Charger Output AC Ripple Voltage and the affect on VRLA batteries



Similar documents
Constant Voltage Charger Selection for VRLA Batteries

UPS Applications and VRLA Battery Sizing

Effects of AC Ripple Current on VRLA Battery Life. A Technical Note from the Experts in Business-Critical Continuity

Capacity Testing of VRLA Batteries (20 to 200 Ampere-Hours Capacity)

10 Year VRLA Battery Periodic Maintenance Instructions

The full wave rectifier consists of two diodes and a resister as shown in Figure

Temperature Compensated Charging of Lead Acid Batteries

Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

THE PROPER CHARGING OF STATIONARY LEAD-ACID BATTERIES. (YOUR BATTERY IS ONLY AS GOOD AS HOW YOU CHARGE IT.)

Power Supplies. 1.0 Power Supply Basics. Module

AUTO CHARGE 3 STEP AUTOMATIC BATTERY CHARGER

LEAD CRYSTAL. User Manual. Valve-regulated lead-crystal batteries Energy storage Cells

Lead Acid Battery Terminology Glossary

electronics fundamentals

LEAD ACID BATTERY working LIFETIME STUDY

See Horenstein 4.3 and 4.4

= V peak 2 = 0.707V peak

Rectifier circuits & DC power supplies

Solar Powered Wireless Sensors & Instrumentation: Energy Harvesting Technology Reduces Operating Cost at Remote Sites

Conductance Testing as an Integral Element in Battery Management

Instructions: Retain these instructions for future reference SmartChargePro35 RSCPR35-12v, 2 / 8 / 16 / 35A

Lecture - 4 Diode Rectifier Circuits

Ametek Prestolite Power AC power / Charger / Battery terms

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO

Diode Applications. by Kenneth A. Kuhn Sept. 1, This note illustrates some common applications of diodes.

CS4525 Power Calculator

7-41 POWER FACTOR CORRECTION

Yrd. Doç. Dr. Aytaç Gören

Lab 3 Rectifier Circuits

If you accidentally get battery acid on your skin, flush it with lots of water

Math for the General Class Ham Radio Operator. A prerequisite math refresher for the math phobic ham

CHARGING METHODS. Methods of Charging the Valve Regulated (Sealed) Lead-Acid Battery. 19 Valve Regulated (Sealed) Lead-Acid Batteries

Life Cycle Testing of Series Battery Strings with Individual Battery Equalizers

Digital echo-charge. Owner s Manual. Xantrex Digital echo-charge Battery Charger

875 Dearborn Drive Columbus, Ohio Tel: (614) Fax: (614)

The Basics of Solar Power for Producing Electricity An excellent place to start for those just beginning. The basics of solar power: 1000 W/m²

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Height w/o Terminals (in)

DC GROUND FAULT DETECTION PROVIDED FOR UNINTERRUPTIBLE POWER SUPPLIES

Solar Wind Microhydro Water Pumping Inverters Batteries Professional system design and installation

Current and Temperature Ratings

A reasonable, new furnace (mid efficiency) has the following electrical requirements:

Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

Iron Powder Cores for Switchmode Power Supply Inductors. by: Jim Cox

NP Series VALVE REGULATED LEAD-ACID BATTERIES

BB800 Off-Grid Solar System

POWER AND VOLTAGE RATING

Electronics Technology

OUTPUT CABLE CONNECTIONS:

Carefree Sealed Lead Acid (SLA) MSDS

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

Charge Regulator SCR 12 Marine

Properties of electrical signals

CONSTRUCTING A VARIABLE POWER SUPPLY UNIT

Height w/o Terminals (in)

OHMIC MEASUREMENTS: THE HISTORY AND THE FACTS

The Basics of Digital Multimeters

Experiment NO.3 Series and parallel connection

Experiment 2 Diode Applications: Rectifiers

Substation Battery & Charger Maintenance

Wet vs Sealed Batteries A detailed explanation of the differences between charging "Wet" Batteries and charging "Sealed" Batteries.

SECTION 13. Multipliers. Outline of Multiplier Design Process:

REPORT ON THE LONG TERM RESULTS OF BATTERY CAPACITY RECOVERY PROCESSES FOR VRLA CELLS

Automatic Voltage Regulator User s Manual

Understanding Delta Conversion Online "Power Regulation" - Part 2

0.9V Boost Driver PR4403 for White LEDs in Solar Lamps

Battery Model: 25 Part Number: Nominal Voltage: 12 volts NSN: Number applied for, product currently available

Type SA-1 Generator Differential Relay

Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part I)

Three phase circuits

DIRECT CURRENT GENERATORS

ULRASONIC GENERATOR POWER CIRCUITRY. Will it fit on PC board

VRLA BATTERIES AUGUST

Bosch C3 and C7 Battery Chargers: Smart, safe and simple to use

GenTech Practice Questions

Troubleshooting Guide, Freedom and Fleet Power Inverter/Chargers

Battery Handbook. By: RON SMITH

Chapter 22 Further Electronics

SunCharger Portable Solar Panel

BATTERY BASICS. This Automotive Series 12-volt Lead Acid BATTERY BASICS has been developed by. Kevin R. Sullivan

What is a multimeter?

Electronics Technology

Switch Mode, Automatic, Lead Acid Battery Charger 3 Stage (IUoU)

SD Series. SD Series Rectifiers. EPC Energy & Power Conversion

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

Experiment # (4) AM Demodulator

AND8433/D. Using ON Semiconductor Constant Current Regulator (CCR) Devices in AC Applications APPLICATION NOTE

D. Infrared scanning reports with pictures printed in a final report with any deficiencies and actions taken to rectify.

BATTERY CHARGING GUIDELINES FOR 6-VOLT DEEP CYCLE BATTERIES

Direct Current Motors

TROUBLESHOOTING GUIDE

Series and Parallel Circuits

Application Information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

High Efficiency Battery Charger using Power Components [1]

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

Chen. Vibration Motor. Application note

Transcription:

TECHNICAL BULLETIN 41-2131 Charger Output AC Ripple Voltage and the affect on VRLA batteries Please Note: The information in this technical bulletin was developed for C&D Dynasty 12 Volt VRLA products. While much of the information herein is general, larger 2 Volt VRLA products are not within the intended scope. 41-2131/0212/CD www.cdtechno.com

Table of Contents Charger Output AC Ripple Voltage and Affect on VRLA Batteries 3 DC Float Voltage, Float Current and Heating 3 Lead Acid Battery and Direct Current Flow 4 AC Voltage and Current 5 Conditioned AC Power for Charging and Ripple Voltage 5 Rms vs. P-P AC Voltage and Current 7 AC Ripple Current and Battery Heating 7 AC Ripple Voltage and Battery Gassing 8 AC Ripple Voltage and Battery Cycling 9 Recommendations for Optimum Service Life 9 List of Figures Figure 1 VRLA Battery Float Current vs. Voltage 3 Figure 2 Direct Current Flow from a Battery 4 Figure 3 Alternating Current Flow from a Generator 5 Figure 4 120 VAC (rms), 60 Hz (cps) Waveform 5 Figure 5 Battery Charger Regulated Power Supply 6 Figure 6 DC Float Voltage with 0.9% P-P AC Ripple 7 Figure 7 AC Ripple Current on the Service Life of a Battery 8 Figure 8 Extreme AC Ripple Voltage of 9.9% P-P of Vf 9 41-2131/0212/CD 2 www.cdtechno.com

Charger Output AC Ripple Voltage and Affect on VRLA Batteries The operating temperature is a major factor in the determination of a VRLA battery's service life. The battery temperature is a function of both the temperature of the operating environment and the heat generated within the battery. Heat will be generated within the battery due to exothermic electrochemical reactions within the cells and current, both DC and AC, passing through the resistive components of the cells (I 2 R I ). During float charging of the battery with a pure DC voltage (no AC ripple), the total energy input to the cell is expressed in watts and calculated as the float charging voltage (V f ) multiplied by the float charging current (I f ). For example, if a fully charged VRLA battery was accepting 0.2 amperes while float charged at 13.8 vdc it would be consuming 2.76 watts (Watts dc = V f x I fdc ) from the charger. The self-discharge rate of the VRLA battery is very small and only about 2% of the float current will be consumed in offsetting the self-discharge reactions. Under normal conditions, another 2% to 3 % is consumed in the overcharge grid corrosion and gassing reactions. The bulk of the float charging current or power (up to 96%) is consumed in the oxygen recombination cycle. The oxygen recombination cycle is an exothermic reaction and it generates heat in addition to that resulting from the passage of the float current through the resistive components of the battery. Therefore, it is safe to assume that up to 95% of the float charging DC power is consumed and dissipated as heat so the watts dissipated as heat would be: Watts dc = V f x I fdc x 95% DC Float Voltage, Float Current and Heating The DC float current is actually quite small and will naturally vary with the charging voltage as is shown in Figure 1. Note that the float current varies with not only the float voltage but also with the type of VRLA battery technology (AGM vs. gel). This reflects in large part the differences in the efficiencies of the oxygen recombination cycle of the two technologies. For example, a 100 Ah AGM VRLA battery draws 200 milli-amperes (0.2 amperes) when charged at 2.30 volts DC per cell while the gel VRLA equivalent battery will only draw 100 milli-amperes. As a result, the heat generated by the AGM battery will also be greater. Figure 1 - VRLA battery float current vs. voltage 41-2131/0212/CD 3 www.cdtechno.com

The 100 Ah capacity AGM battery, drawing 0.2 amperes with a charging voltage of 13.8 vdc would develop as a maximum, 2.6 watts (0.2 amperes x 13.8 vdc x 95%). In contrast the 100 Ah gel VRLA battery drawing 0.1 amperes could only generate 1.3 watts (0.1 Amperes x 13.8 x 95% vdc) of heat. Heat is generally expressed in terms of British Thermal Units (BTU's) which is the amount of heat required to heat one pound of water from 59 F to 60 F. One watt of heat will generate 3.4129 BTU's of heat per hour. Therefore: (AGM) (Gel) 2.6 watts x 3.4129 BTU per hour/watt = 8.87 BTU per hour per 12 volt battery 1.3 watts x 3.4129 BTU per hour/watt = 4.437 BTU per hour per 12 volt battery Lead Acid Battery and Direct Current Flow The lead acid battery is an electro-chemical device that produces a constant polarity and amplitude of voltage resulting in a constant direct flow of current (DC or direct current) in a single direction when applied to a resistive load. The lead acid battery produces a DC voltage and current on discharge as noted in Figure 2. Likewise, it requires a DC voltage and current for recharging. However, the DC power required for charging is normally generated by converting the commercial AC power to an acceptable form of DC power. 41-2131/0212/CD 4 www.cdtechno.com

AC Voltage and Current The commercial AC power is generated electro-mechanically in the wire windings of the rotating armature of a large generator. This will produce an output voltage, which varies in amplitude and polarity about a neutral point as the generator armature spins. The frequency at which the polarity changes is a function of the armature speed of rotation and is usually 50 or 60 times per second. This is referred to as 50 or 60 cps (cycles per second) or Hertz (Hz) power. As a result of the voltage polarity changes, the resulting current flow to a load will also change direction and vary in amplitude at the same frequency hence the name alternating current or AC. Conditioned AC Power for Charging and Ripple Voltage Commercially available power is AC and as such, it must be rectified to pulsating DC, regulated to the correct amplitude and filtered with capacitors too minimize any remaining AC, thus providing pure DC for charging of VRLA batteries. This may be done via several different techniques however, that of Figure 5 illustrates a typical approach. 41-2131/0212/CD 5 www.cdtechno.com

While the rectifying diodes convert the AC power to pulsating DC, the voltage regulator will clip the peaks to the appropriate level for charging of the battery. The filter capacitor will then store power during the peak regulated voltage period to be released during the valleys between cycles, thus "smoothing" the output and minimizing the AC ripple. As noted in Figure 5 there may be a slight residual AC ripple in the output voltage of the charging system. The total heat dissipated by the battery will be the sum of that generated due to the DC float charging current and any remaining AC ripple current supplied by the charger and flowing through the battery. The frequency of the ripple will be a function of the charger design and will have less impact the higher the frequency. Closer examination of this output with an oscilloscope would reveal a waveform similar to that of Figure 6. 41-2131/0212/CD 6 www.cdtechno.com

If this charger output, having an AC ripple voltage of.020 volts peak to peak (p-p) per cell as shown in Figure 6, is applied to a 2 volt cell having a resistance of 0.001 ohms, an AC ripple current of 20 amperes p-p will flow through the cell (20 amperes p-p = 0.020 volts p-p/0.001 ohms) resulting in an additional heating effect. Rms vs. P-P AC Voltage and Current Most test equipment used in maintenance of battery systems reads what is called the rms (root mean squared) value of the measured voltage and current rather than the peak to peak (p-p) values. The "rms" value is that AC value which will do the equivalent work of the same DC value. As an example, 10 amperes AC rms will generate the same heat through a resistance, as will 10 amperes DC. The relationship between the rms value and the peak to peak (p-p) value is: Y rms = 0.707 x (Y p-p /2) For example, the 120 volts AC (rms) we measure at our electrical outlet at home is actually 338 volts peak to peak (p-p) as shown in Figure 4 and is calculated as: 120 V rms = 0.707 x (338 V p-p /2) AC. Ripple Current and Battery Heating In the preceding example, the 0.02 volts p-p ripple voltage per cell would be measured as 0.007 V rms per cell. This would be 0.3% of the per cell float voltage of 2.25 vdc (0.007 V rms /2.25v/c). The resulting AC ripple current would be 7 amperes rms (0.007 V rms /0.001 ohms). Note that the ripple voltage is within the typically recommended maximum of 0.5% (rms) of the DC float voltage. However, the ripple current of 7 amperes rms does exceed the normally recommended maximum of 5 amperes rms per 100 Ah rated capacity. This ripple current of 7 amperes will create heating within the 6-cell 100 Ah battery of 0.294 watts (l 2 rms R i ). This is in addition to the 2.6 watts created by the electro-chemical float charging reactions within the battery and the l fdc2 R i losses. Obviously, excessive amounts of AC ripple current can have a major impact on battery internal heat generation and service life. 41-2131/0212/CD 7 www.cdtechno.com

The impact of battery heating due to AC ripple current on the service life of a 31 Ah VRLA gelled battery is illustrated in Figure 7. The AC ripple current (I AC ) is driven by the AC ripple voltage (V AC ) from the charger and will be a function of the cell (battery) internal resistance (R i ) in accordance with ohms law, l AC =V AC /R. As can be seen in the equation, l AC =V AC /R, the AC ripple current will increase with increasing AC ripple voltage from the charger. Also, note that the AC ripple current for a given AC ripple voltage will vary with the internal resistance of the specific battery. For example, a high rate AGM type of cell with a very low internal resistance will experience a greater AC ripple current than that experienced by a higher resistance gelled electrolyte cell with the same applied AC ripple voltage. AC Ripple Voltage and Battery Gassing Beyond the concern for heating due to excessive AC ripple current there is the additional concern for battery gassing and dryout due to excessive charging voltages. Consider that the VRLA battery may start to gas at about 2.35 v/c, and that the maximum recommended DC float voltage is 2.30 v/c. It becomes obvious that the ripple voltage should never exceed +/-0.05 v/c (0.1 v/c p-p) or 4.3% p-p (1.5% rms) of the float voltage or the peak voltage would be above the gassing voltage and this will result in electrolyte premature dryout. 41-2131/0212/CD 8 www.cdtechno.com

AC Ripple Voltage and Battery Cycling The open circuit voltage of the VRLA battery with SG = 1.300 is 2.14 volts per cell. Obviously the charging voltage should not go below this value or the load, which is connected in parallel with the charger and battery, will discharge the battery during that portion of the cycle. With a float voltage of 2.25 v/c, the ripple voltage must never exceed +/- 0.11 (0.22 v p-p) or 9.9% of the float voltage. Should this occurs the battery will actually be cycled at the ripple frequency as the resulting charging voltage periodically dips to below 2.14 vdc (2.25 vdc 0.11 vdc). Again, this would result not only in extreme heating due to the excessive AC ripple current passing through the battery but also rapid deterioration of the of the plate active material and grid due to cycling. Recommendations for Optimum Service Life Based on the preceding comments it is obvious that ideally, there would be no AC ripple in the DC charging voltage. Realistically, this is not always practical from an economic standpoint or even necessary. However, to obtain optimum service from the VRLA battery the following recommendations should be adhered too: 1. The AC powered float charger design should be such to minimize the AC ripple current that will be drawn by the battery during the float phase of charging to less than 5 amperes per 100 Ah of rated battery capacity. This may demand that output ripple voltage be less than the maximum allowed due to the low internal resistance of the specific types of batteries to be float charged. 2. The maximum allowable ripple voltage during the bulk phase of charging should be limited to 1.5% rms of the float voltage and to 0.5% of the float voltage during the float phase. 41-2131/0212/CD 9 www.cdtechno.com

3. The maximum allowable ripple voltage during the float phase of charging should be limited to 0.5% of the float voltage. 4. The maximum allowable ripple voltage during cycle service charging should be limited to 1.5% rms of the charging voltage. 5. When performing periodic maintenance, the AC ripple current should be measured to assure it is less than the recommended maximum of 5 amperes rms per 100Ah. If the measured value is increasing from the original value it may be an indication that the charger output filters are degrading and require replacement. 1400 Union Meeting Road P.O. Box 3053 Blue Bell, PA 19422-0858 (215) 619-2700 Fax (215) 619-7899 (800) 543-8630 customersvc@cdtechno.com www.cdtechno.com Any data, descriptions or specifications presented herein are subject to revision by C&D Technologies, Inc. without notice. While such information is believed to be accurate as indicated herein, C&D Technologies, Inc. makes no warranty and hereby disclaims all warranties, express or implied, with regard to the accuracy or completeness of such information. Further, because the product(s) featured herein may be used under conditions beyond its control, C&D Technologies, Inc. hereby disclaims all warranties, either express or implied, concerning the fitness or suitability of such product(s) for any particular use or in any specific application or arising from any course of dealing or usage of trade. The user is solely responsible for determining the suitability of the product(s) featured herein for user s intended purpose and in user s specific application. Copyright 2012 C&D TECHNOLOGIES, INC. Printed in U.S.A. 41-2131 0212/CD