UTBB-FDSOI 28nm : RF Ultra Low Power technology for IoT International Forum on FDSOI IC Design B. Martineau www.cea.fr
Cliquez pour modifier le style du Outline titre Introduction UTBB-FDSOI 28nm for RF Ultra Low Power RF blocks bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm Low Noise Amplifier (LNA) Voltage Control Oscillator (VCO) Conclusion CEA. All rightsreserved DACLE Division 2
Cliquez pour modifier le style Introduction titre Is UTBB-FDSOI 28nm a universal technology? Flatresse, et "Ultra-wide body-bias range LDPC decoder in 28nm UTBB FDSOI technology," ISSCC 2013 Le Tual, et al. "22.3 A 20GHz-BW 6b 10GS/s 32mW time-interleaved SAR ADC with Master TH in 28nm UTBB FDSOI technology," ISSCC 2014 Wilson, et al. "A 460MHz at 397mV, 2.6GHz at 1.3V, 32b VLIW DSP, embedding F MAX tracking,"isscc 2014 Clerc, et al. "8.4 A 0.33V/-40 C process/temperature closed-loop compensation SoC embedding all-digital clock multiplier and DC-DC converter exploiting FDSOI 28nm back-gate biasing," ISSCC 2015 Larie, et al. "2.10 A 60GHz 28nm UTBB FD-SOI CMOS reconfigurable power amplifier with 21% PAE, 18.2dBm P 1dB and 74mW P DC, ISSCC 2015 What about RF for IoT? CEA. All rightsreserved DACLE Division 3
Cliquez pour modifier le style Introduction titre Is UTBB-FDSOI 28nm a technology for IoT? source : http://www.goldmansachs.com/ CEA. All rightsreserved DACLE Division 4
UTBB-FDSOI 28nm for RF Ultra Low Power Active devices performance and comparison (Analog) No channel doping: better gain compare to bulk At 0.18um gate length the analog gain Gm/Gdin weak inversion in FDSOI28nm is higher than the 0.18 CMOS technology 0.18CMOS 28nmBulk FDSOI28nm Gm/Gd 50 25 75 At 1um gate length the Gm/Gdon FDSOI is 6 time larger than the 28CMOS bulk 28nmBulk FDSOI28nm Gm/Gd 50 300 CEA. All rightsreserved DACLE Division 5
UTBB-FDSOI 28nm for RF Ultra Low Power Active devices performance and comparison (RF) Higher Gain than CMOS 28 65nm technology +4dB available gain with respect to CMOS 65nm @ 2.4GHz CEA. All rightsreserved DACLE Division 6
UTBB-FDSOI 28nm for RF Ultra Low Power Passive devices performance and comparison (RF) Typically, the CMOS trend to vertically shrink of the Back-End Of Line (BEOL) penalizes RF performances The small metal pitch and the thin dielectrics increase the Resistance/Capacitance ratio 28 FDSOI 65 bulk 1.5nH inductor offers 25 Q factor value in UTBB-FDSOI 28nm CEA. All rightsreserved DACLE Division 7
RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm Comparison between two usual RF blocs LNAand VCO Technology use : CMOS 65nm 7metals layers from STMicroelectronics UTBB-FDSOI 28nm 10metals layers from STMicroelectronics Transistor models PSP or BSIM for CMOS 65nm UTSOI 2 for UTBB-FDSOI 28nm 90nm BLE/15.4/15.6 Transceiver CEA. All rightsreserved DACLE Division 8
RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm Low Noise Amplifier @ 2.4GHz test circuit Degenerated cascade topology Ls and Lginductance used to match noise and input impedance (target <-10dB S11) Gain is evaluated considering Z out = LNA conjugate output impedance Same inductor Q value CMOS 65nm UTBB-FDSOI 28nm NMOS Family N-lvt N-lvt InductanceQ value 10 10 Nominal Vdd(V) 1.2 1 CEA. All rightsreserved DACLE Division 9
RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm Low Noise Amplifier : 1mW scenario FoM CMOS 65nm UTBB- FDSOI 28nm NFmin (db) 0.9 0.9 Gain* (db) 21 25 S11 (db) -11-16 P DC (mw) 1 1 IIP3 (dbm) -15-15 ICP1 (dbm) -24-24 *Power Gain considering a perfect match output 4dB gain improvement in FD-SOI for same power CEA. All rightsreserved DACLE Division 10
RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm Low Noise Amplifier : Ultra Low Power scenario FoM CMOS 65nm UTBB-FDSOI 28nm NFmin (db) 1 1 Gain (db) 23 24 S11 (db) -10-10 P DC (mw) 0.4@1.2V 0.1@0.55V* IIP3 (dbm) -30-26 ICP1 (dbm) -39-36 X4 power consumption decrease with same RF performances *Using body bias = 350mV CEA. All rightsreserved DACLE Division 11
RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm VCO @ 2.4GHz test circuit CMOS cross coupled topology Same inductor Q value CMOS 65nm UTBB-FDSOI 28nm NMOS Family N-lvt/ P-lvt N-lvt/ P-lvt Tank Q value 15 15 Nominal Vdd(V) 1.2 1 CEA. All rightsreserved DACLE Division 12
RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm VCO : 1mW scenario FoM CMOS 65nm UTBB-FDSOI 28nm Frequency (GHz) 2.4 2.4 PNoise@ 1MHz (dbc/hz) -119-126 P DC (mw) 1 1 7dB Phase Noise improvement at same power consumption CEA. All rightsreserved DACLE Division 13
RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm VCO : Ultra Low Power Scenario FoM CMOS 65nm UTBB-FDSOI 28nm Frequency (GHz) 2.4 2.4 PNoise@ 1MHz (dbc/hz) P DC (mw) -105-117 0.2@ vdd=0.8v 0.2@ vdd=0.7v 12dB Phase Noise improvement at same power consumption CEA. All rightsreserved DACLE Division 14
Cliquez pour modifier le style Conclusion du titre UTBB-FDSOI 28nm offers a versatile platform to meet the demandsdigital,analogandrffortheinternetof Things market The technology offers improvement in performances and/or power consumption in most critical RF blocs The technology can perfectly fit the need of high performance low power requirements required in high-end wearables IoT CEA. All rightsreserved DACLE Division 15