ENERGY CONSERVATION The First Law of Thermodynamics and the Work/Kinetic-Energy Theorem



Similar documents
Lecture L22-2D Rigid Body Dynamics: Work and Energy

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Topic 3b: Kinetic Theory

Review D: Potential Energy and the Conservation of Mechanical Energy

WORK DONE BY A CONSTANT FORCE

Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

Mechanics 1: Conservation of Energy and Momentum

CLASSICAL CONCEPT REVIEW 8

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Conservation of Momentum and Energy

Chapter 6 Work and Energy

At the skate park on the ramp

Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63

Gravitational Potential Energy

Problem Set 5 Work and Kinetic Energy Solutions

VELOCITY, ACCELERATION, FORCE

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

CHAPTER 6 WORK AND ENERGY

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Physics 1A Lecture 10C

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Chapter 6. Work and Energy

PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.

Science Standard Articulated by Grade Level Strand 5: Physical Science

Chapter 7 Energy and Energy Balances

Notes on Elastic and Inelastic Collisions

Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Lecture-IV. Contact forces & Newton s laws of motion

Physics 41 HW Set 1 Chapter 15

PHYS 101 Lecture 10 - Work and kinetic energy 10-1

Work and Conservation of Energy

HEAT UNIT 1.1 KINETIC THEORY OF GASES Introduction Postulates of Kinetic Theory of Gases

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

physics 111N work & energy

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Online Courses for High School Students

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

Ph\sics 2210 Fall Novcmbcr 21 David Ailion

Unit 3 Work and Energy Suggested Time: 25 Hours

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.

Potential Energy and Equilibrium in 1D

Curso Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

Serway_ISM_V1 1 Chapter 4

10.1 Quantitative. Answer: A Var: 50+

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

Thermodynamics AP Physics B. Multiple Choice Questions

1 The basic equations of fluid dynamics

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli

Sample Questions for the AP Physics 1 Exam

FRICTION, WORK, AND THE INCLINED PLANE

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

C B A T 3 T 2 T What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Lab 8: Ballistic Pendulum

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Proof of the conservation of momentum and kinetic energy

Lecture 30 - Chapter 6 Thermal & Energy Systems (Examples) 1

1 Introduction. Taking the logarithm of both sides of Equation 1.1:

Problem Set V Solutions

Chapter 7: Polarization

Differential Balance Equations (DBE)

State Newton's second law of motion for a particle, defining carefully each term used.

THE KINETIC THEORY OF GASES

Chapter 6. Work and Energy

Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 7 Homework solutions

Torque Analyses of a Sliding Ladder

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Vacuum Evaporation Recap

Center of Gravity. We touched on this briefly in chapter 7! x 2

3 Work, Power and Energy

All About Motion - Displacement, Velocity and Acceleration

Solution Derivations for Capa #11

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Kinetic Theory & Ideal Gas

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

8.012 Physics I: Classical Mechanics Fall 2008

Kinetic Molecular Theory of Matter

Force. Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law. Outline

Physics 201 Homework 8

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Chapter 8 Conservation of Linear Momentum. Conservation of Linear Momentum

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

THE IDEAL GAS LAW AND KINETIC THEORY

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

Copyright 2011 Casa Software Ltd. Centre of Mass

Transcription:

PH-211 A. La Rosa ENERGY CONSERVATION The irst Law of Thermodynamics and the Work/Kinetic-Energy Theorem ENERGY TRANSER of ENERGY Heat-transfer Q Macroscopic external Work W done on a system ENERGY CONSERVATION LAW The work/kinetic-energy theorem Case: inelastic collision Generalization of the work/kinetic-energy theorem undamental Energy Conservation Law Inelastic collision (revisited) Case: Pure Thermodynamics The irst Law of Thermodynamics ENERGY The total energy of a system has two distinct contributions: R CM U internal = V CM i 1 miu 2 i 2 i, j 1 P 2 ij Disordered energy (gas molecules inside the container.) u i = velocities P ij = potential energies ig. 1 E macro = (1/2) Mv CM 2 + + (1/2) I 2 + Mgz Ordered energy (of the can cylinder) 1

A. MACROSCOPIC COMPONENT ( Ordered energy. ) The total mechanical energy of the system, associated with the macroscopic position and motion of the system as a whole. This mechanical energy comprises: i) Translational kinetic energy of the center of mass (CM) + + the rotational kinetic energy calculated with respect to the CM. ii) Potential energies associated to the position of the center of mass (gravitational potential energy, electrical potential energy, potential energy associated to the spring force, etc.) B. MICROSCOPIC COMPONENT ( Disordered energy. ) The other contribution to the energy is a vast collection of microscopic energies, known collectively as the internal energy U of the system. U comprises: The sum of individual kinetic and potential energies associated with the motion of, and interactions between, the individual particles (atoms and/or molecules) that constitute the system. These interactions involve complicated potential energy functions on a microscopic distance scale. In principle, after an appropriate choice of the zeros of the potential energy functions, one can talk about a definite value of U of the system (when the latter is in a state of thermodynamic equilibrium.) But such calculation of U can be a complicated endeavor. It is relatively simpler to calculate the changes of U. U: When a system changes its state of thermodynamic equilibrium, it is only the changes in the internal energy U that are physically significantly. 2

TRANSER of ENERGY Different systems can transfer energy among themselves by two processes: (1) Via heat-transfer, driven by temperature differences (2) Via work, driven by external macroscopic forces We will see that, Heat-transfer to a system is fundamentally a microscopic mechanism for transferring energy to a system. Work done on a system is a macroscopic mechanism for transferring energy to a system Heat-transfer Q It can occur via conduction, convection, and radiation The mechanism is fundamentally microscopic (at the atomic and molecular level.) heat transfer is accomplished by random molecular collisions and other molecular interactions. The direction is from the higher to lower temperature (an aspect better explained in the context of the second law of thermodynamics.) Warning: Do not confuse heat-transfer Q with the internal energy U. Heat transfer is not a property of the state of a system (a system in thermal equilibrium does not have an amount of heat or heat-transfer.) On the other hand, a system in thermal equilibrium does have (in principle) a specific internal energy. That is, Q is not a state variable U is a state variable 3

Macroscopic external Work W done on a system The macroscopic external work W done on a system can cause a change in either the internal energy U of the system, or the total mechanical energy E of the system Example where the external work causes a change of purely internal energy Insulation (no heat transfer Q=0) External non conservative force) ig. 2 Gas enclosed in an insulating container. The insulated walls ensure an absence of heat transfer from or toward the system (the gas.) Movable piston allows an external agent to compress the gas (by pushing the piston), thus doing work on the system. The work on the gas by the external agent results in an increase of the gas temperature (indicative of an increase in the internal energy U.) On the other hand, simply lifting the gas container (described above) would be an example of increasing the mechanical energy of the system, without changing the internal energy. 4

ENERGY CONSERVATION LAW The work/kinetic-energy theorem We are already familiar with the work/kinetic-energy theorem, which establishes the source (work) that causes a change in the kinetic energy of a system. We illustrated this theorem for the case of an individual particle, as well as for a system of particles constituting a rigid body. The later allowed us to solve, in a very straightforward manner, problems involving bodies rolling down an inclined plane, for example.[ But cases involving work done by internal forces in non-rigid bodies were not considered. We will encounter such cases in this section.] Case: Inelastic collision In what follows, we illustrate the need for generalizing the work/kinetic-energy theorem, in order to include cases in which disordered (microscopic) energy is involved. To that effect, let s start consider an inelastic collision. Before the collision Both particles initially at the same temperature and in thermal equilibrium v At rest m M Kinetic energy: K before = ½ m v 2 frictionless i X After the collision V ( m + M ) frictionless i Kinetic energy K after = ½ (m +M) V 2 X 5

Since the linear momentum is conserved mv = ( m + M ) V K after = ½ (m +M) [ ( m / (m + M) v ] 2 K after = ½ [ ( m 2 / (m + M) v 2 ] = ½ m v 2 [ ( m / (m + M) ] The change in kinetic energy is given by, K = K after - K before = [( m / (m + M) -1 ] ½ m v 2 = - [( M / (m + M) ] ½ m v 2 that is, the kinetic energy is less after the collision than before. According to the work/kinetic-energy theorem this change should have resulted from the work done by the forces acting on the system. But notice, all the external forces acting on the system (normal forces and weight) are perpendicular to the displacement of the particles, hence, their work on the system is zero (W N = 0, W W = 0.) N m N M frictionless i W 1 W 2 X Apparently, then, the work/kinetic-energy theorem W total = K appears not to be valid here. 6

The explanation lies in the fact that we are not including the work done by the internal friction forces. Such forces act during the inelastic collision. We say then, W internal-friction = K Thus, in this particular example, we identify the decrease in the kinetic energy in the negative work done by the microscopic internal forces. We would like to highlight that the change in kinetic energy K may include not only the macroscopic kinetic energy (of the center of mass) but also (presumably) an increase also of the microscopic kinetic energy; that is, W internal-friction = K macroscopic + K microscopic (case for the inelastic collision depicted in the figure above) The work/kinetic-energy theorem While we can in principle understand what is going on in the particular example of inelastic collision (where the system under study does not receive external heat-transfer), we would like to explore reformulating the work/kinetic-energy such that include also cases where thermal interaction (heat transfer) from the surrounding environment is allowed. As a firs step, let s express the work/kinetic energy theorem as follows, W internal + W external-non-conservative + W external-conservative = = K CM + K microscopic (generalization of the work/kinetic-energy theorem) Here W external-non-conservative refers to the work done by forces like the one pushing the piston in ig. 2 above. W external-conservative could be the work done, for example, the gravitational force. 7

That is, we are explicitly separating out the macroscopic work (done by external macroscopic forces, conservative and nonconservative) from the work done by microscopic forces. Similarly, we assume also that the kinetic energy changes in both macroscopic (the CM kinetic energy) and microscopic forms i) or the conservative forces component, the work can be derived from a potential energy function E p, W external-conservative = - E p which gives, W internal + W external-non-conservative + (- E p ) = = K CM + K microscopic W internal + W external-non-conservative = K CM + E p ) + K microscopic Calling K CM + E p E macro the macroscopic mechanical energy, the work/kinetic-theorem can be written as, W internal + W external-non-conservative = E macro + K microscopic ii) We can envision that, ultimately, W internal causes a change in microscopic potential energies of the interacting microscopic particles that constitute the system. That is, W internal = - P ij. i j Hence, j i - P ij + W external-non-conservative = E macro + K microscopic 8

W external-non-conservative = E macro + K microscopic + i j P ij Change in macroscopic mechanical energy Change in the internal energy U The last two terms in the right side of the expression above constitute what we called, at the beginning of this section, the disordered Internal Energy U of the system. Through the derivation process followed above, we notice that the work energy is deposited (transformed) into the system as either, macroscopic mechanical energy, or internal energy. The work W external-conservative done by conservative macroscopic external forces has been assimilated into the mechanical energy, while the work W internal done by microscopic forces ended up being grouped into the internal energy term. The expression above also shows that the work energy W external-non-conservative done by external non-conservative forces could end up either as macroscopic mechanical energy or internal energy (that the latter case can occur was illustrated in the example above where a gas was compressed by a piston; the force acting on the piston was the nonconservative force.) Generalization of the work/kinetic-energy theorem As illustrative as the expression above might be, it also reveals its limitations for dealing with cases in which the system is in thermal contact with a body at different temperature. Indeed, in such a case, the system can also receive energy via heat-transfer, a 9

process driven by temperature differences.) Accordingly the expression above needs to be modified or generalized. Q + W external-non-conservative = E macro + K microscopic + i j P ij Heat-transfer into the system In a simplified form Change in macroscopic mechanical energy Change in the internal energy U Q + W external-non-conservative = E macro + U Heat-transfer into the system caused by temperature difference Work done on the system by a nonconservative macroscopic external force Change in macroscopic mechanical energy of the system Change in the internal energy U of the system which constitutes our undamental Energy Conservation Law. Inelastic collision (revisited) Both particles initially at the same temperature and in thermal equilibrium v m At rest M frictionless i Kinetic energy K before = ½ m v 2 X After the collision V ( m + M ) frictionless i X 10

Here Q id the flow of energy by heat transfer, caused by temperature differences. In our case is zero.) W is the work done by external forces. In our case it is zero. U change in the internal energy E change in the mechanical energy In our case E = - [( M / (m + M) ] ½ m v 2 Accordingly, 0 + 0 = - [( M / (m + M) ] ½ m v 2 ) + U which gives, U = [( M / (m + M) ] ½ m v 2 ) That is, the missing (ordered) kinetic energy appears as an increase in the internal (disordered)s energy U of the system. (The increase in the internal energy of the system typically manifest itself in an increase in the temperature of the system. As the temperature of the system increases above the ambient environment because of the increase in the internal energy, heattransfer subsequently occurs from the system to the environment until the system-ambient reach a common temperature. Case: Pure Thermodynamics In pure thermodynamics, one typically considers only systems whose total mechanical energy does not change, E macro = 0. The general statement of the energy conservation becomes, Q + W external-non-conservative = U 11

Notice Before After Work done by the external force > 0 W external-non-conservative > 0 Before After Work done by the external force < 0 W external-non-conservative < 0 It is typical to consider the work done by the system (no the work done on the system by the external non-conservative forces.) Since, according to the Newton s third law, the force exerted by the system is equal in magnitude but opposite in direction, then W external non-conservative = - W done-by-the-system Thus, for pure thermodynamic systems Q Heat-transfer-into-the-system - W done-by-the-system = U When all the terminology is understood, the subscripts are omitted and one simply writes Q - W = U The irst Law of Thermodynamics 12

Notice Before After Work done by the gas < 0 W < 0 Before After Work done by the gas > 0 W > 0 Question: wedge Before After W =? 13