UTBB-FDSOI 28nm : RF Ultra Low Power technology for IoT



Similar documents
«A 32-bit DSP Ultra Low Power accelerator»

Coherent sub-thz transmission systems in Silicon technologies: design challenges for frequency synthesis

INTELLIGENT INTERACTIVE SYNTHESIZER SURFACE MOUNT MODEL: MFSH

A Wideband mm-wave CMOS Receiver for Gb/s Communications Employing Interstage Coupled Resonators

A 2.4GHz Cascode CMOS Low Noise Amplifier

High-Frequency Integrated Circuits

Intel Labs at ISSCC Copyright Intel Corporation 2012

STMicroelectronics. Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI. SOI Processes 130nm, 65nm. SiGe 130nm

AMS/RF-CMOS circuit design for wireless transceivers

AT Up to 6 GHz Low Noise Silicon Bipolar Transistor

Lecture 1: Communication Circuits

ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7

HDO700 P FIBRE OPTIC TRANSMITTER

BIPOLAR ANALOG INTEGRATED CIRCUIT

S-Band Low Noise Amplifier Using the ATF Application Note G004

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

AMICSA Integrated SAR Receiver/Converter for L, C and X bands Markku Åberg VTT Technical Research Centre of Finland

TowerJazz High Performance SiGe BiCMOS processes

CMOS 5GHz WLAN a/n/ac RFeIC WITH PA, LNA, AND SPDT

Equalization/Compensation of Transmission Media. Channel (copper or fiber)

CE8301 Series. Introduction. Features. Ordering Information. Applications SMALL PACKAGE PFM CONTROL STEP-UP DC/DC CONVERTER

Drones Jammer. A simple drone Jammer designed to hack unwelcomed civilian drones within your backyard range.

AMS Verification at SoC Level: A practical approach for using VAMS vs SPICE views

MASW T. HMIC TM PIN Diode SP2T 13 Watt Switch for TD-SCDMA Applications. Features. Functional Diagram (TOP VIEW)

DATA SHEET. SiGe LOW NOISE AMPLIFIER FOR GPS/MOBILE COMMUNICATIONS. Part Number Order Number Package Marking Supplying Form

A New Programmable RF System for System-on-Chip Applications

BIPOLAR ANALOG INTEGRATED CIRCUIT

Nomadic Base Station (NBS): a Software Defined Radio (SDR) based Architecture for Capacity Enhancement in Mobile Communications Networks

DC to 30GHz Broadband MMIC Low-Power Amplifier

1.1 Silicon on Insulator a brief Introduction

VCO Phase noise. Characterizing Phase Noise

RF Network Analyzer Basics

US-SPI New generation of High performances Ultrasonic device

Demonstration of a Software Defined Radio Platform for dynamic spectrum allocation.

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Chapter 6. CMOS Class-E Power Amplifier

DRM compatible RF Tuner Unit DRT1

Core Power Delivery Network Analysis of Core and Coreless Substrates in a Multilayer Organic Buildup Package

Service Manual. (9 Inch) LCD Color Monitor & DVD Player & DVB-T&ATV. mp-man PDV-TY995

MAS.836 HOW TO BIAS AN OP-AMP

EVALUATION KIT AVAILABLE Single-Chip Global Positioning System Receiver Front-End BIAS CBIAS GND GND RFIN GND GND IFSEL

RF Design Guidelines: PCB Layout and Circuit Optimization

Intel s Revolutionary 22 nm Transistor Technology

Signal Types and Terminations

Symbol Parameters Units Frequency Min. Typ. Max. 850 MHz

RF Communication System. EE 172 Systems Group Presentation

W a d i a D i g i t a l

AN BGU8009 Matching Options for 850 MHz / 2400 MHz Jammer Immunity. Document information. Keywords

Mono-Processor, DSP, smart sensor nodes Many-Processor System-on-Chip (MPSoC) Dedicated computing platforms, e.g. H.264 hardware encoder

SiGe:C BiCMOS Technologies for RF Automotive Application

RF SOI: Defining the RF-Digital Boundary for 5G. Peter A. Rabbeni Sr. Director RF Business Development and Product Marketing

Old Company Name in Catalogs and Other Documents

What Does Rail-to-Rail Operation Really Mean?

Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m

APSYN420A/B Specification GHz Low Phase Noise Synthesizer

LM386 Low Voltage Audio Power Amplifier

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper

Microelectronics Students Group. Wi-Rex. Design of an Integrated Circuit for a Wireless Receiver

MITSUBISHI RF MOSFET MODULE RA07H4047M

CHARGE pumps are the circuits that used to generate dc

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

Using ADS to simulate Noise Figure

EMC Expert System for Architecture Design

AN Single stage 5-6 GHz WLAN LNA with BFU730F. document information

MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V

VICOR WHITE PAPER. The Sine Amplitude Converter Topology Provides Superior Efficiency and Power Density in Intermediate Bus Architecture Applications

Table 1 Mixed-Signal Test course major topics. Mixed-signal Test and Measurement Concepts ENCT 351 What are Mixed-signal circuits

Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption

Wideband Driver Amplifiers

Price List - including VAT - Effective October US$ Pricing is excluding tax

RF Measurements Using a Modular Digitizer

IC-EMC Simulation of Electromagnetic Compatibility of Integrated Circuits

CMOS Thyristor Based Low Frequency Ring Oscillator

Internal GPS Active Patch Antenna Application Note

On-Line Diagnosis using Orthogonal Multi-Tone Time Domain Reflectometry in a Lossy Cable


Local Oscillator for FM broadcast band MHz

A 1-GSPS CMOS Flash A/D Converter for System-on-Chip Applications

Understanding Noise Figure

2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Two-ways of describing device: A. Equivalent - Circuit-Model

Collaborating Objects Workshop. Bart Van Poucke IMEC

Performing Amplifier Measurements with the Vector Network Analyzer ZVB

Application Note No. 143

A NEAR FIELD INJECTION MODEL FOR SUSCEPTIBILITY PREDICTION IN INTEGRATED CIRCUITS

Broadband covering primary wireless communications bands: Cellular, PCS, LTE, WiMAX

MAINTENANCE & ADJUSTMENT

Clocking Solutions. Wired Communications / Networking Wireless Communications Industrial Automotive Consumer Computing. ti.

US-Key New generation of High performances Ultrasonic device

High Performance Switched Filter Banks

Evaluating AC Current Sensor Options for Power Delivery Systems

INF4420 Introduction

Tx/Rx A high-performance FM receiver for audio and digital applicatons

Application Note 91 October Low Cost Coupling Methods for RF Power Detectors Replace Directional Couplers AN91-1

Alpha CPU and Clock Design Evolution

Transcription:

UTBB-FDSOI 28nm : RF Ultra Low Power technology for IoT International Forum on FDSOI IC Design B. Martineau www.cea.fr

Cliquez pour modifier le style du Outline titre Introduction UTBB-FDSOI 28nm for RF Ultra Low Power RF blocks bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm Low Noise Amplifier (LNA) Voltage Control Oscillator (VCO) Conclusion CEA. All rightsreserved DACLE Division 2

Cliquez pour modifier le style Introduction titre Is UTBB-FDSOI 28nm a universal technology? Flatresse, et "Ultra-wide body-bias range LDPC decoder in 28nm UTBB FDSOI technology," ISSCC 2013 Le Tual, et al. "22.3 A 20GHz-BW 6b 10GS/s 32mW time-interleaved SAR ADC with Master TH in 28nm UTBB FDSOI technology," ISSCC 2014 Wilson, et al. "A 460MHz at 397mV, 2.6GHz at 1.3V, 32b VLIW DSP, embedding F MAX tracking,"isscc 2014 Clerc, et al. "8.4 A 0.33V/-40 C process/temperature closed-loop compensation SoC embedding all-digital clock multiplier and DC-DC converter exploiting FDSOI 28nm back-gate biasing," ISSCC 2015 Larie, et al. "2.10 A 60GHz 28nm UTBB FD-SOI CMOS reconfigurable power amplifier with 21% PAE, 18.2dBm P 1dB and 74mW P DC, ISSCC 2015 What about RF for IoT? CEA. All rightsreserved DACLE Division 3

Cliquez pour modifier le style Introduction titre Is UTBB-FDSOI 28nm a technology for IoT? source : http://www.goldmansachs.com/ CEA. All rightsreserved DACLE Division 4

UTBB-FDSOI 28nm for RF Ultra Low Power Active devices performance and comparison (Analog) No channel doping: better gain compare to bulk At 0.18um gate length the analog gain Gm/Gdin weak inversion in FDSOI28nm is higher than the 0.18 CMOS technology 0.18CMOS 28nmBulk FDSOI28nm Gm/Gd 50 25 75 At 1um gate length the Gm/Gdon FDSOI is 6 time larger than the 28CMOS bulk 28nmBulk FDSOI28nm Gm/Gd 50 300 CEA. All rightsreserved DACLE Division 5

UTBB-FDSOI 28nm for RF Ultra Low Power Active devices performance and comparison (RF) Higher Gain than CMOS 28 65nm technology +4dB available gain with respect to CMOS 65nm @ 2.4GHz CEA. All rightsreserved DACLE Division 6

UTBB-FDSOI 28nm for RF Ultra Low Power Passive devices performance and comparison (RF) Typically, the CMOS trend to vertically shrink of the Back-End Of Line (BEOL) penalizes RF performances The small metal pitch and the thin dielectrics increase the Resistance/Capacitance ratio 28 FDSOI 65 bulk 1.5nH inductor offers 25 Q factor value in UTBB-FDSOI 28nm CEA. All rightsreserved DACLE Division 7

RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm Comparison between two usual RF blocs LNAand VCO Technology use : CMOS 65nm 7metals layers from STMicroelectronics UTBB-FDSOI 28nm 10metals layers from STMicroelectronics Transistor models PSP or BSIM for CMOS 65nm UTSOI 2 for UTBB-FDSOI 28nm 90nm BLE/15.4/15.6 Transceiver CEA. All rightsreserved DACLE Division 8

RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm Low Noise Amplifier @ 2.4GHz test circuit Degenerated cascade topology Ls and Lginductance used to match noise and input impedance (target <-10dB S11) Gain is evaluated considering Z out = LNA conjugate output impedance Same inductor Q value CMOS 65nm UTBB-FDSOI 28nm NMOS Family N-lvt N-lvt InductanceQ value 10 10 Nominal Vdd(V) 1.2 1 CEA. All rightsreserved DACLE Division 9

RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm Low Noise Amplifier : 1mW scenario FoM CMOS 65nm UTBB- FDSOI 28nm NFmin (db) 0.9 0.9 Gain* (db) 21 25 S11 (db) -11-16 P DC (mw) 1 1 IIP3 (dbm) -15-15 ICP1 (dbm) -24-24 *Power Gain considering a perfect match output 4dB gain improvement in FD-SOI for same power CEA. All rightsreserved DACLE Division 10

RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm Low Noise Amplifier : Ultra Low Power scenario FoM CMOS 65nm UTBB-FDSOI 28nm NFmin (db) 1 1 Gain (db) 23 24 S11 (db) -10-10 P DC (mw) 0.4@1.2V 0.1@0.55V* IIP3 (dbm) -30-26 ICP1 (dbm) -39-36 X4 power consumption decrease with same RF performances *Using body bias = 350mV CEA. All rightsreserved DACLE Division 11

RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm VCO @ 2.4GHz test circuit CMOS cross coupled topology Same inductor Q value CMOS 65nm UTBB-FDSOI 28nm NMOS Family N-lvt/ P-lvt N-lvt/ P-lvt Tank Q value 15 15 Nominal Vdd(V) 1.2 1 CEA. All rightsreserved DACLE Division 12

RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm VCO : 1mW scenario FoM CMOS 65nm UTBB-FDSOI 28nm Frequency (GHz) 2.4 2.4 PNoise@ 1MHz (dbc/hz) -119-126 P DC (mw) 1 1 7dB Phase Noise improvement at same power consumption CEA. All rightsreserved DACLE Division 13

RF bench mark : CMOS 65nm vs. UTBB-FDSOI 28nm VCO : Ultra Low Power Scenario FoM CMOS 65nm UTBB-FDSOI 28nm Frequency (GHz) 2.4 2.4 PNoise@ 1MHz (dbc/hz) P DC (mw) -105-117 0.2@ vdd=0.8v 0.2@ vdd=0.7v 12dB Phase Noise improvement at same power consumption CEA. All rightsreserved DACLE Division 14

Cliquez pour modifier le style Conclusion du titre UTBB-FDSOI 28nm offers a versatile platform to meet the demandsdigital,analogandrffortheinternetof Things market The technology offers improvement in performances and/or power consumption in most critical RF blocs The technology can perfectly fit the need of high performance low power requirements required in high-end wearables IoT CEA. All rightsreserved DACLE Division 15