Numerical Methods for the Navier-Stokes Equations



Similar documents
Outline. Numerical Analysis Boundary Value Problems & PDE. Exam. Boundary Value Problems. Boundary Value Problems. Solution to BVProblems

Mechanical Vibrations Chapter 4


University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

Optimal Control Formulation using Calculus of Variations

DIFFERENTIAL FORMULATION OF THE BASIC LAWS

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

Solving the Navier-Stokes! Equations in Primitive Variables!

Mechanical Properties - Stresses & Strains

ASCII CODES WITH GREEK CHARACTERS


Chapter 5 Darcy s Law and Applications

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

Section 1. Finding Common Terms

Unit 6 Plane Stress and Plane Strain

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

How To Factor By Gcf In Algebra 1.5

The All New... TACO ZONE CONTROLS WIRING GUIDE

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

15. Symmetric polynomials

Economics Honors Exam 2008 Solutions Question 5

Transforming the Net Present Value for a Comparable One

MTH6121 Introduction to Mathematical Finance Lesson 5

Derivative Securities: Lecture 7 Further applications of Black-Scholes and Arbitrage Pricing Theory. Sources: J. Hull Avellaneda and Laurence

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

Why we use compounding and discounting approaches

ANALYTIC PROOF OF THE PRIME NUMBER THEOREM

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

Lecture 2: Telegrapher Equations For Transmission Lines. Power Flow.

Unsteady State Molecular Diffusion

Unit 3 Boolean Algebra (Continued)

Traffic Modeling and Prediction using ARIMA/GARCH model

Unit 3 (Review of) Language of Stress/Strain Analysis

Solutions for Review Problems

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics

Associativity condition for some alternative algebras of degree three

Pressure Drop in Air Piping Systems Series of Technical White Papers from Ohio Medical Corporation

Section 11.3: The Integral Test

Algebra (Expansion and Factorisation)

CHAPTER 22 ASSET BASED FINANCING: LEASE, HIRE PURCHASE AND PROJECT FINANCING

Systems Design Project: Indoor Location of Wireless Devices

Boolean Algebra Part 1

1/22/2007 EECS 723 intro 2/3

Table of Contents Appendix 4-9



Mortality Variance of the Present Value (PV) of Future Annuity Payments

Modulation Principles

Math 53 Worksheet Solutions- Minmax and Lagrange

Research Article Dynamic Pricing of a Web Service in an Advance Selling Environment

REVISTA INVESTIGACION OPERACIONAL VOL. 31, No.2, , 2010

Group Theory and Molecular Symmetry

Wavelet Transform of Fractional Integrals for Integrable Boehmians

Høgskolen i Narvik Sivilingeniørutdanningen


Hilbert Transform Relations

Job Market: Top Accounting Students Optimistic

Additional questions for chapter 4

Stock Price Pinning near Option Expiration Dates

5 means to write it as a product something times something instead of a sum something plus something plus something.

Campus Sustainability Assessment and Related Literature

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley


Math 21a Curl and Divergence Spring, Define the operator (pronounced del ) by. = i

Fluent Software Training TRN Solver Settings. Fluent Inc. 2/23/01

Equities: Positions and Portfolio Returns

Distributed Containment Control with Multiple Dynamic Leaders for Double-Integrator Dynamics Using Only Position Measurements

Factoring - Greatest Common Factor

Theory of turbo machinery / Turbomaskinernas teori. Chapter 4

Tridiagonal Solvers on the GPU and Applications to Fluid Simulation. Nikolai Sakharnykh, NVIDIA

S. Tanny MAT 344 Spring be the minimum number of moves required.


12. Spur Gear Design and selection. Standard proportions. Forces on spur gear teeth. Forces on spur gear teeth. Specifications for standard gear teeth

PRESSURE BUILDUP. Figure 1: Schematic of an ideal buildup test



Introduction to Complex Numbers in Physics/Engineering

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage

3 Energy Non-Flow Energy Equation (NFEE) Internal Energy. MECH 225 Engineering Science 2

The Australian Journal of Mathematical Analysis and Applications

OHIO REGION PHI THETA KAPPA

Constrained optimization.

4.3. The Integral and Comparison Tests

Rotation Matrices and Homogeneous Transformations

VECTOR ALGEBRA A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.

1. Prove that the empty set is a subset of every set.

root node level: internal node edge leaf node Data Structures & Algorithms McQuain

Part II: Finite Difference/Volume Discretisation for CFD

4.1 Modules, Homomorphisms, and Exact Sequences

Teoretisk Fysik KTH. Advanced QM (SI2380), test questions 1

Transcription:

Comaioal Flid Dyamics I Nmerical Meods or e Navier-Sokes Eqaios Isrcor: Hog G. Im iversiy o Miciga Fall 00

Comaioal Flid Dyamics I Olie Wa will be covered Smmary o solio meods - Icomressible Navier-Sokes eqaios - Comressible Navier-Sokes eqaios Hig accracy meods - Saial accracy imroveme - Time iegraio meods Wa will o be covered No-iie dierece aroaces sc as - Fiie eleme meods (srcred grid) - Secral meods

Comaioal Flid Dyamics I Icomressible Navier-Sokes Eqaios

Comaioal Flid Dyamics I Icomressible Navier-Sokes Eqaios α 0 v w Te (ydrodyamic) ressre is decoled rom e res o e solio variables. Pysically, i is e ressre a drives e low, b i racice ressre is solved sc a e icomressibiliy codiio is saisied. Te sysem o ordiary diereial eqaios (ODE s) are caged o a sysem o diereial-algebraic eqaios (DAE s), were algebraic eqaios acs like a cosrai.

Comaioal Flid Dyamics I Voriciy-sream cio ormlaio Advaages: - Pressre does o aear exlicily (ca be obaied laer) - Icomressibiliy is aomaically saisied (by deiiio o sream cio) Drawbacks: - Limied o -D alicaios (Revised 3-D aroaces are available)

Comaioal Flid Dyamics I Solio Meods or Icomressible N-S Eqaios i Primiive Formlaio: Ariicial comressibiliy (Cori, 967) mosly seady Pressre correcio aroac ime-accrae - MAC (Harlow ad Welc, 965) - Proecio meod (Cori ad Temam, 968) - Fracioal se meod (Kim ad Moi, 975) - SIMPLE, SIMPLER (Paakar, 98)

Comaioal Flid Dyamics I Ariicial Comressibiliy - Back o a sysem o ODE by Wi roerly-cose, solve il Origially develoed or seady roblems Te erm ariicial comressibiliy is coied rom eqaio o sae Possible merical diiclies or large c α c 0 c : arbirary cosa c 0 ( ( x) ) c

Comaioal Flid Dyamics I Ariicial Comressibiliy - Te coce ca be alied o a ime-accrae meod by sig sedo-ime seig a every sb-ses. β α c 0 A every real ime se, ake sedo-ime seig sig exlici ime iegraio il 0, 0 Sice e sedo ime scale is o ysical, we ca accelerae e iegraio owever we wa.

Comaioal Flid Dyamics I Pressre Correcio Meod - Marker-ad-Cell (MAC) Meod Harlow ad Welc (965) Origially derived or ree srace lows wi saggered grid Exlici iegraio α ( α Takig divergece o momem eqaio, ( ) ) ad α 0 ( Poisso eqaio )

Comaioal Flid Dyamics I WPI Proecio Meod Cori (968), Temam (969) Origially derived o a colocaed grid Ideical o MAC exce or e Poisso eqaio Pressre Correcio Meod - 0 0

Comaioal Flid Dyamics I Pressre Correcio Meod - 3 MAC vs. Proecio. Iegraio wio ressre ( A D ). Poisso eqaio ( ) 3. Proecio io icomressible ield ( A D )

Comaioal Flid Dyamics I Pressre Correcio Meod - 4 SIMPLE Algorim Paakar (98) (Semi-Imlici Meod or Pressre Liked Eqaios) - Ieraive rocedre wi ressre correcio. Gess e ressre ield. Solve e momem eqaio (imlicily) 3. Solve e ressre correcio eqaio 0 0 0 0 0 α 0 ( ) 0 0

Comaioal Flid Dyamics I Pressre Correcio Meod - 5 4. Correc e ressre ad velociy 0 0 5. Go o. Reea e rocess il e solio coverges. Noes: - Origially develoed or e saggered grid sysem. - Te correced velociy ield saisies e coiiy eqaio eve i e ressre correcio is oly aroximae. - Someimes eds o be overesimaed 0 ω ( ω 0.8) derrelaxaio

Comaioal Flid Dyamics I Pressre Correcio Meod - 6 SIMPLER (SIMPLE Revised) - Icororaig e roecio meod (racioal se). Gess e velociy ield 0. Solve momem eqaio (imlicily) wio ressre ˆ 0 ˆ ˆ α ˆ 3. Solve e ressre Poisso eqaio * ( û)

Comaioal Flid Dyamics I Pressre Correcio Meod - 7 5. Solve e momem eqaio wi * 0 6. Pressre correcio eqaio * 7. Correc e velociy, b o e ressre * * α ( * ) 8. Go o. Reea e rocess il solio is coverged. * * *

Comaioal Flid Dyamics I Sabiliy Cosideraio Exlici ime iegraio i -D reqires e sabiliy codiio: 4α < ad < ( ) v 4α Hig-Re low: advecio-corolled Low-Re low: disio-corolled 4 ( v ) /α 4α se imlici scemes or aroriae erms! 0 / α ~ Re a bo limis!

Comaioal Flid Dyamics I PI W Accracy Imroveme Saial Saial Accracy Exlici dierecig - se larger secils ) ( O ) ( 8 8 4 O Tridiagoal - Padé (comac) scemes ( ) ) ( 3 4 4 O Peadiagoal L e d c b a ε δ γ β α

Comaioal Flid Dyamics I Accracy Imroveme Saial 3 Exac E 4E 6E 6T 8E 8T k' 0 0 3 k Re: Keedy, C. A. ad Career, M. H., Alied Nmerical Maemaics, 4,. 397-433 (994).

Comaioal Flid Dyamics I Accracy Imroveme Temoral Temoral Accracy A( ) D( ) Imlici Crak-Nicolso A( ) A( [ ( ) ] / ) α( ) Noliear advecio erm reqires ieraio.

Comaioal Flid Dyamics I PI W Accracy Imroveme Temoral Liearizaio o Advecio Terms For examle, a -D eqaio ca be liearized as 0 y x F E v xy xx v E yy xy v v v F [ ] [ ] 0 y B x A [ ] [ ] F E B A, were Jacobia marix

Comaioal Flid Dyamics I Accracy Imroveme Temoral 3 Fracioal Se Meod Kim & Moi (985) Proecio meod exeded o iger accracy φ 0 Re [ ] 3A( ) A( ) ( ) Adams-Basor (AB) φ Crak-Nicolso Noe a φ is diere rom e origial ressre φ φ Re

Comaioal Flid Dyamics I Accracy Imroveme Temoral 4 Treame o imlici viscos erms [ ] 3 ( ) ( ) A A ( ) Re ( δ xx δ yy δ zz ) Re Re Re 3A( ) A( ) δ xx δ yy δ zz Re Facorizig, ( δ xx δ yy δ zz ) Re Re Re 3A( ) A( ) δ xx δ yy δ Re TDMA i ree direcios [ ] ( ) [ ] ( ) zz

Comaioal Flid Dyamics I Accracy Imroveme Temoral 5 Noes o Fracioal Se Meod Origially imlemeed io a saggered grid sysem Laer imroved wi 3rd-order Rge-Ka meod Re: Le & Moi, J. Com. Pys., 9:369 (99) Te meod ca be alied o a variable-desiy roblem (e.g. sbsoic combsio, wo-ase low) were Poisso eqaio becomes ( ) φ T Eq. o Sae Re: Rlad, P. D. Tesis, Saord iversiy (989) Bell, Collela ad Glaz, JCP, 85:57 (989)

Comaioal Flid Dyamics I Bodary Codiios Bodary Codiios or Icomressible Flows I geeral, bodary codiio reame is easier a or e comressible low ormlaio de o e absece o acosics Tyical bodary codiios: - Periodic:, N N ec. - Ilow codiios: ( x 0) F( y, z, ) - Olow codiios: covecive olow codiio 0 a x L x A da

Comaioal Flid Dyamics I Comressible Navier-Sokes Eqaios

Comaioal Flid Dyamics I WPI 0 z y x G F E E w v x xz xy xx E w v ψ ) ( E y yz yy xy v E vw v v v ψ ) ( F z zz yz xz w E vw vw w w ψ ) ( G T c T c e RT v,, R e T e R c v ) (, ) (, γ γ γ or Cosiive relaios z zz yz xz z y yz yy xy y x xz xy xx x q w v q w v q w v ψ ψ ψ were

Comaioal Flid Dyamics I Solio meods or comressible N-S eqaios E x F y G z ollows e same eciqes sed or yerbolic eqaios For smoo solios wi viscos erms, ceral dierecig sally works. No eed o worry abo wid meod, lx-sliig, TVD, FCT (lx-correced rasor), ec. I geeral, wid-like meods irodces merical dissiaio, ece rovides sabiliy, b accracy becomes a cocer.

Comaioal Flid Dyamics I Exlici Meods - MacCormack meod - Lea rog/dfor-frakel meod - Lax-Wedro meod - Rge-Ka meod Imlici Meods - Beam-Warmig sceme - Rge-Ka meod Mos meods are d order. Te Rge-Ka meod ca be easily ailored o iger order meod (bo exlici ad imlici).

Comaioal Flid Dyamics I WPI Mos o e ime, a imlici iegraio meod ivolves oliear advecio erms wic are liearized as z y x G F E [ ] [ ] [ ] z C y B x A [ ] [ ] [ ] C B A G F E,, ADI, acorizaio, ec.

Comaioal Flid Dyamics I limaely, comressible Navier-Sokes eqaios ca be wrie as a sysem o ODE s d F d ( E F x y (, ( ) ) 0 ) 0 G z Iiial codiio Solio eciqes or a sysem o ODE alies. - Exlici vs. Imlici (Nosi vs. Si) - Mli-sage vs. Mli-se

Comaioal Flid Dyamics I Bodary Codiios Bodary Codiios or Comressible Flows I geeral, bodary codiio or e comressible low is rickier becase all e acosic waves ms be roerly ake care o a e bodaries. Tyical bodary codiios: - Periodic: sill easy o imleme - Bo ilow ad olow codiios reqire reame o caracerisic waves (ard-wall, orelecig, soge, ec).