Systems Design Project: Indoor Location of Wireless Devices


 Julius Webster
 3 years ago
 Views:
Transcription
1 Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) Supervised By: Patricio La Rosa ad Paul Mi Departmet of Electrical ad Systems Egieerig Washigto Uiversity i St. Louis
2 Abstract: Locatio Based Services (LBS) deliver the user positioig data for the purpose of avigatio i ukow eviromets. Withi the comig years, the idustry is expected to experiece sigificat growth i reveue ad market presece. The more promiet techology withi the LBS idustry is the Global Positioig System (GPS). GPS is highly effective for avigatig outdoor areas but lacks the precisio ecessary for effectively mappig ad egotiatig idoor eviromets. Idoor mappig techology geerally utilizes wireless idoor devices that emit referece sigals to the referet devices (sometimes statioary ad sometimes mobile) which, i tur, map the surroudig area. Over the past few years, there has bee growig demad for precise ad relatively cheap idoor mappig techology. This is largely due to the variety of its commercial applicatios such as helpig hadicapped persos avigate withi their household, givig household robotic devices the ability to map idoor eviromets, trackig products i a warehouse, ad maagig retail ivetory. I desigig a idoor mappig system, the mai goals are precisio ad accuracy. A acillary goal would be to desig a simplistic system which would prove less costly. This project takes aim at both the aforemetioed primary ad acillary goals. We seek to develop a precise method for idoor positioig ad avigatio by first selectig a appropriate commuicatio protocol ad the selectig a efficiet trackig algorithm. After surveyig available methods, we determied that the Wireless Local Area Network (WLAN) is the appropriate protocol due to its simplicity ad low costs. Before choosig a trackig
3 algorithm for our movig source, we eeded to be able to accurately estimate the positio of a static source both with ad without measuremet error. Without measuremet error, we could coveietly calculate a Liear ad Noliear solutio for our source positio usig the three WLAN APs ad the trilateratio method. With measuremet error, we could still use trilateratio ad the three APs but did ot have a perfect threeway itersectio that could be ascertaied mathematically. Thus, we had to devise our ow method of estimatig a source positio which simply ivolved takig the average of three closest itersectio poits. Oce we established methods for estimatig the positio of a static source, we decided to use a Kalma Filter as our trackig algorithm for a mobile source due to its precisio ad relatively simple implemetatio. 1.0 Descriptio of Projects ad Accomplishmets: 1.1 Commuicatio Protocol The first phase of the project ivolved selectig a efficiet commuicatio protocol betwee our sigal emitters (APs) ad sigal receiver (source termial). At the oset of this project the two cadidates were the WLAN ad Bluetooth protocols. After surveyig both methods, we ultimately determied that WLAN protocol was more viable because it is easier to extract pertiet data such as sigal stregth ad roud trip time (RTT). RTT i particular would be of great importace to this project. Uder the IEEE WLAN Stadard, RTT is measured as the time elapsed betwee the RequesttoSed (RTS) frame ad the CleartoSed (CTS) frame. RTS ad CTS represet a frame set by the trasmitter (source) ad a respose frame set by the receiver (AP). Therefore, RTT ca be
4 estimated as the time betwee whe the source asks the AP for a sigal ad whe the AP respods. Usig the simple formula distace = rate x time where time is represeted by RTT ad rate is represeted by the speed of light, we ca calculate distace which represets the sigal radius of a AP. Whe we kow the sigal radius of each poit, we ca mathematically calculate the itersectio of all three sigals ad this itersectio provides us with a reasoable estimatio of our source termial. 1.2 Trilateratio without Measuremet Error or Noise The experimet ivolves three WLAN access poits (APs) ad a mobile termial that receives the sigals from each of three APs. Each AP emits a uique sigal which forms a uique circle with a uique radius. Usig the method of trilateratio, we fid the itersectio of these three circles mathematically ad the result is our positio estimatio. We ca use a fourth AP to measure the height of the mobile termial but, for this project we assume a flat surface ad thus oly three APs are eeded to measure the termial s locatio i two dimesios. This assumptio is made for the purpose of simplifyig calculatios later o. The trilateratio process is visualized i the figure below: Access Poit sigals Source Estimatio via Trilateratio Method Access Poit 1 Access Poit 2 Access Poit 3 Figure 1.2.1: Trilateratio Visualized
5 For this phase of our calculatios, we assume there is o measuremet error or oise ad thus all three of our AP sigals ca coveietly itersect at oe poit. This assumptio allows us to mathematically derive a estimate for the itersectio poit first through the Liear Least Squares method ad the a refied estimate through the Noliear Least Squares method. The first step i solvig for this itersectio poit is idetifyig the pertiet system variables. For the system visualized i Figure 1.2.1, we defie the followig parameters: (x,y): source positio (x i, y i ), r i : ceter ad radius of APs sigals for,2,3 Figure 1.2.2: Trilateratio System Parameters Liear Least Squares Method as such: With system defied system parameters from Figure 1.2.2, our system ca be visualized AP 1 (x 1, y 1 ) Source Positio (x, y) r 1 r 2 r 3 (x 2, y 2 ) (x 3, y 3 ) AP 2 AP 3 Figure : Trilateratio Visualized with System Parameters
6 Kowig that the distace betwee each idividual AP ad the source is the AP s sigal radius, we ca derive the followig system of equatios usig the distace formula: (1) (x 1 x) 2 + (y 1 y) 2 2 = r 1 (2) (x 2 x) 2 + (y 2 y) 2 2 = r 2 (3) (x 3 x) 2 + (y 3 y) 2 2 = r 3 3 equatios, 2 ukows ad (x i, y i ), r i for,2,3 are give Figure : Trilateratio System of Equatios I order to obtai a solutio to the aforemetioed system of equatios, we apply the Liear Least Squares (LLS) method. Though the method is ot the most accurate, it provides a decet meas for estimatig the source, a estimate we ca later improve via the Noliear Least Squares method. To liearize the system, we eed to remove oe costrait ad so we arbitrarily choose AP 1 which gives us a system of two equatios ad two ukows. The source estimatio is set up as follows: 1. Calculate the distace from AP 1 to the other APs via the followig formula: d ij = (x i x j ) 2 + (y i y j ) 2, (i=2,3 ad j=1) 2. Calculate the system costraits (b ij ) give by: b ij = ½(r 2 2 j r i + d 2 ij ), (i=2,3 ad j=1) Figure : LLS Calculatio (Part 1)
7 3. Simplify the system ito matrix form: Ax = b where x A = 2 x 1 y 2 y 1 xx x= 1 b b= 21 x 3 x 1 y 3 y 1 yy 1 b Sice the radii, r i, are oly approximate, the problem requires the determiatio of x such that Ax b: A T Ax = A T b 5. Assumig the APs are ot placed i a straight lie, we kow that A T A is osigular ad ca solve for x: x= (A T A) 1 A T b Figure : LLS Calculatio (Part 2) Usig Matlab, we implemeted the LLS method above ad effectively estimated the iitial static source positio with the radii ad locatio of the three AP sigals as our iputs Noliear Least Square Method As metioed before, the LLS method is ot the most accurate method of estimatio but, usig the result from the LLS method as a iitial estimate, we ca improve that estimate by miimizig the sum of the squared error for each distace usig the Noliear Least Squares (NLS) method. NLS is a iterative algorithm that rus util the differece betwee the curret ad previous iteratios meets some modifiable ad prespecified threshold. The NLS is set up as follows:
8 (1) R k+1 = R k (J k T J k ) 1 J k T f k *R k deotes the k th approximate solutio (x, y) T, J k represets the Jacobia matrix, ad f k represets error betwee the give radius ad the measured distace at the k th iteratio for each access poit. Figure : NLS Algorithm The above algorithm ca easily be programmed i Matlab give the followig equatios: (xx i ) 2 (xx i )(yy i ) (f i +r i ) 2 (f i +r i ) 2 J T J= J T f= (xx (yy i ) 2 i )(yy i ) (f (f i +r i ) 2 i +r i ) 2 *measuremet error f i = ((xx i ) 2 + (yy i ) 2 ) 1/2 r i for,2,3 (xx i ) 2 f i (f i +r i ) 2 (yy i ) 2 f i (f i +r i ) 2 Figure : NLS Algorithm Simplified //Still to do: explai ad defie our NLS method, show graphical results from Matlab fuctios //Explai our cluster method for source estimatio with measuremet oise
1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationThe analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationVladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
More informationStudy on the application of the software phaselocked loop in tracking and filtering of pulse signal
Advaced Sciece ad Techology Letters, pp.3135 http://dx.doi.org/10.14257/astl.2014.78.06 Study o the applicatio of the software phaselocked loop i trackig ad filterig of pulse sigal Sog Wei Xia 1 (College
More information. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2
4. Basic feasible solutios ad vertices of polyhedra Due to the fudametal theorem of Liear Programmig, to solve ay LP it suffices to cosider the vertices (fiitely may) of the polyhedro P of the feasible
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More informationNEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,
NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical
More informationTHE problem of fitting a circle to a collection of points
IEEE TRANACTION ON INTRUMENTATION AND MEAUREMENT, VOL. XX, NO. Y, MONTH 000 A Few Methods for Fittig Circles to Data Dale Umbach, Kerry N. Joes Abstract Five methods are discussed to fit circles to data.
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationFinding the circle that best fits a set of points
Fidig the circle that best fits a set of poits L. MAISONOBE October 5 th 007 Cotets 1 Itroductio Solvig the problem.1 Priciples............................... Iitializatio.............................
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationFOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10
FOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationINVESTMENT PERFORMANCE COUNCIL (IPC)
INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationProject Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments
Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 612 pages of text (ca be loger with appedix) 612 figures (please
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationPartial Di erential Equations
Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio
More informationiprox sensors iprox inductive sensors iprox programming tools ProxView programming software iprox the world s most versatile proximity sensor
iprox sesors iprox iductive sesors iprox programmig tools ProxView programmig software iprox the world s most versatile proximity sesor The world s most versatile proximity sesor Eato s iproxe is syoymous
More informationNATIONAL SENIOR CERTIFICATE GRADE 11
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 007 MARKS: 50 TIME: 3 hours This questio paper cosists of 9 pages, diagram sheet ad a page formula sheet. Please tur over Mathematics/P DoE/November
More informationOverview on SBox Design Principles
Overview o SBox Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA 721302 What is a SBox? SBoxes are Boolea
More informationChapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
More informationBiology 171L Environment and Ecology Lab Lab 2: Descriptive Statistics, Presenting Data and Graphing Relationships
Biology 171L Eviromet ad Ecology Lab Lab : Descriptive Statistics, Presetig Data ad Graphig Relatioships Itroductio Log lists of data are ofte ot very useful for idetifyig geeral treds i the data or the
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationEPlex Enterprise Access Control System
Eterprise Access Cotrol System Egieered for Flexibility Modular Solutio The Eterprise Access Cotrol System is a modular solutio for maagig access poits. Employig a variety of hardware optios, system maagemet
More informationYour organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:
Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network
More informationAnalyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More informationEscola Federal de Engenharia de Itajubá
Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica PósGraduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José
More informationOnline Banking. Internet of Things
Olie Bakig & The Iteret of Thigs Our icreasigly iteretcoected future will mea better bakig ad added security resposibilities for all of us. FROM DESKTOPS TO SMARTWATCHS Just a few years ago, Americas coducted
More information23 The Remainder and Factor Theorems
 The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
More informationChair for Network Architectures and Services Institute of Informatics TU München Prof. Carle. Network Security. Chapter 2 Basics
Chair for Network Architectures ad Services Istitute of Iformatics TU Müche Prof. Carle Network Security Chapter 2 Basics 2.4 Radom Number Geeratio for Cryptographic Protocols Motivatio It is crucial to
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationEvaluation of Different Fitness Functions for the Evolutionary Testing of an Autonomous Parking System
Evaluatio of Differet Fitess Fuctios for the Evolutioary Testig of a Autoomous Parkig System Joachim Wegeer 1, Oliver Bühler 2 1 DaimlerChrysler AG, Research ad Techology, AltMoabit 96 a, D1559 Berli,
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationResearch Method (I) Knowledge on Sampling (Simple Random Sampling)
Research Method (I) Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
More informationINVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology
Adoptio Date: 4 March 2004 Effective Date: 1 Jue 2004 Retroactive Applicatio: No Public Commet Period: Aug Nov 2002 INVESTMENT PERFORMANCE COUNCIL (IPC) Preface Guidace Statemet o Calculatio Methodology
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More information(VCP310) 18004186789
Maual VMware Lesso 1: Uderstadig the VMware Product Lie I this lesso, you will first lear what virtualizatio is. Next, you ll explore the products offered by VMware that provide virtualizatio services.
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationResearch Article Sign Data Derivative Recovery
Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationA Simple Software Application for Simulating Commercially Available Solar Panels
Soft Coutig Ad Software Egieerig (JSCSE) A Sile Software Applicatio for Simulatig Commercially Available Solar Paels 1* Nalika Ulapae, 2 Suil Abeyrate, 3 Prabath Biduhewa, 4 Chamari Dhaapala, 5 Shyama
More informationBaan Service Master Data Management
Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :
More informationProfessional Networking
Professioal Networkig 1. Lear from people who ve bee where you are. Oe of your best resources for etworkig is alumi from your school. They ve take the classes you have take, they have bee o the job market
More informationEkkehart Schlicht: Economic Surplus and Derived Demand
Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 200617 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät LudwigMaximiliasUiversität Müche Olie at http://epub.ub.uimueche.de/940/
More informationAgency Relationship Optimizer
Decideware Developmet Agecy Relatioship Optimizer The Leadig Software Solutio for ClietAgecy Relatioship Maagemet supplier performace experts scorecards.deploymet.service decide ware Sa Fracisco Sydey
More informationODBC. Getting Started With Sage Timberline Office ODBC
ODBC Gettig Started With Sage Timberlie Office ODBC NOTICE This documet ad the Sage Timberlie Office software may be used oly i accordace with the accompayig Sage Timberlie Office Ed User Licese Agreemet.
More informationExample 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook  Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
More informationThe Case for a Hybrid Passive/Active Network Monitoring Scheme in the Wireless Internet
The Case for a Hybrid Passive/Active Network Moitorig Scheme i the Wireless Iteret Björ Ladfeldt*, Pipat Sookavataa*,** ad Arua Seevirate** Dept. of Electrical Egieerig ad Telecommuicatios The Uiversity
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationSPC on Ungrouped Data: Power Law Process Model
Iteratioal Joural of Software Egieerig. ISSN 09743162 Volume 5, 1 (2014), pp. 716 Iteratioal Research Publicatio House http://www.irphouse.com SPC o Ugrouped Data: Power Law Process Model DR. R. Satya
More informationEquivalent Linear Programs
Appedix A Page 1 Equivalet Liear Programs There are a umber of problems that do ot appear at first to be cadidates for liear programmig (LP) but, i fact, have a equivalet or approximate represetatio that
More informationIdeate, Inc. Training Solutions to Give you the Leading Edge
Ideate, Ic. Traiig News 2014v1 Ideate, Ic. Traiig Solutios to Give you the Leadig Edge New Packages For All Your Traiig Needs! Bill Johso Seior MEP  Applicatio Specialist Revit MEP Fudametals Ad More!
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More information*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.
Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.
More informationCoordinating Principal Component Analyzers
Coordiatig Pricipal Compoet Aalyzers J.J. Verbeek ad N. Vlassis ad B. Kröse Iformatics Istitute, Uiversity of Amsterdam Kruislaa 403, 1098 SJ Amsterdam, The Netherlads Abstract. Mixtures of Pricipal Compoet
More informationBENEFITCOST ANALYSIS Financial and Economic Appraisal using Spreadsheets
BENEITCST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal  Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More informationElementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette iterestig patters of fractios Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More informationEvaluating Model for B2C E commerce Enterprise Development Based on DEA
, pp.180184 http://dx.doi.org/10.14257/astl.2014.53.39 Evaluatig Model for B2C E commerce Eterprise Developmet Based o DEA Weli Geg, Jig Ta Computer ad iformatio egieerig Istitute, Harbi Uiversity of
More informationConvention Paper 6764
Audio Egieerig Society Covetio Paper 6764 Preseted at the 10th Covetio 006 May 0 3 Paris, Frace This covetio paper has bee reproduced from the author's advace mauscript, without editig, correctios, or
More informationleasing Solutions We make your Business our Business
if you d like to discover how Bp paribas leasig Solutios Ca help you to achieve your goals please get i touch leasig Solutios We make your Busiess our Busiess We look forward to hearig from you you ca
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationCOMPARISON OF THE EFFICIENCY OF SCONTROL CHART AND EWMAS 2 CONTROL CHART FOR THE CHANGES IN A PROCESS
COMPARISON OF THE EFFICIENCY OF SCONTROL CHART AND EWMAS CONTROL CHART FOR THE CHANGES IN A PROCESS Supraee Lisawadi Departmet of Mathematics ad Statistics, Faculty of Sciece ad Techoology, Thammasat
More informationAutomatic Tuning for FOREX Trading System Using Fuzzy Time Series
utomatic Tuig for FOREX Tradig System Usig Fuzzy Time Series Kraimo Maeesilp ad Pitihate Soorasa bstract Efficiecy of the automatic currecy tradig system is time depedet due to usig fixed parameters which
More informationProblem Solving with Mathematical Software Packages 1
C H A P T E R 1 Problem Solvig with Mathematical Software Packages 1 1.1 EFFICIENT PROBLEM SOLVING THE OBJECTIVE OF THIS BOOK As a egieerig studet or professioal, you are almost always ivolved i umerical
More informationwhere: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationEstimating Probability Distributions by Observing Betting Practices
5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,
More informationFM4 CREDIT AND BORROWING
FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer
More informationA Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design
A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 168040030 haupt@ieee.org Abstract:
More informationSolving the NavierStokes! Equations in Primitive Variables!
ttp://www.d.edu/~gtryggva/cfdcourse/ Outlie Solvig te NavierStokes Equatios i Primitive Variables Te projectio metod review Metods for te NavierStokes Equatios Moi ad Kim Bell, et al Colocated grids
More informationA Faster ClauseShortening Algorithm for SAT with No Restriction on Clause Length
Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 4960 A Faster ClauseShorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece
More informationOn Formula to Compute Primes. and the n th Prime
Applied Mathematical cieces, Vol., 0, o., 3535 O Formula to Compute Primes ad the th Prime Issam Kaddoura Lebaese Iteratioal Uiversity Faculty of Arts ad cieces, Lebao issam.kaddoura@liu.edu.lb amih AbdulNabi
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More information