Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E
|
|
|
- Neal Barber
- 10 years ago
- Views:
Transcription
1 Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E
2 EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer Analysis method of converters including a transformer Steady-state analysis of Flyback dc-dc converter Forward dc-dc converter Push-pull dc-dc converter Full-bridge dc-dc converter Half-bridge dc-dc converter 2
3 Electrical isolation requirement A basic disadvantage of the dc-dc converters (buck, boost etc.) is the electrical connection between the input and the output. If the input supply is grounded, that same ground will be present on the output. A way to isolate the output from the input electrically is with a transformer. If the dc-dc converter has a first stage that rectifies an ac power source to dc, a transformer could be used on the ac side. However, not all applications require ac to dc conversion as a first stage. Moreover, a transformer operating at a low frequency (50 or 60 Hz) requires a large magnetic core and is therefore relatively large, heavy, and expensive. 3
4 Electrical isolation requirement A more efficient method of providing electrical isolation between input and output of a dc-dc converter is to use a transformer in the switching scheme. The switching frequency is much greater than the ac power-source frequency, enabling the transformer to be small. Additionally, the transformer turns ratio provides increased design flexibility in the overall relationship between the input and the output of the converter. With the use of multiple transformer windings, switching converters can be designed to provide multiple output voltages. 4
5 Ideal transformer model (a) Transformer; (b) Ideal model 5
6 Real transformer model (c) Complete model 6
7 Most used transformer model The leakage inductances L1 and L2 are usually not crucial to the general operation of the power electronics circuits described in this chapter, but they are important when considering switching transients. Magnetic core reset is important! The average voltage of Lm must be zero! Otherwise the transformer saturates! 7
8 THE FLYBACK CONVERTER Note the transformer winding direction!!! 8
9 Assumptions for the analysis 1. The output capacitor is very large, resulting in a constant output voltage Vo. 2. The circuit is operating in the steady state, implying that all voltages an currents are periodic, beginning and ending at the same points over one switching period. 3. The duty ratio of the switch is D, being closed for time DT and open (1-D)T. 4. The switch and diode are ideal. 9
10 Analysis for the Switch ON On the source side of the transformer 10
11 Analysis for the Switch OFF 11
12 Output voltage Since the net change in inductor current must be zero over one period for steady-state operation 12
13 Switch withstand voltage Note that vsw, the voltage across the open switch, is greater than the source voltage. 13
14 Average magnetizing current Substituting Substituting 14
15 Min&max value of I Lm Continues current operation requires that I Lm,min >0 At the boundary between CCM and DCM; I Lm,min =0 15
16 Output voltage ripple The output configuration for the flyback converter is the same as for the buck-boost converter, so the output ripple voltages for the two converters are also the same. Buck-boost 16
17 EXAMPLE 7-1 Flyback Converter 17
18 EXAMPLE 7-2 Homework!! Flyback converter design 18
19 FORWARD CONVERTER Note that transformer winding direction!!! 19
20 Analysis for the Switch ON 20
21 Analysis for the Switch OFF 21
22 Output voltage 22
23 Transformer reset When switch is on 23
24 Transformer reset When switch is off Slope for 24
25 Transformer reset When switch is on When switch is off By combining these two equations, time duration of Tx can be found as 25
26 Transformer reset For proper resetting of transformer it should be t 0 <T Result in For example, if the ratio N3/N1=1 (a common practice), then the duty ratio D must be less than
27 Some waveforms 27
28 Some waveforms 28
29 Output voltage ripple The circuit configuration on the output of the forward converter is the same as that for the buck converter, so the output voltage ripple based on an ideal capacitance is also the same. EXAMPLE 7-4 AND 7-5 ARE HOMEWORK The equivalent series resistance of the capacitor often dominates the output voltage ripple. The peak-to-peak voltage variation due to the ESR is 29
30 THE PUSH-PULL CONVERTER 30
31 THE PUSH-PULL CONVERTER 31
32 Sw1 is ON 32
33 Sw2 is ON Same with the previous one 33
34 Both switches are OFF 34
35 Output voltage the net change in inductor current over one period must be zero for steady state operation, Solving for Vo 35
36 Output voltage ripple Ripple voltage on the output is derived in a manner similar to the buck converter. The output ripple for the push-pull converter is EXAMPLE 7-6 ARE HOMEWORK As with the other converters analyzed previously, the equivalent series resistance of the capacitor is usually responsible for most of the voltage output ripple. Recognizing that and using 36
37 No reset winding!!! THE FULL BRIDGE CONVERTER 37
38 Note that the maximum voltage across an open switch for the full-bridge converter is Vs, rather than 2Vs as for the push-pull and single-ended forward converters. 38
39 THE HALF BRIDGE CONVERTER 39
40 40
41 Multiple output flyback 41
42 Multiple output forward 42
Power Electronic Circuits
Power Electronic Circuits Assoc. Prof. Dr. H. İbrahim OKUMUŞ Karadeniz Technical University Engineering Faculty Department of Electrical And Electronics 1 DC to DC CONVERTER (CHOPPER) General Buck converter
The Flyback Converter
The Flyback Converter Lecture notes ECEN4517! Derivation of the flyback converter: a transformer-isolated version of the buck-boost converter! Typical waveforms, and derivation of M(D) = V/! Flyback transformer
DC-DC Converter Basics
Page 1 of 16 Free Downloads / Design Tips / Java Calculators / App. Notes / Tutorials / Newsletter / Discussion / Components Database / Library / Power Links / Software / Technical Articles / On-Line Textbook
The leakage inductance of the power transformer
Nondissipative lamping Benefits - onverters Even if small, a transformer s leakage inductance reduces the efficiency of some isolated dc-dc converter topologies However, the technique of lossless voltage
Introduction to Power Supplies
Introduction to Power Supplies INTRODUCTION Virtually every piece of electronic equipment e g computers and their peripherals calculators TV and hi-fi equipment and instruments is powered from a DC power
Chapter 6: Converter circuits
Chapter 6. Converter Circuits 6.. Circuit manipulations 6.2. A short list of converters 6.3. Transformer isolation 6.4. Converter evaluation and design 6.5. Summary of key points Where do the boost, buck-boost,
The full wave rectifier consists of two diodes and a resister as shown in Figure
The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached
Current Ripple Factor of a Buck Converter
Application Note Edwin Wang AN1 April 14 Current Ripple Factor of a Buck Converter Abstract Inductor and capacitor forms a low-pass filter in a buck converter. The corner frequency the C filter is always
Properties of electrical signals
DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier
TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES
TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES by L. Wuidart I INTRODUCTION This paper presents an overview of the most important DC-DC converter topologies. The main object is to guide the designer in selecting
Chapter 11 Current Programmed Control
Chapter 11 Current Programmed Control Buck converter v g i s Q 1 D 1 L i L C v R The peak transistor current replaces the duty cycle as the converter control input. Measure switch current R f i s Clock
Power supply output voltages are dropping with each
DESIGNER S SERIES Second-Stage LC Filter Design First Inductor by Dr. Ray Ridley First Capacitor Power supply output voltages are dropping with each new generation of Integrated Circuits (ICs). Anticipated
Application Report SLVA057
Application Report March 1999 Mixed Signal Products SLVA057 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product
Rectifier circuits & DC power supplies
Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How
Design Considerations for an LLC Resonant Converter
Design Considerations for an LLC Resonant Converter Hangseok Choi Power Conversion Team www.fairchildsemi.com 1. Introduction Growing demand for higher power density and low profile in power converter
= V peak 2 = 0.707V peak
BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
See Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder
Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction
Single-Stage High Power Factor Flyback for LED Lighting
Application Note Stockton Wu AN012 May 2014 Single-Stage High Power Factor Flyback for LED Lighting Abstract The application note illustrates how the single-stage high power factor flyback converter uses
Switched Mode Power Supplies
CHAPTER 2 Switched Mode Power Supplies 2.1 Using Power Semiconductors in Switched Mode Topologies (including transistor selection guides) 2.2 Output Rectification 2.3 Design Examples 2.4 Magnetics Design
Chapter 4. LLC Resonant Converter
Chapter 4 LLC Resonant Converter 4.1 Introduction In previous chapters, the trends and technical challenges for front end DC/DC converter were discussed. High power density, high efficiency and high power
Power Electronics. Alberto Tibaldi. July 13, 2010
Power Electronics Alberto Tibaldi July 13, 2010 Contents 1 Switch-mode power supplies 9 1.1 Introduction............................ 9 1.1.1 Introduction to basic topologies of switching-mode converters...........................
Creating a Usable Power Supply from a Solar Panel
Creating a Usable Power Supply from a Solar Panel An exploration in DC- DC converters By Kathleen Ellis Advised by Dr. Derin Sherman Department of Physics, Cornell College November 21, 2012 Introduction
Boundary between CCM and DCM in DC/DC PWM Converters
Boundary between CCM and DCM in DC/DC PWM Converters ELENA NICULESCU and E. P. IANCU Dept. of Electronics and Instrumentation, and Automation University of Craiova ROMANIA Abstract: - It is presented a
Application Report SLVA061
Application Report March 1999 Mixed Signal Products SLVA061 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product
Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet
VISHAY DALE www.vishay.com Magnetics Selecting IHLP Composite Inductors for Non-Isolated Converters INTRODUCTION This application note will provide information to assist in the specification of IHLP composite
Chapter 14: Inductor design
Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure 14.3 Multiple-winding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points
Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System
Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System Thatipamula Venkatesh M.Tech, Power System Control and Automation, Department of Electrical & Electronics Engineering,
EMI and t Layout Fundamentals for Switched-Mode Circuits
v sg (t) (t) DT s V pp = n - 1 2 V pp V g n V T s t EE core insulation primary return secondary return Supplementary notes on EMI and t Layout Fundamentals for Switched-Mode Circuits secondary primary
98% Efficient Single-Stage AC/DC Converter Topologies
16 POWER CONVERTERS www.teslaco.com 98% Efficient Single-Stage AC/DC Converter Topologies A new Hybrid Switching Method is introduced in this article which for the first time makes possible AC/DC power
A HIGH GAIN HYBRID DC-DC BOOST-FORWARD CONVERTER FOR SOLAR PANEL APPLICATIONS. Nicklas Jack Havens
A HIGH GAIN HYBRID DC-DC BOOST-FORWARD CONVERTER FOR SOLAR PANEL APPLICATIONS by Nicklas Jack Havens A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in
High Intensify Interleaved Converter for Renewable Energy Resources
High Intensify Interleaved Converter for Renewable Energy Resources K. Muthiah 1, S.Manivel 2, Gowthaman.N 3 1 PG Scholar, Jay Shriram Group of Institutions,Tirupur 2 Assistant Professor, Jay Shriram Group
7-41 POWER FACTOR CORRECTION
POWER FTOR CORRECTION INTRODUCTION Modern electronic equipment can create noise that will cause problems with other equipment on the same supply system. To reduce system disturbances it is therefore essential
Three-port DC-DC Converters to Interface Renewable Energy Sources with Bi-directional Load and Energy Storage Ports
Three-port DC-DC Converters to Interface Renewable Energy Sources with Bi-directional Load and Energy Storage Ports A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA
Application Notes. Magnetics. Determining L min for Buck/Boost Converters
Application Notes Magnetics etermining min for Buck/Boost onverters Fundamental oncepts 172 alculating Minimum nductance Buck Type onverters 174 Boost Type onverters 177 Buck-Boost onverters 180-171 APPATON
Capacitor Ripple Current Improvements
Capacitor Ripple Current Improvements The multiphase buck regulator topology allows a reduction in the size of the input and put capacitors versus single-phase designs. By quantifying the input and put
Design of an Auxiliary Power Distribution Network for an Electric Vehicle
Design of an Auxiliary Power Distribution Network for an Electric Vehicle William Chen, Simon Round and Richard Duke Department of Electrical & Computer Engineering University of Canterbury, Christchurch,
Current and Temperature Ratings
Document 361-1 Current and Temperature Ratings Introduction This application note describes: How to interpret Coilcraft inductor current and temperature ratings Our current ratings measurement method and
Fairchild On-Line Design Tool: Power Supply WebDesigner Step-by-Step Guide
Fairchild On-Line Design Tool: Power Supply WebDesigner Step-by-Step Guide Start Decide what your power supply requirements will be. Design Example: For this step we will design an AC to DC off-line power
DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives,
DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives, Mr.C.Anandaraj Assistant Professor -EEE Thiruvalluvar college of Engineering And technology, Ponnur
HIGH FREQUENCY POWER CONVERTERS. Authors: Rudy Severns, Springtime Enterprises Hal Wittlinger, Intersil Semiconductor
No. AN9208 April 994 Application Note HIGH FREQUENCY POWER CONVERTERS Authors: Rudy Severns, Springtime Enterprises Hal Wittlinger, Intersil Semiconductor Introduction Computers and telecom equipment are
A bidirectional DC-DC converter for renewable energy systems
BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 4, 2009 A bidirectional DC-DC converter for renewable energy systems S. JALBRZYKOWSKI, and T. CITKO Faculty of Electrical Engineering,
Distribution Generation System
Analysis of Solar Power Optimizer for DC Distribution Generation System Srinivas Dobbala 1, K. Chandra Mouli 2 1 Student, Department of EEE, Vaageswari College of Engineering, Karimnagar, Telangana, India
Parametric variation analysis of CUK converter for constant voltage applications
ISSN (Print) : 232 3765 (An ISO 3297: 27 Certified Organization) Vol. 3, Issue 2, February 214 Parametric variation analysis of CUK converter for constant voltage applications Rheesabh Dwivedi 1, Vinay
Switching Regulator IC Series Inductor Calculation for Buck Converter IC
Switching Regulator C Series nductor Calculation for Buck Converter C No.107ECY01 This application note covers the steps required in choosing the inductor and to calculate the value used in buck regulator
Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.
Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an
Chapter 1 dc-dc and regulation theory. Chapter 2 Small-signal theory
Switch-Mode Power Supplies SPICE Simulations and Practical Designs OrCAD/PSpice Simulation Libraries and Design Templates Christophe Basso 2007 Revision 0.3 May 2007 The present Word file describes the
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 Impact Factor (2014): 5.
The Derivative of a Switched Coupled Inductor DC DC Step-Up Converter by Using a Voltage Lift Network with Closed Loop Control for Micro Source Applications Sangeetha K 1, Akhil A. Balakrishnan 2 1 PG
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions
Lecture - 4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits
Hybrid Power System with A Two-Input Power Converter
Hybrid Power System with A Two-Input Power Converter Y. L. Juan and H. Y. Yang Department of Electrical Engineering National Changhua University of Education Jin-De Campus, Address: No.1, Jin-De Road,
Understanding SMD Power Inductors. Application Note. July 2011
Understanding SMD Power Inductors July 2011 Application Note Power inductors play an important role in voltage conversion applications by yielding lower core losses. They are also used to store energy,
AND8147/D. An Innovative Approach to Achieving Single Stage PFC and Step-Down Conversion for Distributive Systems APPLICATION NOTE
An Innovative Approach to Achieving Single Stage PFC and Step-Down Conversion for Distributive Systems APPLICATION NOTE INTRODUCTION In most modern PFC circuits, to lower the input current harmonics and
Evaluating AC Current Sensor Options for Power Delivery Systems
Evaluating AC Current Sensor Options for Power Delivery Systems State-of-the-art isolated ac current sensors based on CMOS technology can increase efficiency, performance and reliability compared to legacy
Chapter 20 Quasi-Resonant Converters
Chapter 0 Quasi-Resonant Converters Introduction 0.1 The zero-current-switching quasi-resonant switch cell 0.1.1 Waveforms of the half-wave ZCS quasi-resonant switch cell 0.1. The average terminal waveforms
SWITCHING REGULATORS
SWITCHING REGULATORS Introduction The switching regulator is increasing in popularity because it offers the advantages of higher power conversion efficiency and increased design flexibility (multiple output
Line Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
Noise Free 90+ for LCD TV AC Adapter Desk Top. 96% x 96% = 92.16% Champion Microelectronic. 96+ Interleaved CRM PFC CM6565 PFC & PFC PWM PWM
Soft Soft Switching Switching PFC PFC & & Soft Soft Switching Switching PWM PWM 96% x 96% = 92.16% Noise Free 90+ for LCD TV AC Adapter Desk Top 1 96% x 96% = 92.16% 96+ LLC/SRC + SR CM6900/1 92% x 96%
When the Power Fails: Designing for a Smart Meter s Last Gasp
When the Power Fails: Designing for a Smart Meter s Last Gasp Daniel Pruessner 1/10/2012 5:25 PM EST Overview Smart meter designers have an unusual predicament: The meter is powered from the same bus that
Switch Mode Power Supply Topologies
Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.
Chapter 17 The Ideal Rectifier
Chapter 17 The Ideal Rectifier 17.1 Properties of the ideal rectifier 17.2 Realization of a near-ideal rectifier 17.3 Single-phase converter systems employing ideal rectifiers 17.4 RMS values of rectifier
Which is the best PFC stage for a 1kW application?
Which is the best PFC stage for a 1kW application? Comparison of different PFC stage topologies under an identical design philosophy Ulf Schwalbe/ Marko Scherf ISLE Steuerungstechnik und Leistungselektronik
Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit
Maxim > Design Support > Technical Documents > Tutorials > Power-Supply Circuits > APP 986 Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit TUTORIAL 986 Input and
Lab 3 Rectifier Circuits
ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct
Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators
Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Technical Brief December 3 TB47. Author: Doug Mattingly Assumptions This Technical Brief makes the following assumptions:.
Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module
Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working
Solar Energy Conversion using MIAC. by Tharowat Mohamed Ali, May 2011
Solar Energy Conversion using MIAC by Tharowat Mohamed Ali, May 2011 Abstract This work introduces an approach to the design of a boost converter for a photovoltaic (PV) system using the MIAC. The converter
Implementation of High Step-Up Solar Power Optimizer for DC Micro Grid Application
Implementation of High tepup olar Power Optimizer for C Micro Grid Application hihming Chen, KeRen Hu, TsorngJuu Liang, and YiHsun Hsieh Advanced Optoelectronic Technology Center epartment of Electrical
Welcome to this presentation on Switch Mode Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at:
Welcome to this presentation on Switch Mode Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at: How switch mode drivers work, switch mode driver topologies,
Power Electronics Lab
Power Electronics Lab By: Alex M. Bermel : April 20, 2011 Table of Contents Title page 1 Table of Contents 2 Project Scope 4 Problem Statement 4 Health and Safety 5 Customer Needs 6 Economic Analysis 6
Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)
Lab 5: Single-phase transformer operations. Objective: to examine the design of single-phase transformers; to study the voltage and current ratios of transformers; to study the voltage regulation of the
DC/DC Converter Fundamentals
Leistungselektronik Grundlagen und Standardanwendungen SS 2012 DC/DC Converter Fundamentals Prof. Hans-Georg Herzog Elektrische Energiewandlungstechnik Outline 1. Overview on DC/DC Converter 2. One-Quadrant
Planar versus conventional transformer
Planar versus conventional transformer Majid Dadafshar, Principal Engineer Gerard Healy, Field Application Engineer Pulse, a Technitrol Company Power Division Usually the first step on any power supply
Application Note, Rev.1.0, September 2008 TLE8366. Application Information. Automotive Power
Application Note, Rev.1.0, September 2008 TLE8366 Automotive Power Table of Contents 1 Abstract...3 2 Introduction...3 3 Dimensioning the Output and Input Filter...4 3.1 Theory...4 3.2 Output Filter Capacitor(s)
Designers Series XII. Switching Power Magazine. Copyright 2005
Designers Series XII n this issue, and previous issues of SPM, we cover the latest technologies in exotic high-density power. Most power supplies in the commercial world, however, are built with the bread-and-butter
Comparison of an Efficient Buck Converter Configuration for the DC Power Distribution Of Future Green Data Centers
Comparison of an Efficient Buck Converter Configuration for the DC Power Distribution Of Future Green Data Centers Sindhu Shetty 1, I. V. Prasanna 2, S. K. Panda 3 UG student, Dept. of EEE, National Institute
Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)
Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap
Improved PFC Boost Choke using a Quasi-Planar Winding Configuration Dave Shonts Schott Corporation 1000 Parkers Lake Road Wayzata, MN 55391
Improved PFC Boost Choke using a Quasi-Planar Winding Configuration Dave Shonts Schott Corporation 1000 Parkers Lake Road Wayzata, MN 55391 Abstract- A novel approach to boost inductor design using a quasi-planar
Chapter 15: Transformer design
Chapter 15 Transformer Design Some more advanced design issues, not considered in previous chapter: : n Inclusion of core loss + + Selection of operating flux i 1 density to optimize total loss v 1 v Multiple
4. ACTIVE-CLAMP BOOST AS AN ISOLATED PFC FRONT-END CONVERTER
4. ACTIVE-CLAMP BOOST AS AN ISOLATED PFC FRONT-END CONVERTER 4.1 Introduction This chapter continues the theme set by Chapter 3 - simplifying the standard two-stage front-end implementation to one that
Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.
Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.
ES250: Electrical Science. HW7: Energy Storage Elements
ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;
Chapter 3. Diodes and Applications. Introduction [5], [6]
Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode
Topic 5. An Interleaved PFC Preregulator for High-Power Converters
Topic 5 An nterleaved PFC Preregulator for High-Power Converters An nterleaving PFC Pre-Regulator for High-Power Converters Michael O Loughlin, Texas nstruments ABSTRACT n higher power applications, to
Powering Integrated Circuits (ICs), and managing ripple voltage as it relates
Ripple Voltage & ESR Powering Integrated Circuits (ICs), and managing ripple voltage as it relates to ESR of capacitors Low voltage ICs require supply voltage (Vcc) to have reduced levels of ripple voltage
Chapter 19 Resonant Conversion
Chapter 9 Resonant Conversion Introduction 9. Sinusoidal analysis of resonant converters 9. Examples Series resonant converter Parallel resonant converter 9.3 Exact characteristics of the series and parallel
Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part I)
00-00-//$0.00 (c) IEEE IEEE Industry Application Society Annual Meeting New Orleans, Louisiana, October -, Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part
47000 SERIES - ELECTRONIC TRANSFORMERS
7000 SERIES - ELECTRONIC TRANSFORMERS MYRRA encapsulated electronic transformers are Switched Mode Power Supplies based on Flyback topology. They constitute an interesting alternative to the traditional
Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.
by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification
AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION
AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION Pramod Ghimire 1, Dr. Alan R. Wood 2 1 ME Candidate Email: [email protected] 2 Senior Lecturer: Canterbury University
High-Efficiency Power Conversion for Renewable Energy and Distribution Generation
High-Efficiency Power Conversion for Renewable Energy and Distribution Generation November 2, 29 Presentation at PEDS 29 Taipei, Taiwan Professor Jih-Sheng (Jason) Lai Future Energy Electronics Center
The D.C Power Supply
The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output
electronics fundamentals
electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier
CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher
CHAPTER 2B: DIODE AND APPLICATIONS D.Wilcher 1 CHAPTER 2B: OBJECTIVES Analyze the operation of 3 basic types of rectifiers Describe the operation of rectifier filters and IC regulators Analyze the operation
Bi-directional power converters for smart grids
Bi-directional power converters for smart grids Isolated bidirectional DC-DC converter Welday Gebremedihn Gerekial Master of Science in Electric Power Engineering Submission date: June 214 Supervisor:
Novel Loaded-Resonant Converter & Application of DC-to-DC Energy Conversions systems
International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 11 (November 2013), PP.50-57 Novel Loaded-Resonant Converter & Application of
DC-DC Power Converters
Article in Wiley Encyclopedia of Electrical and Electronics Engineering C-C Power Converters obert W. Erickson epartment of Electrical and Computer Engineering University of Colorado Boulder, CO 839-425
AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family
AC/DC Power Supply Reference Design Advanced SMPS Applications using the dspic DSC SMPS Family dspic30f SMPS Family Excellent for Digital Power Conversion Internal hi-res PWM Internal high speed ADC Internal
Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.
Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive
Design A High Performance Buck or Boost Converter With Si9165
Design A High Performance Buck or Boost Converter With Si9165 AN723 AN723 by Kin Shum INTRODUCTION The Si9165 is a controller IC designed for dc-to-dc conversion applications with 2.7- to 6- input voltage.
