3 Energy Non-Flow Energy Equation (NFEE) Internal Energy. MECH 225 Engineering Science 2
|
|
|
- Claribel Jefferson
- 9 years ago
- Views:
Transcription
1 MECH 5 Egieerig Sciece 3 Eergy 3.3. No-Flow Eergy Equatio (NFEE) You may have oticed that the term system kees croig u. It is ecessary, therefore, that before we start ay aalysis we defie the system that we are lookig at. o do this we costruct a imagiary boudary aroud what we are iterested i for examle, the cricket ball (struck by Nasser Hussei) or the water i the kettle). he dealig with a o-flow situatio, the the system will be of fixed mass - o matter crosses the boudary - so it is useful to defie a cotrol mass. If we are cosiderig a flow situatio, the a cotrol volume through which the fluid flows is more useful. I hoe these ideas will become clearer whe we cosider some examles. A tyical closed system is a gas eclosed i a cylider by meas of a isto. he gas iside the cylider is the cotrol mass. Iteral Eergy From the First Law, + E + E k + E + U But for a o-flowig gas, its velocity will be 0 to start with, ad whe it has settled dow after the rocess, its velocity will agai be 0, so the chage i kietic eergy, E k 0. Similarly, there is o sigificat chage i otetial eergy, so E 0. here will, however, be a chage i the iteral eergy, U. So, the o-flow eergy equatio (NFEE) becomes, simly, + U or + U U where U is the iteral eergy i state, after the rocess ad U is the iteral eergy i state, before the rocess. Examle Durig a comlete cycle, a system is subjected to the followig heat trasfers: 800 kj from the surroudigs ad 500 kj to the surroudigs. At two oits i the cycle, work is trasferred to the surroudigs of 96 kj ad 0 kj. At a third oit there is a further work trasfer. Determie its magitude ad sese. Examle I a air comressor, the comressio takes lace at costat iteral eergy ad 00 kj of eergy are rejected to the coolig water er kg of air. Determie the secific work trasfer durig the comressio stroke.
2 Solutio Here, the system is defied for us o details are give as to its ature. For a comlete cycle, we kow that: Σ + Σ 0 Σ kJ Σ where is the value of the ukow work trasfer i kj kj he egative sig tells us that it is a work trasfer to the surroudigs. Solutio he system is the air i the comressor. e do ot kow its mass, so let us suose that it is m kg. he iteral eergy remais costat, so U, the chage i iteral eergy is 0. he o-flow eergy equatio becomes + 0 he eergy trasferred by heatig is from the air i the comressor to the coolig water, ad is therefore egative. It is 00 kj er kg, so for m kg: - 00m kj Alyig the NFEE, -00m m kj You are asked to fid the secific work trasfer. his meas the work trasfer for every kilogram, ad this is give the symbol, w. herefore, w 00 kj m hat does the ositive sig for the work trasfer tell you? Is this what you would exect? Ca you exlai why it is ositive?
3 3.4 Alicatios of the NFEE he o-flow eergy equatio ca be alied to ay o-flow thermodyamic rocess. e ca classify rocesses deedig o the coditios uder which they take lace, ad the tye of fluid. yical rocesses that are erformed o gases are at costat volume, costat ressure, costat temerature (isothermal) ad with o eergy trasfer by heatig (adiabatic). Calculatig eergy trasfers (a) Eergy trasfer by heatig, e saw i.6 that we ca calculate the eergy trasferred by heatig usig the equatio: mc( - ) (b) Eergy trasfer by workig, How ca we calculate the eergy trasferred by workig? Force x distace moved ad Force ressure x area herefore, ressure x area x distace moved. Cosider a gas eclosed by a isto: he force o the isto A area, A he distace moved dx herefore the work doe by the gas is d Adx d dx he total work doe, whe the isto moves so that the volume icreases from to is: isto moves d his is the area uder the - diagram betwee states ad. he egative sig is there, because as the gas exads it does work o the surroudigs. e eed to itegrate d because as the gas exads the ressure may ot remai costat, i geeral, so we eed to add u all the small amouts of work doe at each of the iterveig ressures whe the isto moves by a small distace, dx. For a erfect gas, we kow the relatioshis betwee ressure, volume ad temerature. If we kow the coditios of the rocess, the we ca calculate the work doe ad the heat trasferred. But these quatities, ad, deed o the rocess, ot oly o the begiig ad ed states.
4 A rocess ca be show o a - diagram. O the diagrams below, isotherms are marked as dashed lies. Isotherms are lies of costat temerature. For a erfect gas at costat temerature, costat. So these dashed lies rereset costat temerature rocesses. ut i the lies o the - diagrams, to rereset the relevat rocess i each of the followig ad see if you ca write dow, or calculate, ad for each. (a) Costat olume (b) Costat ressure cost force isto moves
5 (c) Isothermal (at costat temerature) (d) Adiabatic (o heat trasfer) erfectly isulated
6 You should have the followig: (a) Costat olume 0 U mc v ( - ) (b) Costat ressure cost force isto moves -( ) (shaded area uder the lie) For a erfect gas, -mr( ) U mc v ( - )+mr( ) m(c v + R) ( ) mc ( )
7 (c) Isothermal (at costat temerature) costat d mr d mr l U 0 - (d) Adiabatic (o heat trasfer) erfectly isulated c where γ. 4 for cool air cv 0 ( ) γ mr( ) γ mc U v ( )
8 Some questios for you to cosider: () hy is the work doe i a costat volume rocess equal to 0? () hy is the chage i iteral eergy i a isothermal rocess equal to 0? (3) Derive the exressio for the work doe i a olytroic rocess, that is a rocess which ca be modelled by the equatio costat, where ca take ay value, ad is ormally foud by exerimet. Examle (olytroic rocess) Air at.4 bar with a secific volume of. m 3 kg - is comressed to 0 bar accordig to v.3 costat. Fid: the ew secific volume the secific work doe the iitial ad fial temeratures the secific heat trasfer Reeat for a isothermal rocess. For air, take R 87 Jkg - K - ad c 005 Jkg - K -. Solutio:.4 bar v. m 3 kg - 0 bar v? v.3 costat v.3.3 v v.4 *..4 *.67 v v m 3 kg - w v v (see summary below) NOE: lower case letters are used to deote secific quatities, i.e. values for kg mass * 0 * * 0 * w * * w kj kg - he iitial ad fial temeratures we ca fid usig the equatio of state for a erfect gas (see.5 gas laws) 5 J
9 5 v.4 * 0 * K 3 C R 87 5 v 0 * 0 * 0.55 ad 080 K 807 C R 87 o fid the secific heat trasfer, aly the NFEE: q u w u c v ( ) (c R)( ) (005-87)*( ) 78*495 J u kj kg - q kj kg - For a isothermal rocess, we have K v.4 *. ad v costat, v v v m 3 kg - 0 v w R l 87 * l 87 * * (.659) v. w 447 kj kg - For a isothermal rocess u 0, so the NFEE gives q -w q -447 kj kg - he thermodyamic relatioshis for erfect gases are summarised below:
10 Summary of thermodyamic relatioshis for ideal gases For ay ideal gas: ressure (Nm - or a) mr volume (m 3 ) (Equatio of State) temerature (K) m mass (kg) R gas costat (Jkg - K - ) 87 Jkg - K - for air c γ cv γ the adiabatic idex.4 for air R c v γ c v secific heat at costat volume (Jkg - K - ) c c v R c secific heat at costat ressure (Jkg - K - ) For ay rocess: U mc v + U (First Law of hermodyamics) U is the chage i iteral eergy (J) is the chage i temerature is the work doe (J) is the eergy trasfer by heatig (J) For a adiabatic rocess: γ γ also mcv ( γ ) 0 γ ( γ ) / γ For a costat ressure rocess: ( - ) mr( ) mc ( )
11 For a costat temerature (isothermal) rocess: l l mr - For a costat volume rocess: 0 mc v ( ) For a olytroic rocess: is the olytroic idex / ) ( mc v ( ) Further readig: Baco ad Stehes, Mechaical echology Rogers, G ad Mayhew, Y, Egieerig hermodyamics ork ad Heat rasfer Ch 3 he Oe Uiversity, 36 Itroductio to thermofluid mechaics Block 4
Chapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
Confidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
What Is Required? You need to find the final temperature of an iron ring heated by burning alcohol. 4.95 g
Calculatig Theral Eergy i a Bob Calorieter (Studet textbook page 309) 31. Predict the fial teperature of a 5.00 10 2 g iro rig that is iitially at 25.0 C ad is heated by cobustig 4.95 g of ethaol, C 2
CHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
Ekkehart Schlicht: Economic Surplus and Derived Demand
Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/
OUTCOME 1. TUTORIAL No. 2 THERMODYNAMIC SYSTEMS
UNI 6: ENGINEERING HERMODYNAMICS Unit code: D/60/40 QCF level: 5 Credit value: 5 OUCOME UORIAL No. HERMODYNAMIC SYSEMS. Understand the arameters and characteristics of thermodynamic systems Polytroic rocesses:
The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
I. Chi-squared Distributions
1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.
5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
This document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC.
SPC Formulas ad Tables 1 This documet cotais a collectio of formulas ad costats useful for SPC chart costructio. It assumes you are already familiar with SPC. Termiology Geerally, a bar draw over a symbol
Unit 8: Inference for Proportions. Chapters 8 & 9 in IPS
Uit 8: Iferece for Proortios Chaters 8 & 9 i IPS Lecture Outlie Iferece for a Proortio (oe samle) Iferece for Two Proortios (two samles) Cotigecy Tables ad the χ test Iferece for Proortios IPS, Chater
Estimating Probability Distributions by Observing Betting Practices
5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,
Sequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
Soving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
Heat (or Diffusion) equation in 1D*
Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire
Chapter 6: Variance, the law of large numbers and the Monte-Carlo method
Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all
Confidence Intervals
Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more
Thermodynamics worked examples
An Introduction to Mechanical Engineering Part hermodynamics worked examles. What is the absolute ressure, in SI units, of a fluid at a gauge ressure of. bar if atmosheric ressure is.0 bar? Absolute ressure
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
Chapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
Solving Logarithms and Exponential Equations
Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:
Building Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond
What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixed-icome security that typically pays periodic coupo paymets, ad a pricipal
Section 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
AP Calculus AB 2006 Scoring Guidelines Form B
AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success
The dimensionless compressibility factor, Z, for a gaseous species is defined as the ratio
Chater 3 3.4- The Comressibility Fator Equatio of State The dimesioless omressibility fator, Z, for a gaseous seies is defied as the ratio Z = (3.4-1) If the gas behaes ideally Z = 1. The extet to whih
Properties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
AP Calculus BC 2003 Scoring Guidelines Form B
AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet
In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
Basic Elements of Arithmetic Sequences and Series
MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value
Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig
Hypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
Incremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich [email protected] [email protected] Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
RECIPROCATING COMPRESSORS
RECIPROCATING COMPRESSORS There are various compressor desigs: Rotary vae; Cetrifugal & Axial flow (typically used o gas turbies); Lobe (Roots blowers), ad Reciprocatig. The mai advatages of the reciprocatig
BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets
BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts
Measuring Magneto Energy Output and Inductance Revision 1
Measurig Mageto Eergy Output ad Iductace evisio Itroductio A mageto is fudametally a iductor that is mechaically charged with a iitial curret value. That iitial curret is produced by movemet of the rotor
The Fundamental Forces of Nature
Gravity The Fudametal Forces of Nature There exist oly four fudametal forces Electromagetism Strog force Weak force Gravity Gravity 2 The Hierarchy Problem Gravity is far weaker tha ay of the forces! Why?!?
hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
Chapter 14 Nonparametric Statistics
Chapter 14 Noparametric Statistics A.K.A. distributio-free statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they
Maximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value
Systems Design Project: Indoor Location of Wireless Devices
Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: [email protected] Supervised
Baan Service Master Data Management
Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :
Simple Annuities Present Value.
Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX-9850GB PLUS to efficietly compute values associated with preset value auities.
Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about
CHAPTER 3 The Simple Surface Area Measurement Module
CHAPTER 3 The Simple Surface Area Measuremet Module I chapter 2, the quality of charcoal i each batch might chage due to traditioal operatio. The quality test shall be performed before usig it as a adsorbet.
University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.
Guidelines for a Good Presentation. Luis M. Correia
Guidelies for a Good Presetatio Luis M. Correia Outlie Basic riciles. Structure. Sizes ad cotrast. Style. Examles. Coclusios. Basic Priciles The resetatio of a work is iteded to show oly its major asects,
CHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
P 1 2 V V V T V V. AP Chemistry A. Allan Chapter 5 - Gases
A Chemistry A. Alla Chapter 5 - Gases 5. ressure A. roperties of gases. Gases uiformly fill ay cotaier. Gases are easily compressed 3. Gases mix completely with ay other gas 4. Gases exert pressure o their
Supply Chain Network Design with Preferential Tariff under Economic Partnership Agreement
roceedigs of the 2014 Iteratioal oferece o Idustrial Egieerig ad Oeratios Maageet Bali, Idoesia, Jauary 7 9, 2014 Suly hai Network Desig with referetial ariff uder Ecooic artershi greeet eichi Fuaki Yokohaa
INFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
Queuing Systems: Lecture 1. Amedeo R. Odoni October 10, 2001
Queuig Systems: Lecture Amedeo R. Odoi October, 2 Topics i Queuig Theory 9. Itroductio to Queues; Little s Law; M/M/. Markovia Birth-ad-Death Queues. The M/G/ Queue ad Extesios 2. riority Queues; State
BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients
652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you
5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
CS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least
PSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.
Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.
Problem Solving with Mathematical Software Packages 1
C H A P T E R 1 Problem Solvig with Mathematical Software Packages 1 1.1 EFFICIENT PROBLEM SOLVING THE OBJECTIVE OF THIS BOOK As a egieerig studet or professioal, you are almost always ivolved i umerical
Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
REVIEW OF INTEGRATION
REVIEW OF INTEGRATION Trig Fuctios ad Itegratio by Parts Oeriew I this ote we will reiew how to ealuate the sorts of itegrals we ecouter i ealuatig Fourier series. These will iclude itegratio of trig fuctios
Measures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
A probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
Partial Di erential Equations
Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio
Infinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
Nr. 2. Interpolation of Discount Factors. Heinz Cremers Willi Schwarz. Mai 1996
Nr 2 Iterpolatio of Discout Factors Heiz Cremers Willi Schwarz Mai 1996 Autore: Herausgeber: Prof Dr Heiz Cremers Quatitative Methode ud Spezielle Bakbetriebslehre Hochschule für Bakwirtschaft Dr Willi
COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S 2 CONTROL CHART FOR THE CHANGES IN A PROCESS
COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S CONTROL CHART FOR THE CHANGES IN A PROCESS Supraee Lisawadi Departmet of Mathematics ad Statistics, Faculty of Sciece ad Techoology, Thammasat
Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2
74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is
3. Greatest Common Divisor - Least Common Multiple
3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
FM4 CREDIT AND BORROWING
FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer
Chapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
Using Four Types Of Notches For Comparison Between Chezy s Constant(C) And Manning s Constant (N)
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH OLUME, ISSUE, OCTOBER ISSN - Usig Four Types Of Notches For Compariso Betwee Chezy s Costat(C) Ad Maig s Costat (N) Joyce Edwi Bategeleza, Deepak
SEQUENCES AND SERIES
Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say
Department of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
Automatic Tuning for FOREX Trading System Using Fuzzy Time Series
utomatic Tuig for FOREX Tradig System Usig Fuzzy Time Series Kraimo Maeesilp ad Pitihate Soorasa bstract Efficiecy of the automatic currecy tradig system is time depedet due to usig fixed parameters which
NATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011
15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes high-defiitio
