Martensite in Steels
|
|
|
- Julie Nelson
- 9 years ago
- Views:
Transcription
1 Materials Science & Metallurgy H. K. D. H. Bhadeshia Martensite in Steels The name martensite is after the German scientist Martens. It was used originally to describe the hard microconstituent found in quenched steels. Martensite remains of the greatest technological importance in steels where it can confer an outstanding combination of strength (> 3500 MPa) and toughness (> 200 MPa m 1 2 ). Many materials other than steel are now known to exhibit the same type of solid-state phase transformation, known as a martensitic transformation, frequently also called a shear or displacive transformation. Martensite occurs in, for example, nonferrous alloys, pure metals, ceramics, minerals, inorganic compounds, solidified gases and polymers (Table 1). We shall review first the experimental facts about martensite and then proceed to explain them. Composition M S / K Hardness HV ZrO Fe 31Ni 0.23C wt% Fe 34Ni 0.22C wt% < Fe 3Mn 2Si 0.4C wt% Cu 15Al Ar 40N 2 30 Table 1: The temperature M S at which martensite first forms on cooling, and the approximate Vickers hardness of the resulting martensite for a number of materials. Diffusionless Character Martensitic transformations are diffusionless, but what evidence is there to support this? Martensite can form at very low temperatures, where diffusion, even of interstitial atoms, is not conceivable over the time period of the experiment. Table 1 gives values of the highest temperature at which martensite forms in a variety of materials; this temperature is known as the martensite start, or M S temperature. It is obvious that although martensite can form 1
2 at low temperatures, it need not do so. Therefore, a low transformation temperature is not sufficient evidence for diffusionless transformation. Martensite plates can grow at speeds which approach that of sound in the metal. In steel this can be as high as 1100 m s 1, which compares with the fastest recorded solidification front velocity of about 80 m s 1 in pure nickel. Such large speeds are inconsistent with diffusion during transformation. Note that martensite need not grow so rapidly. For example, in shape memory alloys or in single interface transformations, the interface velocity is small enough to observe. The chemical composition of martensite can be measured and shown to be identical to that of the parent austenite. The totality of these observations demonstrate convincingly that martensitic transformations are diffusionless. The Habit Plane This is the interface plane between austenite and martensite as measured on a macroscopic scale (Fig. 1), for example by using one or two surface crystallographic trace analysis on metallographic samples. For unconstrained transformations this interface plane is flat, but strain energy minimisation introduces some curvature when the transformation is constrained by its surroundings. Nevertheless, the macroscopic habit plane is identical for both cases, as illustrated in Figure 1. Figure 1: An illustration of the habit plane between austenite (γ) and martensite (α ) 2
3 Steels of vastly different chemical composition can have martensite with the same habit plane (Table 2), and indeed, other identical crystallographic characteristics. Composition /wt.% Low alloy steels, Fe 28Ni Plate martensite in Fe 1.8C Fe 30Ni 0.3C Fe 8Cr 1C ɛ martensite in 18/8 stainless steel Approximate habit plane indices {1 1 1} γ {2 9 5} γ { } γ {2 5 2} γ {1 1 1} γ Table 2: Habit plane indices for martensite. With the exception of ɛ martensite, the quoted indices are approximate because the habit planes are in general irrational. Orientation Relationships The formation of martensite involves the coordinated movement of atoms. It follows that the austenite and martensite lattices will be intimately related. All martensitic transformations therefore lead to a reproducible orientation relationship between the parent and product lattices. It is frequently the case that a pair of corresponding close packed planes in the ferrite and austenite are parallel or nearly parallel, and it is usually the case that corresponding directions within these planes are roughly parallel (Fig. 2): {1 1 1} γ {0 1 1} α < > γ < > α Kurdjumov Sachs {1 1 1} γ {0 1 1} α Nishiyama Wasserman < > γ about 5.3 from < > α towards < > α {1 1 1} γ about 0.2 from{0 1 1} α Greninger Troiano < > γ about 2.7 from < > α towards < > α The body centred cubic lattice does not have a close packed plane but {0 1 1} α is the most densely packed plane. 3
4 Note that these have been stated approximately: the true relations are irrational, meaning that the indices of the parallel planes and directions cannot be expressed using rational numbers (the square root of 2 is not a rational number). Fig. 2: Stereographic representation of the Kurdjumov Sachs and Nishiyama Wasserman orientation relationships. The stereograms are both centred on (1 1 1) γ (0 1 1) α. It is seen that the NW orientation can be generated from KS by an appropriate small rotation (5.25 ) about [0 1 1] α. Only a few of the poles are marked to allow a comparison with the Bain orientation relationship. The neighbouring pairs of poles would superpose exactly for the Bain orientation. Athermal Nature of Transformation In the vast majority of cases, the extent of reaction is found to be virtually independent of time: 1 V α = exp{β(m S T)} where β (1) V α is the fraction of martensite and T is a temperature below M S. This is the Koistinen and Marburger equation; notice that time does not feature in this relation, so that the fraction of martensite depends only on the undercooling below the martensite start temperature. This athermal character is a consequence of very rapid nucleation and growth, so rapid that the time taken can in normal circumstances be neglected. Isothermal martensite is possible when nucleation is hindered, although the growth rate of individual plates of martensite can still be rapid. 4
5 Structure of the Interface Any process which contributes to the formation of martensite cannot rely on assistance from thermal activation. There must therefore exist a high level of continuity across the interface, which must be coherent and semi coherent. A stress free fully coherent interface is impossible for the γ α transformation since the lattice deformation BR is an invariant line strain. A semi coherent interface must be such that the interfacial dislocations can glide as the interface moves (climb is not permitted). It follows that the Burgers vectors of the interface dislocations must not lie in the interface plane unless the dislocations are screw in character. There is an additional condition for a semi coherent interface to be glissile. The line vectors of the interfacial dislocations must lie along an invariant line, i.e. a line which joins the parent and product crystals without any rotation or distortion. Why is that? If there is any distortion along the dislocation line, then other dislocations are needed to accommodate that misfit. It will then be necessary to have more than one set of non parallel dislocations in the interface. These non parallel dislocations can intersect to form jogs which render the interface sessile. It follows that for martensitic transformation to be possible, the deformation which changes the parent into the product must leave one or more lines invariant (unrotated, undistorted). A deformation which leaves one line invariant is called an invariant line strain. The Shape Deformation The passage of a slip dislocation through a crystal causes the formation of a step where the glide plane intersects the free surface (Fig. 3a,b). The passage of many such dislocations on parallel slip planes causes macroscopic shear (Fig. 3c,d). Slip causes a change in shape but not a change in the crystal structure, because the Burgers vectors of the dislocations are also lattice vectors. During martensitic transformation, the pattern in which the atoms in the parent crystal are arranged is deformed into that appropriate for martensite, there must be a corresponding change in the macroscopic shape of the crystal undergoing transformation. The dislocations responsible for the deformation are in the α /γ interface, with Burgers vectors such that in addition to deformation they also cause the change in crystal structure. The deformation is such that an initially flat surface becomes uniformly tilted about the line formed by the intersection of the interface plane with the free surface. Any scratch traversing the transformed 5
6 region is similarly deflected though the scratch remains connected at the α /γ interface. These observations, and others, confirm that the measured shape deformation is an invariant plane strain (Fig. 3e g) with a large shear component ( 0.22) and a small dilatational strain ( 0.03) directed normal to the habit plane. Fig. 3: (a, b) Step caused by the passage of a slip dislocation. (c, d) Many slip dislocations, causing a macroscopic shear. (e) An invariant plane strain with a uniaxial dilatation. (f) An invariant plane strain which is a simple shear. (g) An invariant plane strain which is the combined effect of a uniaxial dilatation and a simple shear. Bain Strain We now consider the nature of the strain necessary to transform the c.c.p. lattice of γ into the b.c.c. lattice of α. Such a strain was proposed by Bain in 1924 and hence is known 6
7 as the Bain Strain (Fig. 4). There is a compression along the z axis and a uniform expansion along the x and y axes. Fig. 4: The Bain strain (not all lattice points illustrated) The deformation describing the Bain Strain is given by B = ɛ ɛ ɛ 0 ɛ 0 = 2aα a γ a γ ɛ 0 = a α a γ a γ where a α and a γ are the lattice parameters of martensite and austenite respectively. The contraction is therefore along the [0 0 1] γ axis and a uniform expansion on the (0 0 1) γ plane. The Bain strain implies the following orientation relationship between the parent and product lattices: [0 0 1] fcc [0 0 1] bcc [1 1 0] fcc [1 0 0] bcc [1 1 0] fcc [0 1 0] bcc 7
8 but in fact, the experimentally observed orientation relationships are irrational, as discussed earlier. We shall deal with this inconsistency later. Temporarily neglecting the fact that the Bain orientation is inconsistent with experiments, we proceed to examine whether the Bain strain leaves at least one line invariant. After all, this is a necessary condition for martensitic transformation. In Fig. 5a,b, the austenite is represented as a sphere which, as a result of the Bain strain B, is deformed into an ellipsoid of revolution which represents the martensite. There are no lines which are left undistorted or unrotated by B. There are no lines in the (0 0 1) fcc plane which are undistorted. The lines wx and yz are undistorted but are rotated to the new positions w x and y z. Such rotated lines are not invariant. However, the combined effect of the Bain strain B and the rigid body rotation R is indeed an invariant line strain (ILS) because it brings yz and y z into coincidence (Fig. 5c). This is the reason why the observed irrational orientation relationship differs from that implied by the Bain strain. The rotation required to convert B into an ILS precisely corrects the Bain orientation into that which is observed experimentally. Fig. 5: (a) and (b) show the effect of the Bain strain on austenite, which when undeformed is represented as a sphere of diameter wx = yz in three dimensions. The strain transforms it to an ellipsoid of revolution. (c) shows the invariant line strain obtained by combining the Bain strain with a rigid body rotation through an angle θ. As can be seen from Fig. 5c, there is no rotation which can make B into an invariant plane strain since this would require two non parallel invariant lines. Thus, for the f cc bcc 8
9 transformation, austenite cannot be transformed into martensite by a homogeneous strain which is an IPS. And yet, the observed shape deformation leaves the habit plane undistorted and unrotated, i.e. it is an invariant plane strain. The phenomenological theory of martensite crystallography solves this remaining problem (Fig. 6). The Bain strain converts the structure of the parent phase into that of the product phase. When combined with an appropriate rigid body rotation, the net homogeneous lattice deformation RB is an invariant line strain (step a to c in Fig. 6). However, the observed shape deformation is an invariant plane strain P 1 (step a to b in Fig. 6), but this gives the wrong crystal structure. If a second homogeneous shear P 2 is combined with P 1 (step b to c), then the correct structure is obtained but the wrong shape since P 1 P 2 = RB These discrepancies are all resolved if the shape changing effect of P 2 is cancelled macroscopically by an inhomogeneous lattice invariant deformation, which may be slip or twinning as illustrated in Fig. 6. The theory explains all the observed features of the martensite crystallography. The orientation relationship is predicted by deducing the rotation needed to change the Bain strain into an invariant line strain. The habit plane does not have rational indices because the amount of lattice invariant deformation needed to recover the correct the macroscopic shape is not usually rational. The theory predicts a substructure in plates of martensite (either twins or slip steps) as is observed experimentally. The transformation goes to all the trouble of ensuring that the shape deformation is macroscopically an invariant plane strain because this reduces the strain energy when compared with the case where the shape deformation might be an invariant line strain. Thermodynamics of Martensitic Transformations Martensite is not represented on phase diagrams because the latter deal with equilibrium. Martensite deviates from equilibrium in two important ways: Martensite grows without diffusion, so it inherits the chemical composition of the parent austenite. In an equilibrium transformation the chemical elements partition into the parent and product phases in a manner which leads to a minimisation of free energy. Secondly, the shape deformation associated with martensitic transformation causes strains; the resulting strain energy has to be accounted for before the transformation can happen. 9
10 Fig. 6: The phenomenological theory of martensite crystallography These deviations can be represented on a free energy plot as illustrated in Fig. 7. The relationship with the phase diagram is illustrated in Fig. 8. Martensitic transformation is only possible below the T 0 temperature. 10
11 Fig. 7: The distance ac represents the free energy decrease when austenite of composition x decomposes into an equilibrium mixture of ferrite and austenite of compositions x αγ and x γα respectively. The distance ab is the smaller decrease in free energy when martensite forms without any composition change, taking into account the strain associated with the transformation. J mol 1 Strain energy 600 Twin interface energy 100 γ/α interface energy 1 Stored energy due to dislocations 20 Table 3: Typical energies associated with martensitic transformation. 11
12 Fig. 8: Schematic illustration of the origin of the T 0 curve on the phase diagram. The T 0 curve incorporates a strain energy term for the ferrite, illustrated on the diagram by raising the free energy curve for ferrite by an appropriate quantity. 12
Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular
Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation
LECTURE SUMMARY September 30th 2009
LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the
Chapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
Chapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
Defects Introduction. Bonding + Structure + Defects. Properties
Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of
CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS
7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length
Material Deformations. Academic Resource Center
Material Deformations Academic Resource Center Agenda Origin of deformations Deformations & dislocations Dislocation motion Slip systems Stresses involved with deformation Deformation by twinning Origin
Lecture 4: Thermodynamics of Diffusion: Spinodals
Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K. D. H. Bhadeshia Lecture 4: Thermodynamics of Diffusion: Spinodals Fick
Chapter 8. Phase Diagrams
Phase Diagrams A phase in a material is a region that differ in its microstructure and or composition from another region Al Al 2 CuMg H 2 O(solid, ice) in H 2 O (liquid) 2 phases homogeneous in crystal
Chapter Outline: Phase Transformations in Metals
Chapter Outline: Phase Transformations in Metals Heat Treatment (time and temperature) Microstructure Mechanical Properties Kinetics of phase transformations Multiphase Transformations Phase transformations
Phase Transformations in Metals and Alloys
Phase Transformations in Metals and Alloys THIRD EDITION DAVID A. PORTER, KENNETH E. EASTERLING, and MOHAMED Y. SHERIF ( г йс) CRC Press ^ ^ ) Taylor & Francis Group Boca Raton London New York CRC Press
Lösungen Übung Verformung
Lösungen Übung Verformung 1. (a) What is the meaning of T G? (b) To which materials does it apply? (c) What effect does it have on the toughness and on the stress- strain diagram? 2. Name the four main
Experiment: Crystal Structure Analysis in Engineering Materials
Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types
Lecture 3: Models of Solutions
Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP4, Thermodynamics and Phase Diagrams, H. K. D. H. Bhadeshia Lecture 3: Models of Solutions List of Symbols Symbol G M
The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R
3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated
Iron-Carbon Phase Diagram (a review) see Callister Chapter 9
Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 University of Tennessee, Dept. of Materials Science and Engineering 1 The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram In their simplest form,
SOLIDIFICATION. (a)formation of stable nuclei. Growth of a stable nucleus. (c) Grain structure
SOLIDIFICATION Most metals are melted and then cast into semifinished or finished shape. Solidification of a metal can be divided into the following steps: Formation of a stable nucleus Growth of a stable
Heat Treatment of Steels : Spheroidize annealing. Heat Treatment of Steels : Normalizing
Heat Treatment of Steels :Recrystallization annealing The carbon and alloy steels were treated at a temperature of about 700 C, which is about 20 C below the eutectoid temperature. The holding time should
Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1
Phase Diagrams University of Tennessee, Dept. of Materials Science and Engineering 1 Chapter Outline: Phase Diagrams Microstructure and Phase Transformations in Multicomponent Systems Definitions and basic
Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139
Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 2.002 Mechanics and Materials II Spring 2004 Laboratory Module No. 5 Heat Treatment of Plain Carbon and Low
Mechanical Properties - Stresses & Strains
Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =
Module #17. Work/Strain Hardening. READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter
Module #17 Work/Strain Hardening READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter D. Kuhlmann-Wilsdorf, Trans. AIME, v. 224 (1962) pp. 1047-1061 Work Hardening RECALL: During plastic deformation,
Chapter Outline. Diffusion - how do atoms move through solids?
Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)
Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
LABORATORY EXPERIMENTS TESTING OF MATERIALS
LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective
12.524 2003 Lec 17: Dislocation Geometry and Fabric Production 1. Crystal Geometry
12.524 2003 Lec 17: Dislocation Geometry and Fabric Production 1. Bibliography: Crystal Geometry Assigned Reading: [Poirier, 1985]Chapter 2, 4. General References: [Kelly and Groves, 1970] Chapter 1. [Hirth
Chapter 5: Diffusion. 5.1 Steady-State Diffusion
: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process
Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige
Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain
MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY
MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY Objective To study the time and temperature variations in the hardness and electrical conductivity of Al-Zn-Mg-Cu high strength alloy on isothermal
Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?
Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility
The mechanical properties of metal affected by heat treatment are:
Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.
Solution for Homework #1
Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen
Investigation of Titanium α Plates by EBSD Analysis
Investigation of Titanium α Plates by EBSD Analysis Master Thesis Arjen Kamp June 2007 Materials Science and Engineering Faculty 3mE Supervisors: Stefan van Bohemen Jilt Sietsma Roumen Petrov Investigation
Module 34. Heat Treatment of steel IV. Lecture 34. Heat Treatment of steel IV
Module 34 Heat reatment of steel IV Lecture 34 Heat reatment of steel IV 1 Keywords : Austenitization of hypo & hyper eutectoid steel, austenization temperature, effect of heat treatment on structure &
Phase Equilibria & Phase Diagrams
Phase Equilibria & Phase Diagrams Week7 Material Sciences and Engineering MatE271 1 Motivation Phase diagram (Ch 9) Temperature Time Kinematics (Ch 10) New structure, concentration (mixing level) (at what
DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment
DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired
ME 612 Metal Forming and Theory of Plasticity. 1. Introduction
Metal Forming and Theory of Plasticity Yrd.Doç. e mail: [email protected] Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In general, it is possible to evaluate metal forming operations
9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure
9-13 9.8: 9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure (a) The first liquid forms at the temperature at which a vertical line at this composition
Lecture 18 Strain Hardening And Recrystallization
-138- Lecture 18 Strain Hardening And Recrystallization Strain Hardening We have previously seen that the flow stress (the stress necessary to produce a certain plastic strain rate) increases with increasing
LMB Crystallography Course, 2013. Crystals, Symmetry and Space Groups Andrew Leslie
LMB Crystallography Course, 2013 Crystals, Symmetry and Space Groups Andrew Leslie Many of the slides were kindly provided by Erhard Hohenester (Imperial College), several other illustrations are from
Lecture: 33. Solidification of Weld Metal
Lecture: 33 Solidification of Weld Metal This chapter presents common solidification mechanisms observed in weld metal and different modes of solidification. Influence of welding speed and heat input on
HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases
UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius
Reflection and Refraction
Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
We shall first regard the dense sphere packing model. 1.1. Draw a two dimensional pattern of dense packing spheres. Identify the twodimensional
Set 3: Task 1 and 2 considers many of the examples that are given in the compendium. Crystal structures derived from sphere packing models may be used to describe metals (see task 2), ionical compounds
This is an author-deposited version published in: http://sam.ensam.eu Handle ID:.http://hdl.handle.net/10985/10324
Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. This is an author-deposited
Phase. Gibbs Phase rule
Phase diagrams Phase A phase can be defined as a physically distinct and chemically homogeneous portion of a system that has a particular chemical composition and structure. Water in liquid or vapor state
Heat Treatment of Steel
Heat Treatment of Steel Steels can be heat treated to produce a great variety of microstructures and properties. Generally, heat treatment uses phase transformation during heating and cooling to change
Solid State Theory Physics 545
Solid State Theory Physics 545 CRYSTAL STRUCTURES Describing periodic structures Terminology Basic Structures Symmetry Operations Ionic crystals often have a definite habit which gives rise to particular
14:635:407:02 Homework III Solutions
14:635:407:0 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 37 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.
Unit 6 Plane Stress and Plane Strain
Unit 6 Plane Stress and Plane Strain Readings: T & G 8, 9, 10, 11, 12, 14, 15, 16 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems There are many structural configurations
WJM Technologies excellence in material joining
Girish P. Kelkar, Ph.D. (562) 743-7576 [email protected] www.welding-consultant.com Weld Cracks An Engineer s Worst Nightmare There are a variety of physical defects such as undercut, insufficient
x100 A o Percent cold work = %CW = A o A d Yield Stress Work Hardening Why? Cell Structures Pattern Formation
Work Hardening Dislocations interact with each other and assume configurations that restrict the movement of other dislocations. As the dislocation density increases there is an increase in the flow stress
Concepts of Stress and Strain
CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original
Dislocation theory. Subjects of interest
Chapter 5 Dislocation theory Subjects of interest Introduction/Objectives Observation of dislocation Burgers vector and the dislocation loop Dislocation in the FCC, HCP and BCC lattice Stress fields and
Analysis of Stresses and Strains
Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we
1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded.
1 Unit 6: EXTRUSION Introduction: Extrusion is a metal working process in which cross section of metal is reduced by forcing the metal through a die orifice under high pressure. It is used to produce cylindrical
Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films
Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films https://cuvillier.de/de/shop/publications/1306 Copyright: Cuvillier Verlag,
EFFECT OF SEVERE PLASTIC DEFORMATION ON STRUCTURE AND PROPERTIES OF AUSTENITIC AISI 316 GRADE STEEL
EFFECT OF SEVERE PLASTIC DEFORMATION ON STRUCTURE AND PROPERTIES OF AUSTENITIC AISI 316 GRADE STEEL Ladislav KANDER a, Miroslav GREGER b a MATERIÁLOVÝ A METALURGICKÝ VÝZKUM, s.r.o., Ostrava, Czech Republic,
P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures
4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and
Structural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
Experiment: Heat Treatment - Quenching & Tempering
Experiment: Heat Treatment - Quenching & Tempering Objectives 1) To investigate the conventional heat treatment procedures, such as quenching and annealing, used to alter the properties of steels. SAE
FATIGUE CONSIDERATION IN DESIGN
FATIGUE CONSIDERATION IN DESIGN OBJECTIVES AND SCOPE In this module we will be discussing on design aspects related to fatigue failure, an important mode of failure in engineering components. Fatigue failure
HEAT TREATMENT OF STEEL
HEAT TREATMENT OF STEEL Heat Treatment of Steel Most heat treating operations begin with heating the alloy into the austenitic phase field to dissolve the carbide in the iron. Steel heat treating practice
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
Alloys & Their Phase Diagrams
Alloys & Their Phase Diagrams Objectives of the class Gibbs phase rule Introduction to phase diagram Practice phase diagram Lever rule Important Observation: One question in the midterm Consider the Earth
CHAPTER 9 Part 1. = 5 wt% Sn-95 wt% Pb C β. = 98 wt% Sn-2 wt% Pb. = 77 wt% Ag-23 wt% Cu. = 51 wt% Zn-49 wt% Cu C γ. = 58 wt% Zn-42 wt% Cu
CHAPTER 9 Part 1 9.5 This problem asks that we cite the phase or phases present for several alloys at specified temperatures. (a) For an alloy composed of 15 wt% Sn-85 wt% Pb and at 100 C, from Figure
Mohr s Circle. Academic Resource Center
Mohr s Circle Academic Resource Center Introduction The transformation equations for plane stress can be represented in graphical form by a plot known as Mohr s Circle. This graphical representation is
Fundamentals of grain boundaries and grain boundary migration
1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which
Kinetics of Phase Transformations: Nucleation & Growth
Kinetics of Phase Transformations: Nucleation & Growth Radhika Barua Department of Chemical Engineering Northeastern University Boston, MA USA Thermodynamics of Phase Transformation Northeastern University
ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS
ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS K. Sztwiertnia Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta St., 30-059 Krakow, Poland MMN 2009
BINARY SYSTEMS. Definition of Composition: Atomic (molar) fraction. Atomic percent. Mass fraction. Mass percent (weight percent)
BINARY SYSTEMS Definition of Composition: Atomic (molar) fraction Atomic percent Mass fraction Mass percent (weight percent) na =, x i n = A i i i Weight percent mainly in industry! x at % A = x 100 A
Using the PDF for material identification using elemental data. from XRF and SEM EDS.
XRF and SEM EDS Using the PDF for material identification using elemental data from XRF and SEM EDS. XRF and SEM EDS What? The Powder Diffraction File contains data on pure solid state compounds of well
Martensite transformation, microsegregation, and creep strength of. 9 Cr-1 Mo-V steel weld metal
Martensite transformation, microsegregation, and creep strength of 9 Cr-1 Mo-V steel weld metal M. L. Santella¹, R. W. Swindeman¹, R. W. Reed¹, and J. M. Tanzosh² ¹ Oak Ridge National Laboratory, Oak Ridge,
HIGH STRENGTH DUCTILE IRON PRODUCED BY THE ENGINEERED COOLING: PROCESS CONCEPT
IJMC14-244-2 HIGH STRENGTH DUCTILE IRON PRODUCED BY THE ENGINEERED COOLING: PROCESS CONCEPT Copyright 215 American Foundry Society Abstract Simon N. Lekakh Missouri University of Science and Technology,
Think precision, Think HSS REAMING
Think precision, Think HSS REAMING SUMMARY REAMING TOOLS 2 Zoom on a reamer 3 Which HSS for maximum efficiency? 4 Coatings for the best performance 5 Vocabulary 6 Choose the right design 7 Types of bevel
Continuous Cooling Bainite Transformation Characteristics of a Low Carbon Microalloyed Steel under the Simulated Welding Thermal Cycle Process
Available online at SciVerse ScienceDirect J. Mater. Sci. Technol., 2013, 29(5), 446e450 Continuous Cooling Bainite Transformation Characteristics of a Low Carbon Microalloyed Steel under the Simulated
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
Interfacial Stress, Interfacial Energy, and Phase Equilibria in Binary Alloys
Journal of Statistical Physics, Vol. 95, Nos. 56, 1999 Interfacial Stress, Interfacial Energy, and Phase Equilibria in Binary Alloys William C. Johnson 1 and P. W. Voorhees 2 Received August 20, 1998 A
Lecture 22: Spinodal Decomposition: Part 1: general description and
Lecture 22: Spinodal Decomposition: Part 1: general description and practical implications Today s topics basics and unique features of spinodal decomposition and its practical implications. The relationship
Simulations of the Effect of Section Size and Cooling on Sigma Phase Formation in Duplex Stainless Steels
Simulations of the Effect of Section Size and Cooling on Sigma Phase Formation in Duplex Stainless Steels Richard A. Hardin and Christoph Beckermann Department of Mechanical and Industrial Engineering
X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye
X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US Hanno zur Loye X-rays are electromagnetic radiation of wavelength about 1 Å (10-10 m), which is about the same size as an atom. The
Measurement of Charge-to-Mass (e/m) Ratio for the Electron
Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic
North American Stainless
North American Stainless Flat Products Stainless Steel Grade Sheet 310S (S31008)/ EN 1.4845 Introduction: SS310 is a highly alloyed austenitic stainless steel designed for elevated-temperature service.
Crystal Defects p. 2. Point Defects: Vacancies. Department of Materials Science and Engineering University of Virginia. Lecturer: Leonid V.
Crystal Defects p. 1 A two-dimensional representation of a perfect single crystal with regular arrangement of atoms. But nothing is perfect, and structures of real materials can be better represented by
Chapter 23. The Reflection of Light: Mirrors
Chapter 23 The Reflection of Light: Mirrors Wave Fronts and Rays Defining wave fronts and rays. Consider a sound wave since it is easier to visualize. Shown is a hemispherical view of a sound wave emitted
Chapter 3: Structure of Metals and Ceramics. Chapter 3: Structure of Metals and Ceramics. Learning Objective
Chapter 3: Structure of Metals and Ceramics Chapter 3: Structure of Metals and Ceramics Goals Define basic terms and give examples of each: Lattice Basis Atoms (Decorations or Motifs) Crystal Structure
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS
EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering
North American Stainless
North American Stainless Long Products Stainless Steel Grade Sheet 2205 UNS S2205 EN 1.4462 2304 UNS S2304 EN 1.4362 INTRODUCTION Types 2205 and 2304 are duplex stainless steel grades with a microstructure,
Austenitic Stainless Steels
Copyright 2008 ASM International. All rights reserved. Stainless Steels for Design Engineers (#05231G) www.asminternational.org CHAPTER 6 Austenitic Stainless Steels Summary AUSTENITIC STAINLESS STEELS
Plate waves in phononic crystals slabs
Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France [email protected] 41 Acoustics 8 Paris We
Relevant Reading for this Lecture... Pages 83-87.
LECTURE #06 Chapter 3: X-ray Diffraction and Crystal Structure Determination Learning Objectives To describe crystals in terms of the stacking of planes. How to use a dot product to solve for the angles
Common Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
Introduction of Materials Modelling into Processing Simulation Towards True Virtual Design and Simulation
International Journal of Metallurgical Engineering 2013, 2(2): 198-202 DOI: 10.5923/j.ijmee.20130202.11 Introduction of Materials Modelling into Processing Simulation Towards True Virtual Design and Simulation
Fundamentals of Extrusion
CHAPTER1 Fundamentals of Extrusion The first chapter of this book discusses the fundamentals of extrusion technology, including extrusion principles, processes, mechanics, and variables and their effects
Thermo-Calc Software. Data Organization and Knowledge Discovery. Paul Mason Thermo-Calc Software, Inc. Thermo-Chemistry to Phase Diagrams and More
Thermo-Calc Software Data Organization and Knowledge Discovery Thermo-Chemistry to Phase Diagrams and More Paul Mason Thermo-Calc Software, Inc. http://www.thermocalc.com Tel: (724) 731 0074 E-mail: [email protected]
X-ray diffraction techniques for thin films
X-ray diffraction techniques for thin films Rigaku Corporation Application Laboratory Takayuki Konya 1 Today s contents (PM) Introduction X-ray diffraction method Out-of-Plane In-Plane Pole figure Reciprocal
MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING
NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2011, 2 (2), P. 76 83 UDC 538.97 MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING I. S. Konovalenko
