2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Two-ways of describing device: A. Equivalent - Circuit-Model
|
|
|
- Everett Green
- 9 years ago
- Views:
Transcription
1 ECE45A/8A Notes et #4 Port Parameters Two-ways of describing device: A. Equivalent - Circuit-Model Physically based Includes bias dependence Includes frequency dependence Includes size dependence - scalability Ideal for IC design Weakness: Model necessarily simplified; some errors. Thus, weak for highly resonant designs B. Port Model Matrix of tabular data vs. frequency Need one matrix for each bias point and device size Clumsy huge data sets required Traditional microwave method Exact Port descriptions These are black box (mathematical) descriptions. I I + port port + Inside might be a transistor, a FET, a transmission line, or just about anything. The terminal characteristics are I & I there are degrees of freedom. Rev./7
2 ECE45A/8A Notes et #4 Admittance Parameters I I Y Y Y Y Example: imple FET Model C gd g m gs C gs + gs Rds By inspection: Y jωc gs + jωc gd jωc gd g m jωc gd G ds + jωc gd Easy! I Y Y I Rev./7
3 ECE45A/8A Notes et #4 3 Impedance Parameters I I Example R R R 3 By inspection R + R 3 R 3 R 3 R + R 3 I I I I But, y, z, and h parameters are not suitable for high frequency measurement. Problem: How can you get a true open or short at the circuit terminals? Any real short is inductive. Any real open is capacitive. To make matters worse, if you are trying to measure a high freq. active device, a short or open can make it oscillate! olution: Use termination in instead! Broadband. Not very sensitive to parasitic L,C Kills reflections. Redefine parameters to use fwd. and rev. voltage waves. Measurement can use directional couplers. Rev./7
4 ECE45A/8A Notes et #4 4 Parameters o a a b b z z o input reflection coeff a rev. transm. gain a b b a a fwd transm. gain output a Γ a Note that must be defined. We don t really need transmission lines. Our objective now is to de-mystify -parameters they are easy! Recall (x) + (x) + (x) I(x) + (x) (x) phasor quantities. amplitude, not rms values. We can normalize the amplitude of waves to : a(x) + (x) b(x) (x) forward wave reverse wave Why? o that a(x)a* (x) power in forward wave. if a.44 then power in wave is watt. (or a rms ) Rev./7
5 ECE45A/8A Notes et #4 5 likewise, b(x)b * (x)/ is the power in the reverse wave o, in terms of total voltage (x) and current I(x), or, a( x) b( x) () x ( ) vx ax ()+ bx () ix () Ix () ax () bx () [ v( x) + i( x) ] [ ( x) + I( x) ] [ v( x) i( x) ] [ ( x) I( x) ] Reflection o, how is Γ defined in terms of the parameters? At port, But, Γ b a b a+ a We need to eliminate a. How? If L o, a Γ L so, therefore a if port is terminated in o. b ame with at port with : b Γ a a b Γ a a Rev./7
6 ECE45A/8A Notes et #4 6 Transmission b a+ a o, the forward transmission can be found by setting a (terminate output) b a a Reverse transmission, similarly, is found by setting a (terminate input in o) b a+ a b a a Rev./7
7 ECE45A/8A Notes et #4 7 ome comments on power measurement: Power can vary over a large range, therefore it is often specified on a logarithmic scale. There must be a point of reference on the scale; the power measurements are usually with reference to mw. The unit is called dbm meaning db relative to mw of power. Thus, dbm mw dbm mw - dbm. mw etc. To convert mw to dbm: dbm log (P) To convert dbm to mw: P dbm/ What is the difference between db and dbm? db is a power ratio used to describe a gain or loss for example. G log (P out /P in ) db Return Loss - log Γ db But, db says nothing about the absolute power level. Don t confuse their usage! Rev./7
8 ECE45A/8A Notes et #4 8 Now, define available power: P A max power output from a source with impedance s that can be absorbed into a load. let, L * (in this case) because maximum power transfer occurs when we have a conjugate match gen gen / generator load Or, in terms of a and b: P load P A 8 gen a + + gen ~ b b + + gen a and b ; gen and + o, gen * Pload PA aa 8 Rev./7
9 ECE45A/8A Notes et #4 9 We see that the available power is independent of load impedance. Even if the load is not matched, available power remains constant. Actual power in the load is reduced however. Generator output power is calibrated and displayed as available power. Actual Load Power P Re or * Load a b I PLoad PA ( ) Reflected Power b a imilarly, PR b a P Power reflected from input b Power incident on input a a A Power reflected from network output Power incident on output Power incident on output Reflected power from load b a b b Power reflected from input port Power incident on load from the network Rev./7
10 ECE45A/8A Notes et #4 a b a b Also, by definition, transducer gain P load P avs G T even if. load isn t matched to network and. input of network not matched to generator Here, P Load L b ( Γ ) is defined in terms of transducer gain for the special case of where L : b a a b power incident on load (and is absorbed since Γ L) a source available power imilarly, transducer gain with source and load reverse transducer power gain Rev./7
11 ECE45A/8A Notes et #4 Reference Planes E B C Microwave transistor in package E On board: B C [] connection to instruments here Define defining x at z both ports here. Defining the reference planes differently changes the -parameters. Rev./7
12 ECE45A/8A Notes et #4 phase shifts! 5Ω microstrip transmission lines b a e j θ e j ( θ +θ ) e j ( θ +θ ) e j θ a x θ π x x x λ b connections to instruments here π θ βx λ π θ βx λ θ π λ ' θ e j( θ+ θ ) e j( θ+ θ ) e jθ e The reflection parameters are shifted in phase by twice the electrical length because the incident wave travels twice over this length upon reflection. The transmission parameters have the sum of the electrical lengths, since the transmitted wave must pass through both lengths. Rev./7
13 ECE45A/8A Notes et #4 3 Comment on electrical length: The microwave literature will say a line is 43 long at 5 GHz. What does this mean? Electrical length E 36 λ ref Recall f λ v so f ref λ ref υ E v / f ref 36 v f ref 36 f ref E T f ref 36 a line which is ns long has an electrical length E 36 at f ref GHz and an electrical length E 36 at F ref MHz Why not just say Τ ns? you should be conversant with both terminologies. Converting to physical length f λ λ ref ref v v f p p thus: physical length E(deg) λ ref 36 Electrical length (in wavelengths) λ ref or: Rev./7
14 ECE45A/8A Notes et #4 4 How to Calculate -Parameters Quickly First Comment b a a b + a a (We must kill a in order to measure or calculate ) Γ L L b a if L, then Γ L is zero and so a Γ L b. o b a L o if we say that in L is the input impedance with L then in L in L + Γ in or: in L + The same comment clearly applies for. The mith Chart is often used to plot,. Rev./7
15 ECE45A/8A Notes et #4 5 Example: 4Ω Given 5Ω, what is? 4Ω 5Ω imilar arguments give 4 4. in L 54Ω Find b a a Γ a a ~ gen b b L Rev./7
16 ECE45A/8A Notes et #4 6 What is a in this case? We know that: a + and + o gen o, a gen o Consider the load: b out Why? b a + L out _ a Γ L b But, Γ L because L, so a. out + + a + b b Now, calculate out / gen : ( a ) out + b a But, a because the load impedance, so ubstitute for a : out a so, gen a out gen Rev./7
17 ECE45A/8A Notes et #4 7 thus, out when L gen Why the factor of? gen gen / generator load We see that the generator voltage is split between the source and load in the matched case. Here, we see that out/gen ½, but the transducer gain must be equal to. (P LOAD /P A ). is the transducer gain in this situation. If we insert an amplifier into the network, the signal has been increased by an amount. gen out gen / generator load Rev./7
18 ECE45A/8A Notes et #4 8 o, is the FORWARD INERTION GAIN or FORWARD TRANDUCER GAIN in a system of impedance. EXAMPLE: Find 5 4 gen 5 out / gen out/gen 5/ OR, we could let gen. Then, out. What about a reference plane extension? X - l X X X - l 5 4 gen 5 out / gen Θ i π l i /λ e jθ Γ IN () Γ OUT () e jθ and π π θ β θ β λ λ ' j( θ + θ ) π j( + )/ λ e e Rev./7
19 ECE45A/8A Notes et #4 9 EXAMPLE: Find the 4 parameters of the following circuit: gen C : Find in (with L ), then calculate input reflection coefficient. IN L / ( sc + / ) IN IN + IN IN + turning the crank, jωc / + jωc / will be the same due to symmetry. Note that we calculated IN with port terminated in. This is part of the definition of so is essential. Rev./7
20 ECE45A/8A Notes et #4 Now find : first use Thevenin Norton transformation: out gen / C out gen + sc I/Y out gen + jωc / Rev./7
RF-Microwaves formulas - 1-port systems
RF-Microwaves formulas - -port systems s-parameters: Considering a voltage source feeding into the DUT with a source impedance of. E i E r DUT The voltage into the DUT is composed of 2 parts, an incident
Agilent AN 154 S-Parameter Design Application Note
Agilent AN 154 S-Parameter Design Application Note Introduction The need for new high-frequency, solid-state circuit design techniques has been recognized both by microwave engineers and circuit designers.
Experiment 7: Familiarization with the Network Analyzer
Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).
ADS Tutorial Stability and Gain Circles ECE145A/218A
ADS Tutorial Stability and Gain Circles ECE145A/218A The examples in this tutorial can be downloaded from xanadu.ece.ucsb.edu/~long/ece145a as the file: stab_gain.zap The first step in designing the amplifier
Transmission Lines. Smith Chart
Smith Chart The Smith chart is one of the most useful graphical tools for high frequency circuit applications. The chart provides a clever way to visualize complex functions and it continues to endure
A Network Analyzer For Active Components
A Network Analyzer For Active Components EEEfCom 29-30 Juni ULM Marc Vanden Bossche, NMDG Engineering Remi Tuijtelaars, BSW Copyright 2005 NMDG Engineering Version 2 Outline Review of S-parameters Theory
CHAPTER 6 Frequency Response, Bode Plots, and Resonance
ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal
db, dbm, dbw db 10 log (x) where x is unitless! For example, amplifier gain is a unitless value!
2/15/2005 db.doc 1/9 db, dbm, dbw Decibel (db), is a specific function that operates on a unitless parameter: db log (x) where x is unitless! Q: A unitless parameter! What good is that!? A: Many values
RF Network Analyzer Basics
RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),
Performing Amplifier Measurements with the Vector Network Analyzer ZVB
Product: Vector Network Analyzer R&S ZVB Performing Amplifier Measurements with the Vector Network Analyzer ZVB Application Note This document describes typical measurements that are required to be made
S-Parameters and Related Quantities Sam Wetterlin 10/20/09
S-Parameters and Related Quantities Sam Wetterlin 10/20/09 Basic Concept of S-Parameters S-Parameters are a type of network parameter, based on the concept of scattering. The more familiar network parameters
RF IF. The World Leader in High-Performance Signal Processing Solutions. RF Power Amplifiers. May 7, 2003
The World Leader in High-Performance Signal Processing Solutions RF Power Amplifiers May 7, 2003 Outline PA Introduction Power transfer characteristics Intrinsic PA metrics Linear and Non-linear amplifiers
CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis
CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the
2/20/2009 3 Transmission Lines and Waveguides.doc 1/3. and Waveguides. Transmission Line A two conductor structure that can support a TEM wave.
2/20/2009 3 Transmission Lines and Waveguides.doc 1/3 Chapter 3 Transmission Lines and Waveguides First, some definitions: Transmission Line A two conductor structure that can support a TEM wave. Waveguide
ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER
ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER Latest revision: October 1999 Introduction A vector network analyzer (VNA) is a device capable of measuring both the magnitude and phase of a sinusoidal
Lock - in Amplifier and Applications
Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o
2. The Vector Network Analyzer
ECE 584 Laboratory Experiments 2. The Vector Network Analyzer Introduction: In this experiment we will learn to use a Vector Network Analyzer to measure the magnitude and phase of reflection and transmission
LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.
LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the
Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)
Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage
MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER
MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision
Homework Assignment 03
Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same
Inductors in AC Circuits
Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum
Six-Port Reflectometer: an Alternative Network Analyzer for THz Region. Guoguang Wu
Six-Port Reflectometer: an Alternative Network Analyzer for THz Region Guoguang Wu Outline General Background of Network Analyzer Principles of Six-Port Reflectometer WR-15 Six-port Reflectometer Design,
Local Oscillator for FM broadcast band 88-108 MHz
Local Oscillator for FM broadcast band 88-108 MHz Wang Luhao Yan Shubo Supervisor: Göran Jönsson Department of Electrical and Information Technology Lund University 2012.05.15 Abstract In this project
Antenna Factors, their Derivation and the FCC Dave Wissel @ Wave Technology
Antenna Factors, their Derivation and the FCC Dave Wissel @ Wave Technology OVERVIEW: In the document I start with the definition of antenna factor (AF). Next I give a short history of what led to antenna
Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus
Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC
An Introduction to the EKV Model and a Comparison of EKV to BSIM
An Introduction to the EKV Model and a Comparison of EKV to BSIM Stephen C. Terry 2. 3.2005 Integrated Circuits & Systems Laboratory 1 Overview Characterizing MOSFET operating regions EKV model fundamentals
Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99
Engineering Sciences 151 Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 WAVE PROPAGATION II: HIGH FREQUENCY SLOTTED LINE AND REFLECTOMETER MEASUREMENTS OBJECTIVES: To build greater
Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z +
Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Quick Review of Reflection Coefficient The Smith chart is a method of graphing reflection coefficients and impedance, and is often useful
Using the Impedance Method
Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even
BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010)
BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) Introduction The Mini-Circuits family of microwave monolithic integrated circuit (MMIC) Darlington amplifiers offers the RF designer
Understanding SWR by Example
Understanding SWR by Example Take the mystery and mystique out of standing wave ratio. Darrin Walraven, K5DVW It sometimes seems that one of the most mysterious creatures in the world of Amateur Radio
Sophomore Physics Laboratory (PH005/105)
CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision
Critical thin-film processes such as deposition and etching take place in a vacuum
WHITEPAPER INTRODUCING POWER SUPPLIES AND PLASMA Critical thin-film processes such as deposition and etching take place in a vacuum SYSTEMS chamber in the presence of a plasma. A plasma is an electrically
Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows
LS-296 Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows T. L. Smith ASD / RF Group Advanced Photon Source Argonne National Laboratory June 26, 2002 Table of Contents 1) Introduction
Understanding the Fundamental Principles of Vector Network Analysis. Application Note 1287-1. Table of Contents. Page
Understanding the Fundamental Principles of Vector Network Analysis Application Note 1287-1 Table of Contents Page Introduction 2 Measurements in Communications Systems 2 Importance of Vector Measurements
Analysis on the Balanced Class-E Power Amplifier for the Load Mismatch Condition
Analysis on the Class-E Power Amplifier for the Load Mismatch Condition Inoh Jung 1,1, Mincheol Seo 1, Jeongbae Jeon 1, Hyungchul Kim 1, Minwoo Cho 1, Hwiseob Lee 1 and Youngoo Yang 1 Sungkyunkwan University,
Positive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49
Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large
1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:
ECE 584 Microwave Engineering Laboratory Experiments 1. The Slotted Line Introduction: In this experiment we will use a waveguide slotted line to study the basic behavior of standing waves and to measure
Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R
Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q
The Gamma Match. 1 Equal Size Elements
The Gamma Match The gamma match was originally invented as a means of feeding vertical monopole antennas for medium wave broadcasts, which were earthed at the base for lightning protection (see Figure
Transmission Line Transformers
Radio Frequency Circuit Design. W. Alan Davis, Krishna Agarwal Copyright 2001 John Wiley & Sons, Inc. Print ISBN 0-471-35052-4 Electronic ISBN 0-471-20068-9 CHAPTER SIX Transmission Line Transformers 6.1
APPLICATION NOTE AP050830
APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: [email protected] URL: http://www.prowave.com.tw The purpose of this application note
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic
PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA
PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid
APPLICATION NOTES POWER DIVIDERS. Things to consider
Internet Copy Rev A Overview Various RF applications require power to be distributed among various paths. The simplest way this can be done is by using a power splitter/divider. Power dividers are reciprocal
Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005
6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 231 Lecture 23 Frequency Response of Amplifiers (I) CommonSource Amplifier December 1, 2005 Contents: 1. Introduction 2. Intrinsic frequency
S-parameter Simulation and Optimization
S-parameter Simulation and Optimization Slide 5-1 S-parameters are Ratios Usually given in db as 20 log of the voltage ratios of the waves at the ports: incident, reflected, or transmitted. S-parameter
RF measurements, tools and equipment E. B. Boskamp, A. Nabetani, J. Tropp ([email protected])
RF measurements, tools and equipment E. B. Boskamp, A. Nabetani, J. Tropp ([email protected]) INTRODUCTION I am often asked by researchers what kind of equipment is needed to set up an RF lab. The
RLC Series Resonance
RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function
Lecture - 4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits
Impedance Matching and Matching Networks. Valentin Todorow, December, 2009
Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines
The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper
The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common
Broadband Push-Pull Power Amplifier Design at Microwave Frequencies
Broadband Push-Pull Power Amplifier Design at Microwave Frequencies Robert Smith and Prof. Steve Cripps Centre for High Frequency Engineering, Cardiff University [email protected] A broadband, high
Antenna Deployment Technical Brief
ProCurve Networking Antenna Deployment Technical Brief Introduction... 2 Antenna types... 2 Omni directional antennas... 2 Directional antennas... 2 Diversity antennas... 3 High gain directional antennas...
Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras
Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 18 Wideband (Video) Amplifiers In the last class,
Chapter 10. RC Circuits ISU EE. C.Y. Lee
Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine
Understanding Mixers Terms Defined, and Measuring Performance
Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden
Frequency response: Resonance, Bandwidth, Q factor
Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The
EE302 Lesson 14: Antennas
EE302 Lesson 14: Antennas Loaded antennas /4 antennas are desirable because their impedance is purely resistive. At low frequencies, full /4 antennas are sometime impractical (especially in mobile applications).
Understanding Power Splitters
Understanding Power Splitters how they work, what parameters are critical, and how to select the best value for your application. Basically, a 0 splitter is a passive device which accepts an input signal
The Critical Length of a Transmission Line
Page 1 of 9 The Critical Length of a Transmission Line Dr. Eric Bogatin President, Bogatin Enterprises Oct 1, 2004 Abstract A transmission line is always a transmission line. However, if it is physically
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation
AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation Abstract EMC compatibility is becoming a key design
Application Report. 1 Description of the Problem. Jeff Falin... PMP Portable Power Applications ABSTRACT
Application Report SLVA255 September 2006 Minimizing Ringing at the Switch Node of a Boost Converter Jeff Falin... PMP Portable Power Applications ABSTRACT This application report explains how to use proper
Understanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
ε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
Operational Amplifier - IC 741
Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset
Introduction to Complex Numbers in Physics/Engineering
Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The
Capacitor Self-Resonance
Capacitor Self-Resonance By: Dr. Mike Blewett University of Surrey United Kingdom Objective This Experiment will demonstrate some of the limitations of capacitors when used in Radio Frequency circuits.
Testing a power supply for line and load transients
Testing a power supply for line and load transients Power-supply specifications for line and load transients describe the response of a power supply to abrupt changes in line voltage and load current.
Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)
Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap
Understanding Power Splitters
Understanding Power Splitters How they work, what parameters are critical, and how to select the best value for your application. Basically, a 0 splitter is a passive device which accepts an input signal
L stub Z A = Z 0 Z R Z 0S. Single stub impedance matching
Single stub impedance matching Impedance matching can be achieved by inserting another transmission line (stub) as shown in the diagram below Z A = Z 0 Z 0 Z R Z 0S d stub L stub Amanogawa, 006 Digital
Measuring RF Parameters of Networks Bill Leonard NØCU
Measuring RF Parameters of Networks Bill Leonard NØCU NAØTC - 285 TechConnect Radio Club http://www.naøtc.org/ What is a Network? A Network is a group of electrical components connected is a specific way
Germanium Diode AM Radio
Germanium Diode AM Radio LAB 3 3.1 Introduction In this laboratory exercise you will build a germanium diode based AM (Medium Wave) radio. Earliest radios used simple diode detector circuits. The diodes
Measuring Parasitic Capacitance and Inductance Using TDR
Measuring Parasitic apacitance and Inductance Using TDR Time-domain reflectometry (TDR) is commonly used as a convenient method of determining the characteristic impedance of a transmission line or quantifying
Nano Stepping Notch Filter Jim Hagerman 02 01 12
Nano Stepping Notch Filter Jim Hagerman 02 01 12 INTRODUCTION I worked out equations for the von Newman style high power notch filter. This design is tunable over a fairly wide range, but less than an
Transistor Amplifiers
Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input
High Speed, Low Power Dual Op Amp AD827
a FEATURES High Speed 50 MHz Unity Gain Stable Operation 300 V/ms Slew Rate 120 ns Settling Time Drives Unlimited Capacitive Loads Excellent Video Performance 0.04% Differential Gain @ 4.4 MHz 0.198 Differential
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative
Bipolar Transistor Amplifiers
Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must
MASW-000823-12770T. HMIC TM PIN Diode SP2T 13 Watt Switch for TD-SCDMA Applications. Features. Functional Diagram (TOP VIEW)
Features Exceptional Loss = 0.35 db Avg @ 2025 MHz, 20mA Exceptional Loss = 0.50 db Avg @ 2025 MHz, 20mA Higher - Isolation = 31dB Avg @ 2025 MHz, 20mA Higher RF C.W. Input Power =13 W C.W.(-Ant Port)
Frequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION
1 SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION By Lannes S. Purnell FLUKE CORPORATION 2 This paper shows how standard signal generators can be used as leveled sine wave sources for calibrating oscilloscopes.
Application Note #4 Measuring Transmitter Power with the Oscilloscope Roger Stenbock W1RMS 4/19/2012
Application Note #4 Measuring Transmitter Power with the Oscilloscope Roger Stenbock W1RMS 4/19/2012 HF Amplifier Power Measurements: Power is often defined as peak power, carrier power, average power,
SECTION 2 Transmission Line Theory
SEMICONDUCTOR DESIGN GUIDE Transmission Line Theory SECTION 2 Transmission Line Theory Introduction The ECLinPS family has pushed the world of ECL into the realm of picoseconds. When output transitions
Lecture 7 Circuit analysis via Laplace transform
S. Boyd EE12 Lecture 7 Circuit analysis via Laplace transform analysis of general LRC circuits impedance and admittance descriptions natural and forced response circuit analysis with impedances natural
The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam
The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam This document contains every question from the Extra Class (Element 4) Question Pool* that requires one or more mathematical
Application Note SAW-Components
Application Note SAW-Components Principles of SAWR-stabilized oscillators and transmitters. App: Note #1 This application note describes the physical principle of SAW-stabilized oscillator. Oscillator
Constructing a precision SWR meter and antenna analyzer. Mike Brink HNF, Design Technologist.
Constructing a precision SWR meter and antenna analyzer. Mike Brink HNF, Design Technologist. Abstract. I have been asked to put together a detailed article on a SWR meter. In this article I will deal
UGF09030. 30W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET
30W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET Designed for base station applications in the frequency band 800MHz to 1000MHz. Rated with a minimum output power of 30W, it
2.996/6.971 Biomedical Devices Design Laboratory Lecture 2: Fundamentals and PCB Layout
2.996/6.971 Biomedical Devices Design Laboratory Lecture 2: Fundamentals and PCB Layout Instructor: Hong Ma Sept. 12, 2007 Fundamental Elements Resistor (R) Capacitor (C) Inductor (L) Voltage Source Current
Design Considerations for an LLC Resonant Converter
Design Considerations for an LLC Resonant Converter Hangseok Choi Power Conversion Team www.fairchildsemi.com 1. Introduction Growing demand for higher power density and low profile in power converter
