Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS



Similar documents
Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005

Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)

Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by

EDC Lesson 12: Transistor and FET Characteristics EDCLesson12- ", Raj Kamal, 1

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1

Bob York. Transistor Basics - MOSFETs

Integrated Circuits & Systems

Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

The MOSFET Transistor

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

Field-Effect (FET) transistors

AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs

MOS Transistors as Switches

Chapter 10 Advanced CMOS Circuits

COMMON-SOURCE JFET AMPLIFIER

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

BJT Ebers-Moll Model and SPICE MOSFET model

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

A Review of MOS Device Physics

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN

Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005

Junction FETs. FETs. Enhancement Not Possible. n p n p n p

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2

CONTENTS. Preface Energy bands of a crystal (intuitive approach)

Power MOSFET Basics Abdus Sattar, IXYS Corporation

Understanding Low Drop Out (LDO) Regulators

Field Effect Transistors

Fourth generation MOSFET model and its VHDL-AMS implementation

Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5

MOS Transistor 6.1 INTRODUCTION TO THE MOSFET

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

An Introduction to the EKV Model and a Comparison of EKV to BSIM

Application Note AN-940

Power MOSFET Basics By Vrej Barkhordarian, International Rectifier, El Segundo, Ca.

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

A I DM. W/ C V GS Gate-to-Source Voltage ± 20. Thermal Resistance Symbol Parameter Typ. Max. Units

5.11 THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET)

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

A I DM. W/ C V GS Gate-to-Source Voltage ± 12. Thermal Resistance Symbol Parameter Typ. Max. Units

Power MOSFET FEATURES. IRF9640PbF SiHF9640-E3 IRF9640 SiHF9640

N-Channel 20-V (D-S) 175 C MOSFET

The MOS Transistor in Weak Inversion

RoHS Compliant Containing no Lead, no Bromide and no Halogen. IRF9310PbF SO8 Tube/Bulk 95 IRF9310TRPbF SO8 Tape and Reel 4000

Power MOSFET. IRF510PbF SiHF510-E3 IRF510 SiHF510. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

Depletion-Mode Power MOSFETs and Applications Abdus Sattar, IXYS Corporation

Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20

IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings

Power MOSFET. IRF9520PbF SiHF9520-E3 IRF9520 SiHF9520. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS V Gate-Source Voltage V GS ± 20

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20

Winbond W2E512/W27E257 EEPROM

Basic FET Ampli ers 6.0 PREVIEW 6.1 THE MOSFET AMPLIFIER

Power MOSFET FEATURES. IRFZ44PbF SiHFZ44-E3 IRFZ44 SiHFZ44 T C = 25 C

Features. Description. Table 1. Device summary. Order code Marking Package Packing. STP110N8F6 110N8F6 TO-220 Tube

N-Channel 40-V (D-S) 175 C MOSFET

Power MOSFET FEATURES. IRL540PbF SiHL540-E3 IRL540 SiHL540

DE N06A RF Power MOSFET

P-Channel 20 V (D-S) MOSFET

P-Channel 20-V (D-S) MOSFET

IRF740 N-CHANNEL 400V Ω - 10A TO-220 PowerMESH II MOSFET

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20

Power MOSFET FEATURES. IRF540PbF SiHF540-E3 IRF540 SiHF540. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

IRF5305PbF. HEXFET Power MOSFET V DSS = -55V. R DS(on) = 0.06Ω I D = -31A

Features. P-Channel Enhancement Mode MOSFET

Sheet Resistance = R (L/W) = R N L

Introduction to VLSI design (EECS 467)

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

MOSFET N-channel enhancement switching transistor IMPORTANT NOTICE. use

AN-9010 MOSFET Basics

SIPMOS Small-Signal-Transistor

Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.

Introduction to CMOS VLSI Design

N-Channel 100 V (D-S) MOSFET

Power MOSFET FEATURES. IRF520PbF SiHF520-E3 IRF520 SiHF520. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

P-Channel 1.25-W, 1.8-V (G-S) MOSFET

Module 7 : I/O PADs Lecture 33 : I/O PADs

STW20NM50 N-CHANNEL Tjmax Ω - 20ATO-247 MDmesh MOSFET

Application Note AN-1070

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

V DSS R DS(on) max Qg. 30V 3.2mΩ 36nC

200V, N-CHANNEL. Absolute Maximum Ratings. Features: 1 PD

IRF6201PbF. HEXFET Power MOSFET V DS 20 V. R DS(on) max mω. Q g (typical) 130 nc 27 A. Absolute Maximum Ratings

N-Channel 60-V (D-S), 175 C MOSFET

Intel s Revolutionary 22 nm Transistor Technology

IRFP460LC PD HEXFET Power MOSFET V DSS = 500V. R DS(on) = 0.27Ω I D = 20A

N-Channel 60-V (D-S) MOSFET

P-Channel 60 V (D-S) MOSFET

Fabrication and Characterization of N- and P-Type a-si:h Thin Film Transistors

CHAPTER 2 POWER AMPLIFIER

ENEE 313, Spr 09 Midterm II Solution

IRLR8743PbF IRLU8743PbF HEXFET Power MOSFET

OptiMOS 3 Power-Transistor

05 Bipolar Junction Transistors (BJTs) basics

Advanced VLSI Design CMOS Processing Technology

Transcription:

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Outline 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation 3. I-V characteristics Reading Assignment: Howe and Sodini, Chapter 4, Sections 4.1-4.3 Announcement: Quiz#1, March 14, 7:30-9:30PM, Walker Memorial; covers Lectures #1-9; open book; must have calculator 6.012 Spring 2007 Lecture 8 1

1. MOSFET: layout, cross-section, symbols ; ; ; gate contact gate interconnect n + polysilicon gate active area (thin oxide area) polysilicon gate contact metal interconnect A ; ; ; A ; ; ; ; ; ; ; ; source contacts W ; drain contacts bulk contact ; ; ; ; ; ; field oxide edge of source drain active area interconnect interconnect (a) gate oxide deposited bulk source n drain oxide + polysilicon gate interconnect interconnect interconnect L n + drain diffusion n + source diffusion L p + diff [ p-type ] Key elements: Inversion layer under gate (depending on gate voltage) Heavily doped regions reach underneath gate inversion layer to electrically connect source and drain 4-terminal device: body voltage important (b) ; ; 6.012 Spring 2007 Lecture 8 2

Circuit symbols Two complementary devices: n-channel device (n-mosfet) on p-substrate uses electron inversion layer p-channel device (p-mosfet) on n-si substrate uses hole inversion layer G + I Dn V GS _ D + V DS > 0 B + _ V BS S G I Dn D S B _ G V SG I Dp + S + V SB _ B V SD > 0 D G I Dp S D B (a) n-channel MOSFET (b) p-channel MOSFET Drain n + Source p + Gate p Bulk or Body Gate n Bulk or Body Source n + Drain p + 6.012 Spring 2007 Lecture 8 3

2. Qualitative Operation Drain Current (I D ): proportional to inversion charge and the velocity that the charge travels from source to drain Velocity: proportional to electric field from drain to source Gate-Source Voltage (V GS ): controls amount of inversion charge that carries the current Drain-Source Voltage (V DS ): controls the electric field that drifts the inversion charge from the source to drain VDS VGS ID S G D n+ n+ depletion region inversion layer p B Want to understand the relationship between the drain current in the MOSFET as a function of gate-to-source voltage and drain-to-source voltage. Initially consider source tied up to body (substrate or back) 6.012 Spring 2007 Lecture 8 4

Three Regimes of Operation: Cut-off Regime MOSFET: V GS < V T, with V DS 0 Inversion Charge = 0 V DS drops across drain depletion region I D = 0 S V GS <V T G V DS 0 D n+ n+ depletion region p no inversion layer anywhere 6.012 Spring 2007 Lecture 8 5

Three Regimes of Operation: Linear or Triode Regime S V GS >V T G V GD >V T V DS 0 D n+ n+ depletion region p inversion layer everywhere V GD = V GS -V DS Electrons drift from source to drain electrical current! V GS Q N, I D V DS E y, I D V DS << V GS -V T 6.012 Spring 2007 Lecture 8 6

Three Regimes of Operation: Saturation Regime V DS > V GS -V T V GS > V T, V GD < V T ---> V DS > V GS -V T S V GS >V T G V GD <V T D n+ n+ depletion region p inversion layer "pinched-off" at drain side I D is independent of V DS : I D =I dsat Electric field in channel cannot increase with V DS 6.012 Spring 2007 Lecture 8 7

3. I-V Characteristics (Assume V SB =0) Geometry of problem: All voltages are referred to the Source General expression of channel current Current can only flow in the y-direction: Total channel current: I y = W Q N (y) v y (y) Drain current is equal to minus channel current: I D = W Q N (y) v y (y) 6.012 Spring 2007 Lecture 8 8

I-V Characteristics (Contd.) I D = W Q N (y) v y (y) Re-write equation in terms of voltage at location y, V(y): If electric field is not too high: v y (y) = µ n E y (y) = µ n dv dy For Q n (y), use charge-control relation at location y: Q N (y) = C ox [ V GS V(y) V ] T for V GS V(y) V T.. Note that we assumed that V T is independent of y. See discussion on body effect in Section 4.4 of text. All together the drain current is given by: I D = W µ n C ox [ V GS V( y) V T ] dv(y) dy Simple linear first order differential equation with one un-known, the channel voltage V(y). 6.012 Spring 2007 Lecture 8 9

I-V Characteristics (Contd..) Solve by separating variables: I D dy = W µ n C ox [ V GS V(y) V T ] dv Integrate along the channel in the linear regime subject the boundary conditions : - Source: y=0, V(0)=0 - Drain: y=l, V(L)=V DS (linear regime) Then: L I D 0 dy = W µ n C ox [ V GS V(y) V T ] dv Resulting in: I D y V DS 0 L [] 0 = ID L = W µ n C ox V GS V 2 V T V 0 V DS I D = W L µ nc ox V GS V DS 2 V T V DS 6.012 Spring 2007 Lecture 8 10

I-V Characteristics (Contd ) I D = W L µ nc ox V GS V DS 2 V T V DS for V DS < V GS V T Key dependencies: V DS I D (higher lateral electric field) V GS I D (higher electron concentration) This is the linear or triode regime: It is linear if V DS <<V GS -V T 6.012 Spring 2007 Lecture 8 11

I-V Characteristics (Contd.) Two important observations 1. Equation only valid if V GS V(y) V T at every y. Worst point is y=l, where V(y) = V DS, hence, equation is valid if V DS V GS V T 6.012 Spring 2007 Lecture 8 12

I-V Characteristics (Contd..) Two important observations 2. As V DS approaches V GS V T, the rate of increase of I D decreases. Reason: As y increases down the channel, V(y), Q N (y), and E y (y) (fewer carriers moving faster) inversion layer thins down from source to drain I D grows more slowly. 6.012 Spring 2007 Lecture 8 13

I-V Characteristics (Contd ) Drain Current Saturation As V DS approaches V DSsat = V GS V T increase in E y compensated by decrease in Q N I D saturates when Q N equals 0 at drain end. Value of drain saturation current: I Dsat = I Dlin (V DS = V DSsat = V GS V T ) Then I Dsat = W L µ nc ox V GS V DS 2 V T V DS V DS =V GS V T I Dsat = 1 2 W L µ nc ox [ V GS V T ] 2 Will talk more about saturation regime next time. 6.012 Spring 2007 Lecture 8 14

I-V Characteristics (Contd.) Output Characteristics Transfer characteristics: 6.012 Spring 2007 Lecture 8 15

Output Characteristics 6.012 Spring 2007 Lecture 8 16

Summary of Key Concepts MOSFET Output Characteristics I-V Characteristics in Cutoff Regime V GS < V T I D = 0 I-V Characteristics in Linear Regime V DS < V GS -V T I D = W L µ nc ox V GS V DS 2 V T I-V Characteristics in Saturation Regime V DS V GS -V T V DS I Dsat = W 2L µ nc ox ( V GS V T ) 2 6.012 Spring 2007 Lecture 8 17