin Walled Pressure Vessels 3 1 Lecture 3: THIN WALLED PRESSURE VESSELS TABLE OF CONTENTS Page 3.1. Introduction 3 3 3.2. Pressure Vessels 3 3 3.3. Assumptions 3 4 3.4. Cylindrical Vessels 3 4 3.4.1.

More information

Analysis of Stresses and Strains

Analysis of Stresses and Strains Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we

More information

Stack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder

Stack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder Pressure Vessels: 1 Stack Contents Longitudinal Stress in Cylinders Hoop Stress in Cylinders Hoop Stress in Spheres Vanishingly Small Element Radial Stress End Conditions 1 2 Pressure Filled Cylinder A

More information

2. Illustration of the Nikkei 225 option data

2. Illustration of the Nikkei 225 option data 1. Introduction 2. Illustration of the Nikkei 225 option data 2.1 A brief outline of the Nikkei 225 options market τ 2.2 Estimation of the theoretical price τ = + ε ε = = + ε + = + + + = + ε + ε + ε =

More information

Shear Center in Thin-Walled Beams Lab

Shear Center in Thin-Walled Beams Lab Shear Center in Thin-Walled Beams Lab Shear flow is developed in beams with thin-walled cross sections shear flow (q sx ): shear force per unit length along cross section q sx =τ sx t behaves much like

More information

Torsion Tests. Subjects of interest

Torsion Tests. Subjects of interest Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

More information

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems: Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

More information

2.75 6.525 Problem Set 1 Solutions to ME problems Fall 2013

2.75 6.525 Problem Set 1 Solutions to ME problems Fall 2013 2.75 6.525 Problem Set 1 Solutions to ME problems Fall 2013 2. Pinned Joint problem Jacob Bayless a) Draw a free-body diagram for the pin. How is it loaded? Does the loading depend on whether the pin is

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY ABHELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D HELSINKI Computational results for the superconvergence and postprocessing of MITC plate elements Jarkko

More information

Multiaxial Fatigue. Professor Darrell Socie. 2008-2014 Darrell Socie, All Rights Reserved

Multiaxial Fatigue. Professor Darrell Socie. 2008-2014 Darrell Socie, All Rights Reserved Multiaxial Fatigue Professor Darrell Socie 2008-2014 Darrell Socie, All Rights Reserved Outline Stresses around holes Crack Nucleation Crack Growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory

Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory Composite Structures 5 (00) 44 www.elsevier.com/locate/compstruct Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory T. Kant

More information

1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics 1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall.

Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall. ME 477 Pressure Vessel Example 1 ANSYS Example: Axisymmetric Analysis of a Pressure Vessel The pressure vessel shown below is made of cast iron (E = 14.5 Msi, ν = 0.21) and contains an internal pressure

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Optimising plate girder design

Optimising plate girder design Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

Lap Fillet Weld Calculations and FEA Techniques

Lap Fillet Weld Calculations and FEA Techniques Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer Ahmad.Abbas@AdvancedCAE.com www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright

More information

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250 Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..

More information

Stress Analysis, Strain Analysis, and Shearing of Soils

Stress Analysis, Strain Analysis, and Shearing of Soils C H A P T E R 4 Stress Analysis, Strain Analysis, and Shearing of Soils Ut tensio sic vis (strains and stresses are related linearly). Robert Hooke So I think we really have to, first, make some new kind

More information

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated. Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTO-LRFD specifications require checking the deck for vehicular

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

More information

Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

More information

AN EXPLANATION OF JOINT DIAGRAMS

AN EXPLANATION OF JOINT DIAGRAMS AN EXPLANATION OF JOINT DIAGRAMS When bolted joints are subjected to external tensile loads, what forces and elastic deformation really exist? The majority of engineers in both the fastener manufacturing

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder

More information

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

Analysis of Stress CHAPTER 1 1.1 INTRODUCTION

Analysis of Stress CHAPTER 1 1.1 INTRODUCTION CHAPTER 1 Analysis of Stress 1.1 INTRODUCTION The basic structure of matter is characterized by nonuniformity and discontinuity attributable to its various subdivisions: molecules, atoms, and subatomic

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Code_Aster. HSNV129 - Test of compression-thermal expansion for study of the coupling thermal-cracking

Code_Aster. HSNV129 - Test of compression-thermal expansion for study of the coupling thermal-cracking Titre : HSNV129 - Essai de compression-dilatation pour étu[...] Date : 1/1/212 Page : 1/8 HSNV129 - Test of compression-thermal expansion for study of the coupling thermal-cracking Summarized: One applies

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

More information

Free vibration of CLT plates

Free vibration of CLT plates Rakenteiden Mekaniikka (Journal of Structural Mechanics) Vol. 47, No 1, 2014, pp. 17-33 Free vibration of CLT plates Jussi-Pekka Matilainen 1 and Jari Puttonen Summary. This article discusses the ability

More information

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

More information

ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y,

ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y, S40 Solid Mechanics Fall 007 Stress field and momentum balance. Imagine the three-dimensional bod again. At time t, the material particle,, ) is under a state of stress ij,,, force per unit volume b b,,,.

More information

Shell Elements in ABAQUS/Explicit

Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics Appendix 2 Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics A2.2 Overview ABAQUS/Explicit: Advanced Topics ABAQUS/Explicit: Advanced Topics A2.4 Triangular

More information

MATERIALS AND MECHANICS OF BENDING

MATERIALS AND MECHANICS OF BENDING HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

More information

Lecture 12: Fundamental Concepts in Structural Plasticity

Lecture 12: Fundamental Concepts in Structural Plasticity Lecture 12: Fundamental Concepts in Structural Plasticity Plastic properties of the material were already introduced briefly earlier in the present notes. The critical slenderness ratio of column is controlled

More information

Bending, Forming and Flexing Printed Circuits

Bending, Forming and Flexing Printed Circuits Bending, Forming and Flexing Printed Circuits John Coonrod Rogers Corporation Introduction: In the printed circuit board industry there are generally two main types of circuit boards; there are rigid printed

More information

Statics of Structural Supports

Statics of Structural Supports Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

More information

FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS

FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS With Mathematica and MATLAB Computations M. ASGHAR BHATTI WILEY JOHN WILEY & SONS, INC. CONTENTS OF THE BOOK WEB SITE PREFACE xi xiii 1 FINITE ELEMENT

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

EFFICIENT NUMERICAL SIMULATION OF INDUSTRIAL SHEET METAL BENDING PROCESSES

EFFICIENT NUMERICAL SIMULATION OF INDUSTRIAL SHEET METAL BENDING PROCESSES ECCOMAS Congress 06 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 0 June 06

More information

Notes on Polymer Rheology Outline

Notes on Polymer Rheology Outline 1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

More information

SHORE A DUROMETER AND ENGINEERING PROPERTIES

SHORE A DUROMETER AND ENGINEERING PROPERTIES SHORE A DUROMETER AND ENGINEERING PROPERTIES Written by D.L. Hertz, Jr. and A.C. Farinella Presented at the Fall Technical Meeting of The New York Rubber Group Thursday, September 4, 1998 by D.L. Hertz,

More information

Strip Crown Prediction: Developing a Refined Dynamic Roll-Stack Model for the Hot Rolling Process

Strip Crown Prediction: Developing a Refined Dynamic Roll-Stack Model for the Hot Rolling Process Strip Crown Prediction: Developing a Refined Dynamic Roll-Stack Model for the Hot Rolling Process By Derek E. Slaughter Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University

More information

FINITE ELEMENT : MATRIX FORMULATION. Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633

FINITE ELEMENT : MATRIX FORMULATION. Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633 FINITE ELEMENT : MATRIX FORMULATION Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 76 FINITE ELEMENT : MATRIX FORMULATION Discrete vs continuous Element type Polynomial approximation

More information

Dynamic measurements of the elastic constants of glass wool

Dynamic measurements of the elastic constants of glass wool Dynamic measurements of the elastic constants of glass wool Viggo Tarnow a Department of Mechanical Engineering, Technical University of Denmark, Bygning 404, DK 2800 Lyngby, Denmark Received 29 November

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures 4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and

More information

Program COLANY Stone Columns Settlement Analysis. User Manual

Program COLANY Stone Columns Settlement Analysis. User Manual User Manual 1 CONTENTS SYNOPSIS 3 1. INTRODUCTION 4 2. PROBLEM DEFINITION 4 2.1 Material Properties 2.2 Dimensions 2.3 Units 6 7 7 3. EXAMPLE PROBLEM 8 3.1 Description 3.2 Hand Calculation 8 8 4. COLANY

More information

Kirchhoff Plates: BCs and Variational Forms

Kirchhoff Plates: BCs and Variational Forms 21 Kirchhoff Plates: BCs and Variational Forms 21 1 Chapter 21: KIRCHHOFF PLATES: BCS AND VARIATIONAL FORS TABLE OF CONTENTS Page 21.1. Introduction 21 3 21.2. Boundary Conditions for Kirchhoff Plate 21

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution. Stress-Strain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling

More information

CRASH ANALYSIS OF AN IMPACT ATTENUATOR FOR RACING CAR IN SANDWICH MATERIAL

CRASH ANALYSIS OF AN IMPACT ATTENUATOR FOR RACING CAR IN SANDWICH MATERIAL F2008-SC-016 CRASH ANALYSIS OF AN IMPACT ATTENUATOR FOR RACING CAR IN SANDWICH MATERIAL Boria, Simonetta *, Forasassi, Giuseppe Department of Mechanical, Nuclear and Production Engineering, University

More information

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE ÖZDEMİR Y. I, AYVAZ Y. Posta Adresi: Department of Civil Engineering, Karadeniz Technical University, 68 Trabzon, TURKEY E-posta: yaprakozdemir@hotmail.com

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

Higher order beam finite elements with only displacement degrees of freedom

Higher order beam finite elements with only displacement degrees of freedom Higher order beam finite elements with only displacement degrees of freedom Erasmo Carrera 1, Marco Petrolo 1, Christian Wenzel 1, Gaetano Giunta 1,2, Salim Belouettar 2 1 Aeronautics and Space Engineering

More information

SIMPLE ANALYSIS OF FRAMED-TUBE STRUCTURES WITH MULTIPLE INTERNAL TUBES

SIMPLE ANALYSIS OF FRAMED-TUBE STRUCTURES WITH MULTIPLE INTERNAL TUBES SIMPLE ANALYSIS OF FRAMED-TUBE STRUCTURES WITH MULTIPLE INTERNAL TUBES By Kang-Kun Lee, Yew-Chaye Loo 2, and Hong Guan 3 ABSTRACT: Framed-tube system with multiple internal tubes is analysed using an orthotropic

More information

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Outline -1-! This part of the module consists of seven lectures and will focus

More information

Why measure in-situ stress?

Why measure in-situ stress? C. Derek Martin University of Alberta, Edmonton, Canada Why measure in-situ stress? Engineering analyses require boundary conditions One of the most important boundary conditions for the analysis of underground

More information

Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

More information