ES240 Solid Mechanics Fall Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y,

Size: px
Start display at page:

Download "ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y,"

Transcription

1 S40 Solid Mechanics Fall 007 Stress field and momentum balance. Imagine the three-dimensional bod again. At time t, the material particle,, ) is under a state of stress ij,,, force per unit volume b b,,,. Denote the distributed eternal. An eample is the gravitational force, b g. The stress and the displacement are time-dependent fields. ach material particle has the acceleration vector u i / t. Cut a small differential element, of edges d, d and d. Let be the densit. The mass of the differential element is and we obtain that dd dd dd [ $ d,,, $,,, ] $, d,, $,,, [ ] ddd. Appl Newton s second law in the -direction, u t [ $,, d, $,,, ] bddd ddd Divide both sides of the above equation b ddd, and we obtain that u b. t 9/1/07 Linear lasticit-9

2 S40 Solid Mechanics Fall 007 9/1/07 Linear lasticit-10 This is the momentum balance equation in the -direction. Similarl, the momentum balance equations in the - and -direction are t u b t u b When the bod is in equilibrium, we drop the acceleration terms from the above equations. Using the summation convention, we write the three equations of momentum balance as t u b i j j ij.

3 S40 Solid Mechanics Fall 007 Hookes law. For an isotropic, homogeneous solid, onl two independent constants are needed to describe its elastic propert: Young s modulus and Poisson s ratio ν. In addition, a thermal epansion coefficient α characteries strains due to temperature change. When temperature changes b T, thermal epansion causes a strain T in all three directions. The combination of multi-aial stresses and a temperature change causes strains ) 1 % $ )*T ) 1 % $ )*T ) 1 % $ )*T The relations for shear are ) 1 ) 1 ) 1,, Recall the notation /, and we have. 1, 1, 1 Inde notation and summation convention. The si stress-strain relation ma be written as ij 1 ij $ kk% ij. The smbol ij stands for 0 when i j and for 1 when i j. We adopt the convention that a repeated inde implies a summation over 1, and 3. Thus, kk Homogeneit. When talking about homogeneit, ou should think about at least two length scales: a large macro) length scale, and a small micro) length scale. A material is said to be homogeneous if the macro-scale of interest is much larger than the scale of microstructures. A fiber-reinforced material is regarded as homogeneous when used as a component of an airplane, but should be thought of as heterogeneous when its fracture mechanism is of interest. Steel is usuall thought of as a homogeneous material, but reall contains numerous voids, particles and grains. 9/1/07 Linear lasticit-11

4 S40 Solid Mechanics Fall 007 Isotrop. A material is isotropic when response in one direction is the same as in an other direction. Metals and ceramics in polcrstalline form are isotropic at macro-scale, even though their constituents grains of single crstals are anisotropic. Wood, single crstals, uniaial fiber reinforced composites are anisotropic materials. ample: a rubber laer pressed between two steel plates. A ver thin elastic laer, of Youngs modulus and Poissons ratio ν, is well bonded between two perfectl rigid plates. A thin rubber laer between two thick steel plates is a good approimation of the situation. The thin laer is compressed between the plates b a known normal stress σ. Calculate all the stress and strain components in the thin laer. Solution. The stress state at the edges of the elastic laer is complicated. We will neglect this edge effect, and focus on the field awa from the edges, where the field is uniform. This emphasis makes sense if we are interested in, for eample, the displacement of one plate relative to the other. Of course, this emphasis is misplaced if we are concerned of debonding of the laer from the plates, as debonding ma initiate from the edges, where stresses are high. B smmetr, the field has onl the normal components and has no shear components. Also b smmetr, we note that Because the elastic laer is bonded to the rigid plate, the two strain components vanish: 0. Using Hooke s law, we obtain that or $ ) 1 0 $,. 1 Using Hooke s law again, we obtain that 9/1/07 Linear lasticit-1

5 S40 Solid Mechanics Fall ) 1 ) 1$ $ $ ). 1$ ) Consequentl, the elastic laer is in a state of uniaial strain, but all three stress components are nonero. When the elastic laer is incompressible, 0. 5, it cannot be strained in just one direction, and the stress state will be hdrostatic. 9/1/07 Linear lasticit-13

6 S40 Solid Mechanics Fall 007 Summar of lasticit Concepts Plaers: Fields Stress tensor: stress state must be represented b 6 components directional proper. Strain tensor: strain state must be represented b 6 components directional proper. Stress field: stress state varies from particle to particle positional proper. Stress field is represented b 6 functions,,, ;t ),,,;t ) Displacement field is represented b 3 functions, u,, ;,v,,;, w,, ;. Strain field is represented b 6 functions,,, ;t ),,, ;t ),... Rules: 3 elements of solid mechanics Momentum balance Deformation geometr Material law Complete equations of elasticit: Partial differential equations Boundar conditions - Prescribe displacement. - Prescribe traction. Initial conditions: For dnamic problems e.g., vibration and wave propagation), one also need prescribe initial displacement and velocit fields. Solving boundar value problems: OD and PD Idealiation, analtical solutions: e.g., S.P. Timoshenko and J.N. Goodier, Theor of lasticit, McGraw-Hill, New York Handbook solutions: R.. Peterson, Stress Concentration Factors, John Wile, New York, nd edition b W.D. Pilke, 1997 Brute force, numerical methods: finite element methods, boundar element methods 9/1/07 Linear lasticit-14

7 S40 Solid Mechanics Fall 007 3D lasticit: Collected quations Momentum balance b u t b v t b w t Strain-displacement relation Hookes Law u, 1 %v w $ v, 1 w u $ w, 1 % u v $ 1 [ $ ) ] %T, 1 $ 1 [ $ ) ] %T, 1 $ 1 $ ) Stress-traction relation [ ] %T, 1 $ t 1 t t 3 $ $ 1 3 % % n 1 n n 3 $ % 9/1/07 Linear lasticit-15

8 S40 Solid Mechanics Fall 007 3D lasticit: quations in other coordinates 1. Clindrical Coordinates r, θ, ) Momentum balance u, v, w are the displacement components in the radial, circumferential and aial directions, respectivel. Inertia and bod force terms are neglected. r r 1 r r r $ r 0 r r r 1 r r 0 r r r 1 r r r 0 Strain-displacement relation r u r, 1 $ v 1 w % r 1 $ v r % u, r 1 $ w r u % w, r 1 $ 1 u r v r v % r. Spherical Coordinates r, θ, φ) θ is measured from the positive -ais to a radius; φ is measured round the -ais in a righthanded sense. u, v, w are the displacements components in the r, θ, φ directions, respectivel. Inertia terms are neglected. 9/1/07 Linear lasticit-16

9 S40 Solid Mechanics Fall 007 Momentum balance r r 1 r r 1 r$ rsin $ 1 r % % % cot r $ r ) 0 r r 1 r 1 $ rsin $ 1 r % $ ) cot 3 r ) 0 r$ r 1 $ r 1 $ rsin $ 1 r 3 cot r$ $ ) 0 Strain-displacement relation r u r $ 1 r w % wcot 1 v ) sin $ * 1 v r u ) * $r 1 w % w r 1 u ) r sin $ * 1 w ) $ usin vcos r sin $ * 1 1 u r r v r % v ) r * 9/1/07 Linear lasticit-17

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses 3D Stress Components From equilibrium principles:, z z, z z The most general state of stress at a point ma be represented b 6 components Normal Stresses Shear Stresses Normal stress () : the subscript

More information

3 The boundary layer equations

3 The boundary layer equations 3 The boundar laer equations Having introduced the concept of the boundar laer (BL), we now turn to the task of deriving the equations that govern the flow inside it. We focus throughout on the case of

More information

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable

More information

Lecture 12: Fundamental Concepts in Structural Plasticity

Lecture 12: Fundamental Concepts in Structural Plasticity Lecture 12: Fundamental Concepts in Structural Plasticity Plastic properties of the material were already introduced briefly earlier in the present notes. The critical slenderness ratio of column is controlled

More information

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Outline -1-! This part of the module consists of seven lectures and will focus

More information

EQUILIBRIUM STRESS SYSTEMS

EQUILIBRIUM STRESS SYSTEMS EQUILIBRIUM STRESS SYSTEMS Definition of stress The general definition of stress is: Stress = Force Area where the area is the cross-sectional area on which the force is acting. Consider the rectangular

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

More information

Beam Deflections: Second-Order Method

Beam Deflections: Second-Order Method 10 eam Deflections: Second-Order Method 10 1 Lecture 10: EM DEFLECTIONS: SECOND-ORDER METHOD TLE OF CONTENTS Page 10.1 Introduction..................... 10 3 10.2 What is a eam?................... 10 3

More information

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads? Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

Plane Stress Transformations

Plane Stress Transformations 6 Plane Stress Transformations ASEN 311 - Structures ASEN 311 Lecture 6 Slide 1 Plane Stress State ASEN 311 - Structures Recall that in a bod in plane stress, the general 3D stress state with 9 components

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Scalars, Vectors and Tensors

Scalars, Vectors and Tensors Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

Elastic Beams in Three Dimensions

Elastic Beams in Three Dimensions Elastic Beams in Three Dimensions Lars Andersen and Søren R.K. Nielsen ISSN 191-7286 DCE Lecture Notes No. 23 Department of Civil Engineering Aalborg Universit Department of Civil Engineering Structural

More information

Unit 3 (Review of) Language of Stress/Strain Analysis

Unit 3 (Review of) Language of Stress/Strain Analysis Unit 3 (Review of) Language of Stress/Strain Analysis Readings: B, M, P A.2, A.3, A.6 Rivello 2.1, 2.2 T & G Ch. 1 (especially 1.7) Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

Introduction to Plates

Introduction to Plates Chapter Introduction to Plates Plate is a flat surface having considerabl large dimensions as compared to its thickness. Common eamples of plates in civil engineering are. Slab in a building.. Base slab

More information

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

More information

M PROOF OF THE DIVERGENCE THEOREM AND STOKES THEOREM

M PROOF OF THE DIVERGENCE THEOREM AND STOKES THEOREM 68 Theor Supplement Section M M POOF OF THE DIEGENE THEOEM ND STOKES THEOEM In this section we give proofs of the Divergence Theorem Stokes Theorem using the definitions in artesian coordinates. Proof

More information

Vector Calculus: a quick review

Vector Calculus: a quick review Appendi A Vector Calculus: a quick review Selected Reading H.M. Sche,. Div, Grad, Curl and all that: An informal Tet on Vector Calculus, W.W. Norton and Co., (1973). (Good phsical introduction to the subject)

More information

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models

More information

Addition and Subtraction of Vectors

Addition and Subtraction of Vectors ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

More information

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

More information

Graduate Courses in Mechanical Engineering

Graduate Courses in Mechanical Engineering Graduate Courses in Mechanical Engineering MEEG 501 ADVANCED MECHANICAL ENGINEERING ANALYSIS An advanced, unified approach to the solution of mechanical engineering problems, with emphasis on the formulation

More information

Practice Problems on the Navier-Stokes Equations

Practice Problems on the Navier-Stokes Equations ns_0 A viscous, incompressible, Newtonian liquid flows in stead, laminar, planar flow down a vertical wall. The thickness,, of the liquid film remains constant. Since the liquid free surface is eposed

More information

CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION

CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION CHAP FINITE EEMENT ANAYSIS OF BEAMS AND FRAMES INTRODUCTION We learned Direct Stiffness Method in Chapter imited to simple elements such as D bars we will learn Energ Method to build beam finite element

More information

2. Stress and Strain Analysis and Measurement

2. Stress and Strain Analysis and Measurement 2. Stress and Strain Analsis and Measurement The engineering design of structures using polmers requires a thorough knowledge of the basic principles of stress and strain analsis and measurement. Readers

More information

Beam element with 7 degrees of freedom for the taking into account of Summarized

Beam element with 7 degrees of freedom for the taking into account of Summarized Titre : Élément de poutre à 7 degrés de liberté pour la pr[...] Date : /3/3 Page : /5 Responsable : Jean-uc FÉJOU Clé : R3.8.4 Révision : 577 Beam element with 7 degrees of freedom for the taking into

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

Unit 6 Plane Stress and Plane Strain

Unit 6 Plane Stress and Plane Strain Unit 6 Plane Stress and Plane Strain Readings: T & G 8, 9, 10, 11, 12, 14, 15, 16 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems There are many structural configurations

More information

Boundary Conditions in lattice Boltzmann method

Boundary Conditions in lattice Boltzmann method Boundar Conditions in lattice Boltzmann method Goncalo Silva Department of Mechanical Engineering Instituto Superior Técnico (IST) Lisbon, Portugal Outline Introduction 1 Introduction Boundar Value Problems

More information

Viscous flow in pipe

Viscous flow in pipe Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

More information

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783 Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 SSNP161 Biaxial tests of Summarized Kupfer: Kupfer [1] was interested to characterize the performances of the concrete under biaxial

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

Chapter 15, example problems:

Chapter 15, example problems: Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,

More information

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image. Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE ÖZDEMİR Y. I, AYVAZ Y. Posta Adresi: Department of Civil Engineering, Karadeniz Technical University, 68 Trabzon, TURKEY E-posta: yaprakozdemir@hotmail.com

More information

Tensions of Guitar Strings

Tensions of Guitar Strings 1 ensions of Guitar Strings Darl Achilles 1/1/00 Phsics 398 EMI Introduction he object of this eperiment was to determine the tensions of various tpes of guitar strings when tuned to the proper pitch.

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

Nonlinear Analysis Using Femap with NX Nastran

Nonlinear Analysis Using Femap with NX Nastran Nonlinear Analysis Using Femap with NX Nastran Chip Fricke, Principal Applications Engineer, Agenda Nonlinear Analysis Using Femap with NX Nastran Who am I? Overview of Nonlinear Analysis Comparison of

More information

TIE-32: Thermal loads on optical glass

TIE-32: Thermal loads on optical glass PAGE 1/7 1 Introduction In some applications optical glasses have to endure thermal loads: Finishing procedures for optical elements like lenses, prisms, beam splitters and so on involve thermal processes

More information

Feature Commercial codes In-house codes

Feature Commercial codes In-house codes A simple finite element solver for thermo-mechanical problems Keywords: Scilab, Open source software, thermo-elasticity Introduction In this paper we would like to show how it is possible to develop a

More information

CIVL 7/8117 Chapter 3a - Development of Truss Equations 1/80

CIVL 7/8117 Chapter 3a - Development of Truss Equations 1/80 CIV 7/87 Chapter 3a - Development of Truss Equations /8 Development of Truss Equations Having set forth the foundation on which the direct stiffness method is based, we will now derive the stiffness matri

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

Elasticity of Fluid-Infiltrated Porous Solids (Poroelasticity)

Elasticity of Fluid-Infiltrated Porous Solids (Poroelasticity) Elasticity of Fluid-Infiltrated Porous Solids (Poroelasticity) James R. Rice, Harvard University, November 1998 (revised list of references, August 2001 and April 2004, minor corrections/rewording October

More information

Technology of EHIS (stamping) applied to the automotive parts production

Technology of EHIS (stamping) applied to the automotive parts production Laboratory of Applied Mathematics and Mechanics Technology of EHIS (stamping) applied to the automotive parts production Churilova Maria, Saint-Petersburg State Polytechnical University Department of Applied

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

More information

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

More information

EXPANDING THE CALCULUS HORIZON. Hurricane Modeling

EXPANDING THE CALCULUS HORIZON. Hurricane Modeling EXPANDING THE CALCULUS HORIZON Hurricane Modeling Each ear population centers throughout the world are ravaged b hurricanes, and it is the mission of the National Hurricane Center to minimize the damage

More information

(Seattle is home of Boeing Jets)

(Seattle is home of Boeing Jets) Dr. Faeq M. Shaikh Seattle, Washington, USA (Seattle is home of Boeing Jets) 1 Pre Requisites for Today s Seminar Basic understanding of Finite Element Analysis Working Knowledge of Laminate Plate Theory

More information

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution. Stress-Strain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling

More information

Chapter 9 Partial Differential Equations

Chapter 9 Partial Differential Equations 363 One must learn by doing the thing; though you think you know it, you have no certainty until you try. Sophocles (495-406)BCE Chapter 9 Partial Differential Equations A linear second order partial differential

More information

Introduction to polarization of light

Introduction to polarization of light Chapter 2 Introduction to polarization of light This Chapter treats the polarization of electromagnetic waves. In Section 2.1 the concept of light polarization is discussed and its Jones formalism is presented.

More information

Stress-Strain Material Laws

Stress-Strain Material Laws 5 Stress-Strain Material Laws 5 Lecture 5: STRSS-STRAIN MATRIAL LAWS TABL OF CONTNTS Page 5. Introduction..................... 5 3 5.2 Constitutive quations................. 5 3 5.2. Material Behavior

More information

CBE 6333, R. Levicky 1 Differential Balance Equations

CBE 6333, R. Levicky 1 Differential Balance Equations CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

More information

TIE-31: Mechanical and thermal properties of optical glass

TIE-31: Mechanical and thermal properties of optical glass PAGE 1/10 1 Density The density of optical glass varies from 239 for N-BK10 to 603 for SF66 In most cases glasses with higher densities also have higher refractive indices (eg SF type glasses) The density

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

/ DSM / IRAMIS / LLB)

/ DSM / IRAMIS / LLB) RESIDUAL STRESSES ANF Métallurgie Fondamentale Vincent Klosek (CEA / DSM / IRAMIS / LLB) 23/10/2012 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 1 INTRODUCTION Residual Stresses? Static multiaxial stresses

More information

Kirchhoff Plates: Field Equations

Kirchhoff Plates: Field Equations 20 Kirchhoff Plates: Field Equations 20 1 Chapter 20: KIRCHHOFF PLATES: FIELD EQUATIONS TABLE OF CONTENTS Page 20.1. Introduction 20 3 20.2. Plates: Basic Concepts 20 3 20.2.1. Structural Function...............

More information

Tensile Testing of Steel

Tensile Testing of Steel C 265 Lab No. 2: Tensile Testing of Steel See web for typical report format including: TITL PAG, ABSTRACT, TABL OF CONTNTS, LIST OF TABL, LIST OF FIGURS 1.0 - INTRODUCTION See General Lab Report Format

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Plane Stress Transformations

Plane Stress Transformations 6 Plane Stress Transformations 6 1 Lecture 6: PLANE STRESS TRANSFORMATIONS TABLE OF CONTENTS Page 6.1 Introduction..................... 6 3 6. Thin Plate in Plate Stress................ 6 3 6.3 D Stress

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

Stack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder

Stack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder Pressure Vessels: 1 Stack Contents Longitudinal Stress in Cylinders Hoop Stress in Cylinders Hoop Stress in Spheres Vanishingly Small Element Radial Stress End Conditions 1 2 Pressure Filled Cylinder A

More information

Kinetic Molecular Theory of Matter

Kinetic Molecular Theory of Matter Kinetic Molecular Theor of Matter Heat capacit of gases and metals Pressure of gas Average speed of electrons in semiconductors Electron noise in resistors Positive metal ion cores Free valence electrons

More information

Distance Learning Program

Distance Learning Program Distance Learning Program Leading To Master of Engineering or Master of Science In Mechanical Engineering Typical Course Presentation Format Program Description Clarkson University currently offers a Distance

More information

1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433

1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433 Stress & Strain: A review xx yz zz zx zy xy xz yx yy xx yy zz 1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433 Disclaimer before beginning your problem assignment: Pick up and compare any set

More information

FIBERGLASS REINFORCED PLASTIC (FRP) PIPING SYSTEMS DESIGNING PROCESS / FACILITIES PIPING SYSTEMS WITH FRP

FIBERGLASS REINFORCED PLASTIC (FRP) PIPING SYSTEMS DESIGNING PROCESS / FACILITIES PIPING SYSTEMS WITH FRP FIBERGLASS REINFORCED PLASTIC (FRP) PIPING SYSTEMS DESIGNING PROCESS / FACILITIES PIPING SYSTEMS WITH FRP A COMPARISON TO TRADITIONAL METALLIC MATERIALS Prepared by: Kevin Schmit, Project Engineer Specialty

More information

Stress Analysis, Strain Analysis, and Shearing of Soils

Stress Analysis, Strain Analysis, and Shearing of Soils C H A P T E R 4 Stress Analysis, Strain Analysis, and Shearing of Soils Ut tensio sic vis (strains and stresses are related linearly). Robert Hooke So I think we really have to, first, make some new kind

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

More information

1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics 1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

More information

Pre-requisites 2012-2013

Pre-requisites 2012-2013 Pre-requisites 2012-2013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.

More information

DETERMINATION OF SOIL STRENGTH CHARACTERISTICS PERFORMING THE PLATE BEARING TEST

DETERMINATION OF SOIL STRENGTH CHARACTERISTICS PERFORMING THE PLATE BEARING TEST III Międzynarodowa Konferencja Naukowo-Techniczna Nowoczesne technologie w budownictwie drogowym Poznań, 8 9 września 005 3rd International Conference Modern Technologies in Highway Engineering Poznań,

More information

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures 4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and

More information

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 2.002 Mechanics and Materials II Spring 2004 Laboratory Module No. 1 Elastic behavior in tension, bending,

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

The Two-Body Problem

The Two-Body Problem The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic

More information

Affine Transformations

Affine Transformations A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates

More information

3 Concepts of Stress Analysis

3 Concepts of Stress Analysis 3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements.

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

Simulation of magneto-hydrodynamic (MHD) flows: electric potential formulation

Simulation of magneto-hydrodynamic (MHD) flows: electric potential formulation Simulation of magneto-hdrodnamic (MHD) flows: electric potential formulation, Ola Widlund 5th OpenFOAM workshop Göteborg, June 22-24, 2010 Outline Motivations for studing MHD flows Wh a formulation with

More information

Scalar Transport. Introduction. T. J. Craft George Begg Building, C41. Eddy-Diffusivity Modelling. TPFE MSc Advanced Turbulence Modelling

Scalar Transport. Introduction. T. J. Craft George Begg Building, C41. Eddy-Diffusivity Modelling. TPFE MSc Advanced Turbulence Modelling School of Mechanical Aerospace and Civil Engineering TPFE MSc Advanced Turbulence Modelling Scalar Transport T. J. Craft George Begg Building, C41 Reading: S. Pope, Turbulent Flows D. Wilco, Turbulence

More information

GC 2009-267: TEACHING VON MISES STRESS: FROM PRINCIPAL AXES TO NONPRINCIPAL AXES

GC 2009-267: TEACHING VON MISES STRESS: FROM PRINCIPAL AXES TO NONPRINCIPAL AXES GC 009-67: TEACHING VON MISES STRESS: FROM PRINCIPAL AXES TO NONPRINCIPAL AXES Ing-Chang Jong, Universit of Arkansas Ing-Chang Jong serves as Professor of Mechanical Engineering at the Universit of Arkansas.

More information

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow

More information