Chapter 7: Basics of X-ray Diffraction
|
|
|
- Eric Jefferson
- 9 years ago
- Views:
Transcription
1 Providing Solutions To Your Diffraction Needs. Chapter 7: Basics of X-ray Diffraction Scintag has prepared this section for use by customers and authorized personnel. The information contained herein is the property of Scintag and shall not be reproduced in whole or in part without Scintag prior written approval. Scintag reserves the right to make changes without notice in the specifications and materials contained herein and shall not be responsible for any damage (including consequential) caused by reliance on the material presented, including but not limited to typographical, arithmetic, or listing error Bubb Road Cupertino, CA U.S.A. Phone: Fax: Page 7.1 Scintag, Inc. AIII - C
2 TABLE OF CONTENTS Chapter cover page 7.1 Table of Contents 7.2 Introduction to Powder/Polycrystalline Diffraction 7.3 Theoretical Considerations 7.4 Samples 7.6 Goniometer 7.7 Diffractometer Slit System 7.9 Diffraction Spectra 7.10 ICDD Data base 7.11 Preferred Orientation 7.12 Applications 7.13 Texture Analysis 7.20 End of Chapter 7.25 Page 7.2
3 INTRODUCTION TO POWDER/POLYCRYSTALLINE DIFFRACTION About 95% of all solid materials can be described as crystalline. When X-rays interact with a crystalline substance (Phase), one gets a diffraction pattern. In 1919 A.W.Hull gave a paper titled, A New Method of Chemical Analysis. Here he pointed out that.every crystalline substance gives a pattern; the same substance always gives the same pattern; and in a mixture of substances each produces its pattern independently of the others. The X-ray diffraction pattern of a pure substance is, therefore, like a fingerprint of the substance. The powder diffraction method is thus ideally suited for characterization and identification of polycrystalline phases. Today about 50,000 inorganic and 25,000 organic single component, crystalline phases, diffraction patterns have been collected and stored on magnetic or optical media as standards. The main use of powder diffraction is to identify components in a sample by a search/match procedure. Furthermore, the areas under the peak are related to the amount of each phase present in the sample. Page 7.3
4 THEORETICAL CONSIDERATIONS In order to better convey an understanding of the fundamental principles and buzz words of X-ray diffraction instruments, let us quickly look at the theory behind these systems. (the theoretical considerations are rather primitive, hopefully they are not too insulting). Solid matter can be described as : Amorphous : The atoms are arranged in a random way similar to the disorder we find in a liquid. Glasses are amorphous materials. Crystalline : The atoms are arranged in a regular pattern, and there is as smallest volume element that by repetition in three dimensions describes the crystal. E.g. we can describe a brick wall by the shape and orientation of a single brick. This smallest volume element is called a unit cell. The dimensions of the unit cell is described by three axes : a, b, c and the angles between them alpha, beta, gamma. About 95% of all solids can be described as crystalline. An electron in an alternating electromagnetic field will oscillate with the same frequency as the field. When an X-ray beam hits an atom, the electrons around the atom start to oscillate with the same frequency as the incoming beam. In almost all directions we will have destructive interference, that is, the combining waves are out of phase and there is no resultant energy leaving the solid sample. However the atoms in a crystal are arranged in a regular pattern, and in a very few directions we will have constructive interference. The waves will be in phase and there will be well defined X-ray beams leaving the sample at various directions. Hence, a diffracted beam may be described as a beam composed of a large number of scattered rays mutually reinforcing one another. This model is complex to handle mathematically, and in day to day work we talk about X-ray reflections from a series of parallel planes inside the crystal. The orientation and interplanar spacings of these planes are defined by the three integers h, k, l called indices. A given set of planes with indices h, k, l cut the a-axis of the unit cell in h sections, the b axis in k sections and the c axis in l sections. A zero indicates that the planes are parallel to the corresponding axis. E.g. the 2, 2, 0 planes cut the a and the b axes in half, but are parallel to the c axis. Page 7.4
5 THEORETICAL CONSIDERATIONS If we use the three dimensional diffraction grating as a mathematical model, the three indices h, k, l become the order of diffraction along the unit cell axes a, b and c respectively. It should now be clear that, depending on what mathematical model we have in mind, we use the terms X-ray reflection and X-ray diffraction as synonyms. Let us consider an X-ray beam incident on a pair of parallel planes P1 and P2, separated by an interplanar spacing d. The two parallel incident rays 1 and 2 make an angle (THETA) with these planes. A reflected beam of maximum intensity will result if the waves represented by 1 and 2 are in phase. The difference in path length between 1 to 1 and 2 to 2 must then be an integral number of wavelengths, (LAMBDA). We can express this relationship mathematically in Bragg s law. 2d*sin T = n *? The process of reflection is described here in terms of incident and reflected (or diffracted) rays, each making an angle THETA with a fixed crystal plane. Reflections occurs from planes set at angle THETA with respect to the incident beam and generates a reflected beam at an angle 2-THETA from the incident beam. The possible d-spacing defined by the indices h, k, l are determined by the shape of the unit cell. Rewriting Bragg s law we get : sin T =?/2d Therefore the possible 2-THETA values where we can have reflections are determined by the unit cell dimensions. However, the intensities of the reflections are determined by the distribution of the electrons in the unit cell. The highest electron density are found around atoms. Therefore, the intensities depend on what kind of atoms we have and where in the unit cell they are located. Planes going through areas with high electron density will reflect strongly, planes with low electron density will give weak intensities. Page 7.5
6 SAMPLES In X-ray diffraction work we normally distinguish between single crystal and polycrystalline or powder applications. The single crystal sample is a perfect (all unit cells aligned in a perfect extended pattern) crystal with a cross section of about 0.3 mm. The single crystal diffractometer and associated computer package is used mainly to elucidate the molecular structure of novel compounds, either natural products or man made molecules. Powder diffraction is mainly used for finger print identification of various solid materials, e.g. asbestos, quartz. In powder or polycrystalline diffraction it is important to have a sample with a smooth plane surface. If possible, we normally grind the sample down to particles of about mm to mm cross section. The ideal sample is homogeneous and the crystallites are randomly distributed (we will later point out problems which will occur if the specimen deviates from this ideal state). The sample is pressed into a sample holder so that we have a smooth flat surface. Ideally we now have a random distribution of all possible h, k, l planes. Only crystallites having reflecting planes (h, k, l) parallel to the specimen surface will contribute to the reflected intensities. If we have a truly random sample, each possible reflection from a given set of h, k, l planes will have an equal number of crystallites contributing to it. We only have to rock the sample through the glancing angle THETA in order to produce all possible reflections. Page 7.6
7 GONIOMETER The mechanical assembly that makes up the sample holder, detector arm and associated gearing is referred to as goniometer. The working principle of a Bragg-Brentano parafocusing (if the sample was curved on the focusing circle we would have a focusing system) reflection goniometer is shown below. The distance from the X-ray focal spot to the sample is the same as from the sample to the detector. If we drive the sample holder and the detector in a 1:2 relationship, the reflected (diffracted) beam will stay focused on the circle of constant radius. The detector moves on this circle. For the THETA : 2-THETA goniometer, the X-ray tube is stationary, the sample moves by the angle THETA and the detector simultaneously moves by the angle 2-THETA. At high values of THETA small or loosely packed samples may have a tendency to fall off the sample holder. Page 7.7
8 GONIOMETER For the THETA:THETA goniometer, the sample is stationary in the horizontal position, the X-ray tube and the detector both move simultaneously over the angular range THETA. Page 7.8
9 DIFFRACTOMETER SLIT SYSTEM The focal spot for a standard focus X-ray tube is about 10 mm long and 1 mm wide, with a power capability of 2,000 watt which equals to a power loading of 200 watt/mm2. Power ratings are dependent on the thermal conductivity of the target material. The maximum power loading for an Cu X-ray tube is 463 watt/mm2. This power is achieved by a long fine focus tube with a target size of 12 mm long and 0.4 mm wide. In powder diffraction we normally utilize the line focus or line source of the tube. The line source emits radiation in all directions, but in order to enhance the focusing it is necessary to limit the divergens in the direction along the line focus. This is realized by passing the incident beam through a soller slit, which contains a set of closely spaced thin metal plates. In order to maintain a constant focusing distance it is necessary to keep the sample at an angle THETA (Omega) and the detector at an angle of 2-THETA with respect to the incident beam. For an THETA:THETA goniometer the tube has to be at an angle of THETA (Omega) and the detector at an angle of THETA with respect to the sample. Page 7.9
10 DIFFRACTION SPECTRA A typical diffraction spectrum consists of a plot of reflected intensities versus the detector angle 2-THETA or THETA depending on the goniometer configuration. The 2-THETA values for the peak depend on the wavelength of the anode material of the X-ray tube. It is therefore customary to reduce a peak position to the interplanar spacing d that corresponds to the h, k, l planes that caused the reflection. The value of the d-spacing depend only on the shape of the unit cell. We get the d-spacing as a function of 2-THETA from Bragg s law. d =?/2 sin T Each reflection is fully defined when we know the d-spacing, the intensity (area under the peak) and the indices h, k, l. If we know the d-spacing and the corresponding indices h, k, l we can calculate the dimension of the unit cell. Page 7.10
11 ICDD DATA BASE International Center Diffraction Data (ICDD) or formerly known as (JCPDS) Joint Committee on Powder Diffraction Standards is the organization that maintains the data base of inorganic and organic spactras. The data base is available from the Diffraction equipment manufacturers or from ICDD direct. Currently the data base is supplied either on magnetic or optical media. Two data base versions are available the PDF I and the PDF II. The PDF I data base contains information on d-spacing, chemical formula, relative intensity, RIR quality information and routing digit. The information is stored in an ASCII format in a file called PDF1.dat. For search/match purposes most diffraction manufactures are reformatting the file in a more efficient binary format. The PDF II data base contains full information on a particular phase including cell parameters. Scintag s newest search/match and look-up software package is using the PDF II format. Optimized data base formats, index files and high performance PC-computers make PDF II search times extremely efficient. The data base format consists of a set number and a sequence number. The set number is incremented every calendar year and the sequence number starts from 1 for every year. The yearly releases of the data base is available in September of each year. Page 7.11
12 PREFERRED ORIENTATION An extreme case of non-random distribution of the crystallites is referred to as preferred orientation. For example Mo O3 crystallizes in thin plates (like sheets of paper) and these crystals will pack with the flat surfaces in a parallel orientation. Comparing the intensity between a randomly oriented diffraction pattern and a preferred oriented diffraction pattern can look entirely different. Quantitative analysis depend on intensity ratios which are greatly distorted by preferred orientation. Many methods have been developed to overcome the problem of preferred orientation. Careful sample preparation is most important. Front loading of a sample holder with crystallites which crystallize in form of plates is not recommended due to the effect of extreme preferred orientation. This type of material should loaded from the back to minimize to effect of preferred orientation. The following illustrations show the Mo O3 spectra's collected by using transmission, Debye-Scherrer capillary and reflection mode. Page 7.12
13 APPLICATIONS Identification : Polymer crystallinity : Residual stress : Texture analysis : The most common use of powder (polycrystalline) diffraction is chemical analysis. This can include phase identification (search/match), investigation of high/low temperature phases, solid solutions and determinations of unit cell parameters of new materials. A polymer can be considered partly crystalline and partly amorphous. The crystalline domains act as a reinforcing grid, like the iron framework in concrete, and improves the performance over a wide range of temperature. However, too much crystallinity causes brittleness. The crystallinity parts give sharp narrow diffraction peaks and the amorphous component gives a very broad peak (halo). The ratio between these intensities can be used to calculate the amount of crystallinity in the material. Residual stress is the stress that remains in the material after the external force that caused the stress have been removed. Stress is defined as force per unit area. Positive values indicate tensile (expansion) stress, negative values indicate a compressive state. The deformation per unit length is called strain. The residual stress can be introduced by any mechanical, chemical or thermal process. E.g. machining, plating and welding. The principals of stress analysis by the X-ray diffraction is based on measuring angular lattice strain distributions. That is, we choose a reflection at high 2-Theta and measure the change in the d-spacing with different orientations of the sample. Using Hooke s law the stress can be calculated from the strain distribution. The determination of the preferred orientation of the crystallites in polycrystalline aggregates is referred to as texture analysis, and the term texture is used as a broad synonym for preferred crystallographic orientation in the polycrystalline material, normally a single phase. The preferred orientation is usually described in terms of polefigures. A polefigure is scanned be measuring the diffraction intensity of a given reflection (2-Theta is constant) at a large number of different angular orientations of the sample. A contour map of the intensity is then plotted as a function of angular orientation of the specimen. The most common representation of the polefigures are sterographic or equal area projections. The intensity of a given reflection (h, k, l) is proportional to the number of h, k, l planes in reflecting condition (Bragg s law). Hence, the polefigure gives the probability of finding a given crystal-plane-normal as function of the specimen orientation. If the crystallites in the sample have a random orientation the recorded intensity will be uniform. We can use the orientation of the unit cell to describe crystallite directions. The inverse polefigure gives the probability of finding a given specimen direction parallel to crystal (unit cell) directions. By collecting data for several reflections and combining several polefigures we can arrive at the complete orientation distribution function (ODF) of the crystallites within a single polycrystalline phase that makes up the material. Considering a coordinate system defined in relation to the specimen, any orientation of the crystal lattice (unit cell) with respect to the specimen coordinate system may be defined by Euler rotation (three angular values) necessary to rotate the crystal Page 7.13
14 APPLICATIONS coordinate system from a position coincident with the specimen coordinate system to a given position. The ODF is a function of three independent angular variables and gives the probability of finding the corresponding unit cell (lattice) orientation. Polefigure data collection : The systematic change in angular orientation of the sample is normally achieved by utilizing a four-circle diffractometer. We collect the intensity data for various settings of CHI and Phi. Normally we measure all PHI values for a given setting of CHI, we then change CHI and repeat the process. Four circle diffractometer Page 7.14
15 APPLICATIONS In the polefigure plot below, the PHI values are indicated around the circle. The CHI value changes radically, and are indicated along the vertical bar. The continuous irregular lines in the plot (contour levels) are drawn through values of CHI and PHI that have the same constant value of intensity of the reflection we are measuring. The probability of finding the crystal plane normal for the reflection is proportional to the intensity. 2-D Polefigure display Page 7.15
16 APPLICATIONS 3-D Polefigure display (1 of 4) Page 7.16
17 APPLICATIONS 3-D Polefigure display (2 of 4) Page 7.17
18 APPLICATIONS 3-D Polefigure display (3 of 4) Page 7.18
19 APPLICATIONS 3-D Polefigure display (4 of 4) Page 7.19
20 TEXTURE ANALYSIS The determination of the preferred orientation of the crystallites in a polycrystalline aggregate is referred to as texture analysis. The term texture is used as a broad synonym for preferred crystallographic orientation in a polycrystalline material, normally a single phase. The preferred orientation is usually described in terms of pole figures. The Pole Figure : Let us consider the plane (h, k, l) in a given crystallite in a sample. The direction of the plane normal is projected onto the sphere around the crystallite. The point where the plane normal intersects the sphere is defined by two angles, a pole distance a and an azimuth ß. The azimuth angle is measured counter clock wise from the point X. N a = 55 D ß = 210 ( h, k, l) X Let us now assume that we project the plane normals for the plane (h, k, l) from all the crystallites irradiated in the sample onto the sphere. Each plane normal intercepting the sphere represents a point on the sphere. These points in return represent the Poles for the planes (h, k, l) in the crystallites. The number of points per unit area of the sphere represents the pole density. Page 7.20
21 TEXTURE ANALYSIS We now project the sphere with its pole density onto a plane. This projection is called a pole figure. A pole figure is scanned by measuring the diffraction intensity of a given reflection with constant 2-Theta at a large number of different angular orientations of a sample. A contour map of the intensity is then plotted as a function of the angular orientation of the specimen. The intensity of a given reflection is proportional to the number of hkl planes in reflecting condition. Hence, the polefigure gives the probability of finding a given (h, k, l) plane normal as a function of the specimen orientation. If the crystallites in the sample have random orientation the contour map will have uniform intensity contours. The most common spherical projections are the stereographic projection and the equal area projection. Page 7.21
22 TEXTURE ANALYSIS The Orientation Distribution Function (ODF) : By collecting pole figure data for several reflections and combining several pole figures we can arrive at the complete orientation distribution function (ODF) of the crystallites within the single polycrystalline phase that makes up the material. Consider a right handed Cartesian coordinate system defined in relation to the specimen. Z Y X In a rolled metal sheet it is natural to choose the x, y and z directions of the sample coordinate system along the rolling direction, transverse direction and normal direction respectively. We also need to specify the crystal coordinate system x, y and z which specifies the orientation of each crystallite in terms of unit cell directions of the crystallites. The crystal coordinate system consist of the same crystal direction in each crystallite, but for each crystallite in the irradiated volume it has a different orientation with respect to the sample coordinate system. We also choose the crystal coordinate system to be the right handed Cartesian and related to the crystal symmetry. Suitable crystal coordinate systems for the cubic and hexagonal systems are shown below. Page 7.22
23 TEXTURE ANALYSIS The ODF is a function that gives the probability of finding the orientation of the crystallites relative to the sample coordinate system. The orientation of the crystal coordinate system relative to the sample coordinate system can be expressed with three angular values, the so called Euler rotations. Initially the crystal system is assumed to be in a position coincident with the sample system. In the Bunge notation the crystal system is then rotated successively : 1. About the crystal z axis (at this stage coincident with the sample z axis) through the angle PHI 1 (f 1). 2. Then about the crystal x axis through the angle PHI (F). 3. And last about the crystal z axis through the angle PHI 2 (f 2). The angles PHI 1 (f 1), PHI (F) and PHI 2 (f 2) are the three Euler angles which describe the final orientation of the crystal coordinate system (x, y, z ) with respect to the sample coordinate system (x, y, z). Page 7.23
24 TEXTURE ANALYSIS In the Roe/Matthis notation the crystal system is initially in a position coincident with the sample system. The crystal system is then rotated successively : 1. About the crystal z axis (at this stage coincident with the sample z axis) through the angle PSI (?). 2. Then about the crystal x axis through the angle Theta (?). 3. And last about the crystal z axis through the angle PHI (F). The relations between the two notations ( Bunge & Roe/Matthis) are given by : f 1 =? - p/2, F =?, f 2 = F - p/2 It should be now clear that : The ODF is a function of three independent angular variables, the Euler angles, and represent the probability of finding the corresponding unit cell (crystal lattice) orientation. E.g. in the Bunge notation the orientation of the crystal system has been described by the three angular parameters. It is convenient to plot these parameters as Cartesian coordinates in a three dimensional space, the Euler space. f 1 F1,F,f 2 F f 2 Page 7.24
25 End of Basics of X-ray Diffraction Page 7.25
Experiment: Crystal Structure Analysis in Engineering Materials
Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types
X-ray Diffraction and EBSD
X-ray Diffraction and EBSD Jonathan Cowen Swagelok Center for the Surface Analysis of Materials Case School of Engineering Case Western Reserve University October 27, 2014 Outline X-ray Diffraction (XRD)
X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye
X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US Hanno zur Loye X-rays are electromagnetic radiation of wavelength about 1 Å (10-10 m), which is about the same size as an atom. The
Introduction to X-Ray Powder Diffraction Data Analysis
Introduction to X-Ray Powder Diffraction Data Analysis Center for Materials Science and Engineering at MIT http://prism.mit.edu/xray An X-ray diffraction pattern is a plot of the intensity of X-rays scattered
X-ray thin-film measurement techniques
Technical articles X-ray thin-film measurement techniques II. Out-of-plane diffraction measurements Toru Mitsunaga* 1. Introduction A thin-film sample is two-dimensionally formed on the surface of a substrate,
Crystal Structure Determination I
Crystal Structure Determination I Dr. Falak Sher Pakistan Institute of Engineering and Applied Sciences National Workshop on Crystal Structure Determination using Powder XRD, organized by the Khwarzimic
Relevant Reading for this Lecture... Pages 83-87.
LECTURE #06 Chapter 3: X-ray Diffraction and Crystal Structure Determination Learning Objectives To describe crystals in terms of the stacking of planes. How to use a dot product to solve for the angles
Introduction to Powder X-Ray Diffraction History Basic Principles
Introduction to Powder X-Ray Diffraction History Basic Principles Folie.1 History: Wilhelm Conrad Röntgen Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honoured by the Noble prize for
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.
Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror
Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror Stephen B. Robie scintag, Inc. 10040 Bubb Road Cupertino, CA 95014 Abstract Corundum
O6: The Diffraction Grating Spectrometer
2B30: PRACTICAL ASTROPHYSICS FORMAL REPORT: O6: The Diffraction Grating Spectrometer Adam Hill Lab partner: G. Evans Tutor: Dr. Peter Storey 1 Abstract The calibration of a diffraction grating spectrometer
PARALLEL BEAM METHODS IN POWDER DIFFRACTION AND TEXTURE IN THE LABORATORY.
Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 135 PARALLEL BEAM METHODS IN POWDER DIFFRACTION AND TEXTURE IN THE LABORATORY. R.A. Clapp and M.Halleti
X-ray Diffraction (XRD)
X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction 2.0 Basics of Crystallography 3.0 Production of X-rays 4.0 Applications of XRD 5.0 Instrumental Sources of Error 6.0 Conclusions Bragg s Law n l =2dsinq
WAVELENGTH OF LIGHT - DIFFRACTION GRATING
PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant
POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS
EXPERIMENT 4 POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS I. Introduction The determination of the chemical structure of molecules is indispensable to chemists in their effort
X-ray diffraction techniques for thin films
X-ray diffraction techniques for thin films Rigaku Corporation Application Laboratory Takayuki Konya 1 Today s contents (PM) Introduction X-ray diffraction method Out-of-Plane In-Plane Pole figure Reciprocal
Crystal Optics of Visible Light
Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means
PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
Reflection and Refraction
Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
A NATIONAL MEASUREMENT GOOD PRACTICE GUIDE. No. 52. Determination of Residual Stresses by X-ray Diffraction - Issue 2
A NATIONAL MEASUREMENT GOOD PRACTICE GUIDE No. 52 Determination of Residual Stresses by X-ray Diffraction - Issue 2 The DTI drives our ambition of prosperity for all by working to create the best environment
Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm
Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and
Powder diffraction and synchrotron radiation
Powder diffraction and synchrotron radiation Gilberto Artioli Dip. Geoscienze UNIPD CIRCe Center for Cement Materials single xl diffraction powder diffraction Ideal powder Powder averaging Textured sample
EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab
EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent
1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002
05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical
Using light scattering method to find The surface tension of water
Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector
Atomic Force Microscope and Magnetic Force Microscope Background Information
Atomic Force Microscope and Magnetic Force Microscope Background Information Lego Building Instructions There are several places to find the building instructions for building the Lego models of atomic
The Phenomenon of Photoelectric Emission:
The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of
Interference. Physics 102 Workshop #3. General Instructions
Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by
Structure Factors 59-553 78
78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal
LMB Crystallography Course, 2013. Crystals, Symmetry and Space Groups Andrew Leslie
LMB Crystallography Course, 2013 Crystals, Symmetry and Space Groups Andrew Leslie Many of the slides were kindly provided by Erhard Hohenester (Imperial College), several other illustrations are from
Understanding astigmatism Spring 2003
MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest
ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION
Chem 306 Section (Circle) M Tu W Th Name Partners Date ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Materials: prepared acetylsalicylic acid (aspirin), stockroom samples
Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson
Crystal Structure of High Temperature Superconductors Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Introduction History of Superconductors Superconductors are material which
Polarization of Light
Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights
Bruker AXS. D2 PHASER Diffraction Solutions XRD. think forward
Bruker AXS D2 PHASER Diffraction Solutions think forward XRD Compact all-in-one desktop design Innovative high-end goniometer design Integrated PC / monitor DIFFRAC.SUITE software Leading detector technology
Acousto-optic modulator
1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
Chapter Outline. How do atoms arrange themselves to form solids?
Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Face-centered cubic Body-centered cubic Hexagonal close-packed
Geometric Optics Converging Lenses and Mirrors Physics Lab IV
Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The
Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)
Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know
6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?
Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through
A Guide to Acousto-Optic Modulators
A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam
Fraunhofer Diffraction
Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity
SHIMADZU XRD-7000 X-RAY DIFFRACTOMETER. The Fridge. Operating Instructions
The Fridge Operating Instructions Table of Contents Introduction 1 RADIATION SAFETY i 5 DATA ANALYSIS Processing Data 15 Analyzing Data 17 Interactions of X-rays with Matter 2 Radiation Sources in the
Waves - Transverse and Longitudinal Waves
Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.
Ultrasonic Wave Propagation Review
Ultrasonic Wave Propagation Review Presented by: Sami El-Ali 1 1. Introduction Ultrasonic refers to any study or application of sound waves that are higher frequency than the human audible range. Ultrasonic
Measurement of Charge-to-Mass (e/m) Ratio for the Electron
Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic
Glancing XRD and XRF for the Study of Texture Development in SmCo Based Films Sputtered Onto Silicon Substrates
161 162 Glancing XRD and XRF for the Study of Texture Development in SmCo Based Films Sputtered Onto Silicon Substrates F. J. Cadieu*, I. Vander, Y. Rong, and R. W. Zuneska Physics Department Queens College
Physics 441/2: Transmission Electron Microscope
Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This
Chapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
GRID AND PRISM SPECTROMETERS
FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing
Automatic and Objective Measurement of Residual Stress and Cord in Glass
Automatic and Objective Measurement of Residual Stress and Cord in Glass GlassTrend - ICG TC15/21 Seminar SENSORS AND PROCESS CONTROL 13-14 October 2015, Eindhoven Henning Katte, ilis gmbh copyright ilis
COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD *
201 COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD * J. Müller 1, D. Balzar 1,2, R.H. Geiss 1, D.T. Read 1, and R.R. Keller 1 1 Materials Reliability Division, National
X-ray Powder Diffraction Pattern Indexing for Pharmaceutical Applications
The published version of this manuscript may be found at the following webpage: http://www.pharmtech.com/pharmtech/peer-reviewed+research/x-ray-powder-diffraction-pattern-indexing-for- Phar/ArticleStandard/Article/detail/800851
Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK
Polarization Dependence in X-ray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK Overview of talk 1. Experimental techniques at Diamond: why we care about x-ray polarization 2. How
Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
USING MATLAB FOR MATERIALS DESIGN: DESCRIBING GRAIN ORIENTATIONS IN METALS Claes Olsson, PhD - Docent / Sandvik Materials Technology
USING MATLAB FOR MATERIALS DESIGN: DESCRIBING GRAIN ORIENTATIONS IN METALS Claes Olsson, PhD - Docent / Sandvik Materials Technology THE SANDVIK GROUP MACHINING SOLUTIONS MINING AND CONSTRUCTION MATERIALS
PHYA2. General Certificate of Education Advanced Subsidiary Examination June 2010. Mechanics, Materials and Waves
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 2 For this paper you must have: a ruler a calculator a Data and Formulae Booklet.
After a wave passes through a medium, how does the position of that medium compare to its original position?
Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.
Using the Spectrophotometer
Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to
Theremino System Theremino Spectrometer Technology
Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating
ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.
1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown
Introduction to microstructure
Introduction to microstructure 1.1 What is microstructure? When describing the structure of a material, we make a clear distinction between its crystal structure and its microstructure. The term crystal
Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?
Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility
Infrared Spectroscopy: Theory
u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used
Magnetic Field of a Circular Coil Lab 12
HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,
* This work is an official contribution of the National Institute of Standards and Technology and
Variability in the Geometric Accuracy of Additively Manufactured Test Parts A.L. Cooke and J.A. Soons National Institute of Standards and Technology * Gaithersburg, MD, USA Abstract This paper describes
GEOMETRY OF SINGLE POINT TURNING TOOLS
GEOMETRY OF SINGLE POINT TURNING TOOLS LEARNING OBJECTIVES Introduction to Features of single point cutting tool. Concept of rake and clearance angle and its importance System of description of Tool geometry
We shall first regard the dense sphere packing model. 1.1. Draw a two dimensional pattern of dense packing spheres. Identify the twodimensional
Set 3: Task 1 and 2 considers many of the examples that are given in the compendium. Crystal structures derived from sphere packing models may be used to describe metals (see task 2), ionical compounds
Chapter 23. The Reflection of Light: Mirrors
Chapter 23 The Reflection of Light: Mirrors Wave Fronts and Rays Defining wave fronts and rays. Consider a sound wave since it is easier to visualize. Shown is a hemispherical view of a sound wave emitted
Plastic Film Texture Measurement With 3D Profilometry
Plastic Film Texture Measurement With 3D Profilometry Prepared by Jorge Ramirez 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials.
Introduction to Geiger Counters
Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists
KINETIC MOLECULAR THEORY OF MATTER
KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,
LECTURE SUMMARY September 30th 2009
LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes
Structural Integrity Analysis
Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces
Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory
Insertion Devices Lecture 4 Permanent Magnet Undulators Jim Clarke ASTeC Daresbury Laboratory Introduction to Lecture 4 So far we have discussed at length what the properties of SR are, when it is generated,
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the
Diffraction of a Circular Aperture
Diffraction of a Circular Aperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront
Laue lens for Nuclear Medicine
Laue lens for Nuclear Medicine PhD in Physics Gianfranco Paternò Ferrara, 6-11-013 Supervisor: prof. Vincenzo Guidi Sensors and Semiconductors Lab, Department of Physics and Earth Science, University of
Upon completion of this lab, the student will be able to:
1 Learning Outcomes EXPERIMENT B4: CHEMICAL EQUILIBRIUM Upon completion of this lab, the student will be able to: 1) Analyze the absorbance spectrum of a sample. 2) Calculate the equilibrium constant for
GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics
Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals
Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z +
Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Quick Review of Reflection Coefficient The Smith chart is a method of graphing reflection coefficients and impedance, and is often useful
Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures.
Chapter Highlights: Notes: 1. types of materials- amorphous, crystalline, and polycrystalline.. Understand the meaning of crystallinity, which refers to a regular lattice based on a repeating unit cell..
Quick Guide for Data Collection on the NIU Bruker Smart CCD
Quick Guide for Data Collection on the NIU Bruker Smart CCD 1. Create a new project 2. Optically align the crystal 3. Take rotation picture 4. Collect matrix to determine unit cell 5. Refine unit cell
Grazing incidence wavefront sensing and verification of X-ray optics performance
Grazing incidence wavefront sensing and verification of X-ray optics performance Timo T. Saha, Scott Rohrbach, and William W. Zhang, NASA Goddard Space Flight Center, Greenbelt, Md 20771 Evaluation of
Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light
Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be
PHYS 39a Lab 3: Microscope Optics
PHYS 39a Lab 3: Microscope Optics Trevor Kafka December 15, 2014 Abstract In this lab task, we sought to use critical illumination and Köhler illumination techniques to view the image of a 1000 lines-per-inch
Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary
Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:
Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point
Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point Overview To optimize the overall performance of a WLAN in an outdoor deployment it is important to understand how to maximize coverage
Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.
Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite
Chapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
ME 612 Metal Forming and Theory of Plasticity. 1. Introduction
Metal Forming and Theory of Plasticity Yrd.Doç. e mail: [email protected] Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In general, it is possible to evaluate metal forming operations
Force on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves
Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide
Big Ideas in Mathematics
Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.
Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves
The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD
TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic
