Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.


 Letitia Blake
 6 years ago
 Views:
Transcription
1 Work and Energy Ch. 6 Work = Force Distance Work increases the energy of an object. Energy can be converted back to work. Therefore, energy and work have the same unit: Newton meter = Nm
2 Energy per gram, compared to TNT Chocolate chip cookies and gasoline contain more energy per gram than explosives. Explosives have the oxidizer built in for rapid release of energy, adding weight. Fuel takes oxygen from the air. That s why burning airplane fuel brought the World Trade Center towers down, not the impact of the airplanes. Richard Muller, Physics and Technology for Future Presidents
3 Various Types of Energy Gravitational energy from lifting a TV: Energy = Work = Force Height (here gravitational force) The work is the same no matter which path is taken (no horizontal force). Dropping the TV from the top converts gravitational energy to kinetic energy. When the TV set hits the ground, kinetic energy is converted to thermal energy, which is kinetic energy of oscillating atoms.
4 Energy comes in many forms: That leads to many energy units: Nm = kgm 2 /s 2 = J = W s kg m 2 /s 2 originates from the definition of the force unit N via Newton s law F=m a. A Newton is the force that accelerates 1kg by 1m/s 2. Kinetic Gravitational Electric Thermal Solar Chemical Nuclear Joule (J) comes from thermal energy, Wattsecond (Ws) from electric energy. Furthermore: kilowatthours (kwh), electronvolt (ev), Conversion at:
5 Kinetic Energy (Energy of Motion) A force leads to an acceleration (F = m a). The acceleration leads to a velocity. Therefore, the kinetic energy is related to the velocity.
6 Kinetic Energy Formula Kinetic energy of an object with mass m : E kin = 1 2 mv 2 v 2 v = velocity Since the kinetic energy increases with the square of the velocity, high speed accidents are much more dangerous. This is particularly true for headon collisions where the velocity difference is large.
7 Gravitational energy It takes work to lift an object against the force of gravity. The resulting gravitational energy is stored in the object. Gravitational energy E = F h (F = force = m g ; h = height difference) Far from Earth the force F decreases like 1/d 2,and the energy E like 1/d (d=distance from the center of the Earth): F = G m 1 m 2 d 2 E = G m 1 m 2 d
8 Electric Force and Energy Charged particles interact by an electric force F el which is analogous to the gravitational force. The electric force is proportional to the product of two charges q 1 q 2 (instead of two masses m 1 m 2 ). The signs are opposite, because equal charges repel each other, while equal masses attract each other. F el = G el q 1 q 2 d 2 E el = G el q 1 q 2 d
9 Thermal Energy = Heat This is the kinetic energy of the thermal motion of atoms. The thermal energy is proportional to the absolute temperature T (measured in degrees Kelvin = K). Thermal energy is of lower grade than other energies, because thermal motion is disordered (random). Atoms move around unpredictably in all directions. Thermal energy cannot be converted fully into other forms of energy, because it is impossible to force the atoms to move all in the same direction (e.g. for moving a car).
10 Energy Conversion Energy can neither be created nor destroyed. It only can change from one form to another. Or it can be moved from one place to another. Sometimes we say that energy is lost, for example when driving a gasguzzling car. It is not really lost, but converted into thermal energy that heats up the engine and the exhaust gases.
11 First Law of Thermodynamics The sum of all forms of energy is conserved.
12 Conservation Laws and Symmetries Not only the energy is conserved, but also the momentum. momentum = mass velocity p = m v Energy conservation follows from translation symmetry in time. (Experiments done yesterday and today give the same result.) Momentum conservation is tied to translation symmetry in space. (Experiments done in New York and Paris give the same result.) (Compare particles versus waves in quantum physics: Lect. 21, Slide 11)
13 Power Power = Energy Time Joules (J) second (s) = Watts (W) (1 Horsepower = 750 Watts)
14 Power versus Energy Distinguish power from energy: A power plant produces power (GigaWatts). A light bulb uses power (100 Watt). The power company charges us for energy (kwh), since it has to pay for fuel to produce energy.
15 Pricing of Fossil vs. Solar Energy While we pay the power company in $ per kw h, solar electricity is priced in $ per kw. It takes energy to make solar cells, but after that there is no further cost for fuel. Sunlight is free. To compare the cost of solar and conventional energy, one has to multiply the cost per kw by the lifetime of solar cells (2030 years). The energy payback time is the time that it takes for a solar cell to generate the energy used for its manufacture (about 14 years). It is independent of price fluctuations (oil price, inflation, etc.).
Gravitational Potential Energy
Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the
More informationGeneral Physical Science
General Physical Science Chapter 4 Work and Energy Work The work done by a constant force F acting upon an object is the product of the magnitude of the force (or component of the force) and the parallel
More informationch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is a transfer of a. energy. c. mass. b. force. d. motion. 2. What
More informationSection 15.1 Energy and Its Forms (pages 446 452)
Section 15.1 and Its Forms (pages 446 452) This section describes how energy and work are related. It defines kinetic energy and potential energy, and gives examples for calculating these forms of energy.
More informationPS6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.
PS6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,
More informationIn science, energy is the ability to do work. Work is done when a force causes an
What is energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. Energy is expressed in units of joules (J). A joule is calculated
More informationUnit 2 Lesson 1 Introduction to Energy. Copyright Houghton Mifflin Harcourt Publishing Company
Get Energized! What are two types of energy? Energy is the ability to cause change. Energy takes many different forms and causes many different effects. There are two general types of energy: kinetic energy
More informationName Class Date. You do twice as much work. b. You lift two identical books one meter above the ground.
Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationWork, Energy and Power
Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed
More informationEnergy What is Energy? Energy is the ability to do work. Any object that has energy has the ability to create force. Energy is one of the fundamental building blocks of our universe. Energy appears in
More informationSemester 2. Final Exam Review
Semester 2 Final Exam Review Motion and Force Vocab Motion object changes position relative to a reference point. Speed distance traveled in a period of time. Velocity speed in a direction. Acceleration
More informationWork, Energy and Power
Name: KEY Work, Energy and Power Objectives: 1. To understand work and its relation to energy. 2. To understand how energy can be transformed from one form into another. 3. To compute the power from the
More informationForces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy
Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change
More informationAZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.
Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which
More informationWhat is Energy? What is the relationship between energy and work?
What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but
More informationPhysical Quantities and Units
Physical Quantities and Units 1 Revision Objectives This chapter will explain the SI system of units used for measuring physical quantities and will distinguish between vector and scalar quantities. You
More informationAt the skate park on the ramp
At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises
More informationPhysics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER
1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.
More informationCalculating particle properties of a wave
Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can
More information1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion
Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic
More informationBounce! Name. Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure.
Bounce 1 Name Bounce! Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure. Background information: Energy causes things to happen. During the day, the sun gives
More informationChapter 6. Work and Energy
Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a nonzero speed carries energy
More information8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
More informationForms of Energy. Freshman Seminar
Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form
More informationWork and Conservation of Energy
Work and Conservation of Energy Topics Covered: 1. The definition of work in physics. 2. The concept of potential energy 3. The concept of kinetic energy 4. Conservation of Energy General Remarks: Two
More informationCh 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43
Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state
More informationName: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.
1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,
More informationWhat Is Energy? Energy and Work: Working Together. 124 Chapter 5 Energy and Energy Resources
1 What You Will Learn Explain the relationship between energy and work. Compare kinetic and potential energy. Describe the different forms of energy. Vocabulary energy kinetic energy potential energy mechanical
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More informationLecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli
Lecture PowerPoints Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the
More informationPractice final for Basic Physics spring 2005 answers on the last page Name: Date:
Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible
More informationEnergy transformations
Energy transformations Objectives Describe examples of energy transformations. Demonstrate and apply the law of conservation of energy to a system involving a vertical spring and mass. Design and implement
More informationScience Standard Articulated by Grade Level Strand 5: Physical Science
Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties
More information(and Conservation of Energy)
(and Conservation of Energy) Energy What does the word energy mean to you? (Talk amongst yourselves) Just like always, the physicsdefinition is a little bit different, but we re going to hold off on it
More informationKinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
OpenStaxCNX module: m42217 1 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature OpenStax College This work is produced by OpenStaxCNX and licensed under the Creative Commons
More informationPreview of Period 2: Forms of Energy
Preview of Period 2: Forms of Energy 2.1 Forms of Energy How are forms of energy defined? 2.2 Energy Conversions What happens when energy is converted from one form into another form? 2.3 Efficiency of
More informationCenter of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
More informationWeight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More information3 Work, Power and Energy
3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy
More informationMCQ  ENERGY and CLIMATE
1 MCQ  ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated
More informationChapter 2: Forms of Energy
Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3: To define the efficiency
More informationEnergy comes in many flavors!
Forms of Energy Energy is Fun! Energy comes in many flavors! Kinetic Energy Potential Energy Thermal/heat Energy Chemical Energy Electrical Energy Electrochemical Energy Electromagnetic Radiation Energy
More informationWORK DONE BY A CONSTANT FORCE
WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newtonmeter (Nm) = Joule, J If you exert a force of
More information1. Mass, Force and Gravity
STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the
More informationIndiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
More informationPotential Energy and Equilibrium in 1D
Potential Energy and Equilibrium in 1D Figures 627, 628 and 629 of TiplerMosca. du = F x dx A particle is in equilibrium if the net force acting on it is zero: F x = du dx = 0. In stable equilibrium
More informationChem 1A Exam 2 Review Problems
Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?
More informationChapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
More informationCurrent Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light
Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4 Types of Waves Because light can travel through space, it cannot be
More informationBHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.
BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (15641642): 1 st true scientist and 1 st person to use
More informationUnderstanding and Measuring School Electronics
Understanding and Measuring School Electronics MATERIALS NEEDED: 1. 6 energy monitoring devices (note: these can be obtained from a variety of sources, i.e., local hardware stores, internet [average cost
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More information7 TH GRADE SCIENCE REVIEW
7 TH GRADE SCIENCE REVIEW The motion of an object is always judged with respect to some other object or point. When an object changes position over time relative to a reference point, the object is in
More informationEnergy & Conservation of Energy. Energy & Radiation, Part I. Monday AM, Explain: Energy. Thomas Birner, ATS, CSU
Monday AM, Explain: Energy MONDAY: energy in and energy out on a global scale Energy & Conservation of Energy Energy & Radiation, Part I Energy concepts: What is energy? Conservation of energy: Can energy
More informationChapter 2: Forms of Energy
Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage
More informationAstronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiplechoice questions based on the material covered by the lectures this past week. Choose
More informationCurso20122013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
More informationScience Standard 3 Energy and Its Effects Grade Level Expectations
Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects The flow of energy drives processes of change in all biological, chemical, physical, and geological
More informationCHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
More informationTHE IDEAL GAS LAW AND KINETIC THEORY
Chapter 14 he Ideal Gas Law and Kinetic heory Chapter 14 HE IDEAL GAS LAW AND KINEIC HEORY REIEW Kinetic molecular theory involves the study of matter, particularly gases, as very small particles in constant
More informationPotential / Kinetic Energy Remedial Exercise
Potential / Kinetic Energy Remedial Exercise This Conceptual Physics exercise will help you in understanding the Law of Conservation of Energy, and its application to mechanical collisions. Exercise Roles:
More informationTEACHER BACKGROUND INFORMATION THERMAL ENERGY
TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to
More informationPhysics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.
Physics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and noncontact forces. Whats a
More informationMS. Structure and Properties of Matter
MIDDLE SCHOOL PHYSICAL SCIENCE Alignment with National Science Standards Use the chart below to find Science AZ units that best support the Next Generation Science Standards* for Middle School Physical
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m.
P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 17, 2015 1:15 to 4:15 p.m., only The possession or use of any communications
More informationStatistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004
Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More informationThe rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.
H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law
More informationElements of Physics: Energy, Work, and Power Teacher s Guide
: Teacher s Guide Grade Level: 9 12 Curriculum Focus: Physical Science Lesson Duration: Three class periods Program Description Much of our success as an industrialized society stems from our ability to
More informationGrade Level Expectations for the Sunshine State Standards
for the Sunshine State Standards FLORIDA DEPARTMENT OF EDUCATION http://www.myfloridaeducation.com/ The seventh grade student: The Nature of Matter uses a variety of measurements to describe the physical
More informationMeasuring Electricity Class Activity
Measuring Electricity Class Activity Objective: To understand what energy is, how it impacts our daily lives, and how one can become an energy steward. Learning Outcomes: Students will: 1. Understand where
More informationExam on Heat and Energy
Exam on Heat and Energy True/False Indicate whether the statement is true or false. 1. Energy is the ability to cause change. 2. Energy is measured in joules. 3. When you ride a playground swing, your
More informationLesson 3  Understanding Energy (with a Pendulum)
Lesson 3  Understanding Energy (with a Pendulum) Introduction This lesson is meant to introduce energy and conservation of energy and is a continuation of the fundamentals of roller coaster engineering.
More informationWork Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.
PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance
More informationName Partners Date. Energy Diagrams I
Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy
More informationKinetic Theory of Gases
Kinetic Theory of Gases Physics 1425 Lecture 31 Michael Fowler, UVa Bernoulli s Picture Daniel Bernoulli, in 1738, was the first to understand air pressure in terms of molecules he visualized them shooting
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More informationWORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS
WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that
More informationThermochemistry. r2 d:\files\courses\111020\99heat&thermorans.doc. Ron Robertson
Thermochemistry r2 d:\files\courses\111020\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy
More informationA. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.
I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to
More informationHEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases
UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius
More informationEnergy and Energy Transformations Test Review
Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.
More informationChapter 7 Momentum and Impulse
Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time
More informationScience Tutorial TEK 6.9C: Energy Forms & Conversions
Name: Teacher: Pd. Date: Science Tutorial TEK 6.9C: Energy Forms & Conversions TEK 6.9C: Demonstrate energy transformations such as energy in a flashlight battery changes from chemical energy to electrical
More informationEnergy  Key Vocabulary
Energy  Key Vocabulary Term Potential Energy Kinetic Energy Joules Gravity Definition The energy an object possesses due to its position. PE = mgh The energy an object possesses when it is in motion.
More informationMechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationFluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all
More informationNotes on Elastic and Inelastic Collisions
Notes on Elastic and Inelastic Collisions In any collision of 2 bodies, their net momentus conserved. That is, the net momentum vector of the bodies just after the collision is the same as it was just
More informationName Class Period. F = G m 1 m 2 d 2. G =6.67 x 1011 Nm 2 /kg 2
Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.
More informationForms of Energy: Multiple Transformations : Teacher Notes
Forms of Energy: Multiple Transformations : Teacher Notes Introduction The focus of the investigation is to further define energy and realize that chains of energy transformations can occur. The VoltageCurrent,
More informationForces. When an object is pushed or pulled, we say that a force is exerted on it.
Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change
More information= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C
Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.
More informationGRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:
GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant
More informationCLASSICAL CONCEPT REVIEW 8
CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with
More informationW i f(x i ) x. i=1. f(x i ) x = i=1
Work Force If an object is moving in a straight line with position function s(t), then the force F on the object at time t is the product of the mass of the object times its acceleration. F = m d2 s dt
More information