Feasibility Study of Deep Water Power Cable Systems. Enrico Colombo CESI S.p.A



Similar documents
HV Submarine Cable Systems Design, Testing and Installation

Konti Skan Replacement of Cable 1

E-Highway2050 WP3 workshop April 15 th, 2014 Brussels

Offshore Wind China 2010 Bergen, 15th March Olivier Angoulevant Nexans Norway AS

Network Standard Advice No. 1420C 9/6/2011

An Introduction to High Voltage Direct Current (HVDC) Underground Cables

By Manitoba Hydro, March 4 th 2013

Cable Consulting International

factsheet High Voltage Direct Current electricity technical information

8 Strait of Belle Isle Marine Cable Crossing

and to mutually agree mitigation measures to reduce identified concerns and risks to acceptable levels.

HVDC Light Cables. Submarine and land power cables

Cable Laying and Repair - Cable Ship Operations

factsheet High Voltage Direct Current Electricity technical information

ScottishPower Distribution Cables & Equipment. Metal Theft

Fault location on power cables. Fault location on power cables

KNOW YOUR OPTIONS: 230 KV POWER CABLES

APPLICATION ORIENTED DESIGN OF CABLES

State, trends and evolutions of HV/EHV power cables systems and contributions of SC B1 to their ongoing progress

environment briefing02

Section kv Power Cables

Submarine Power Cables. State-of-the-art production facility, more than 100 years of experience and reference installations around the world.

NSW Submarine Power. Cables for the future, delivered today.

Indicative costs for replacing SWER lines

CHAPTER VIII LINE PLANT SYSTEM COMMUNICATION THROUGH RE CABLE

Offshore Work Packages

KNOW YOUR OPTIONS: 69 KV XLPE POWER CABLE

Integrated Development and Assessment of New Thermoplastic High Voltage Power Cable Systems

How To Monitor Water Penetration In A Cable Screen

Comparative study for cables and busbars

CONFLEX ELECTRIC CABLE

CIEMADeS 4th INTERNATIONAL CONFERENCE

Scottish Enterprise. Offshore Wind Power: Priorities for Research and Development (R&D) and Innovation. Supporting a globally competitive Scotland

)454, !,5-).)5- #!",% 3(%!4(3 #/.3425#4)/. ).34!,,!4)/.!.$ 02/4%#4)/. /& #!",%3!.$ /4(%2 %,%-%.43 /& /543)$% 0,!.43. )454 Recommendation,

Undergrounding high voltage electricity transmission. The technical issues

PB POWER ISLAND OF IRELAND CAVAN-TYRONE AND MEATH-CAVAN 400KV PROJECTS PRELIMINARY BRIEFING NOTE OVERHEAD AND UNDERGROUND ENERGY TRANSMISSION OPTIONS

NSW Submarine Power. Cables for the future, delivered today

VIPERFLEX ELECTRIC CABLE

SHE Transmission. 2015_10_30 Transmission Losses Strategy Rev 2.0 October 2015

Gulf Cable & Electrical Ind. Co.

Overview of the 500MW EirGrid East-West Interconnector, considering System Design and Execution-Phase Issues

The new 525 kv extruded HVDC cable system

Offshore wind farm electrical engineering (when considering the operation of array cabling at voltages of 66kV)

IEEE POWER ENGINEERING SOCIETY CHICAGO CHAPTER THE OKONITE COMPANY WEDNESDAY JANUARY 11, 2006 JIM FITZGERALD ENGINEERING LINGO

For business. Wiring your business for broadband. What happens when copper is required?

Cable Installation Notes

HVDC Light, a tool for electric power transmission to distant loads

Cables, Cable Laying & Accessories Manual

3.6/6 kv XLPE insulated cables 5. 6/10 kv XLPE insulated cables /15 kv XLPE insulated cables /20 kv XLPE insulated cables 35

Development of a 500-kV DC XLPE Cable System

UGVCL/SP/591/11KV HT AB CABLE

Company and Product Presentation

Stephen G. Whitley, Senior Vice President & Chief Operating Officer

SUITABILITY OF DIFFERENT TEST VOLTAGES FOR ON-SITE TESTING OF XLPE CABLE SYSTEMS

THE PATHWAY TO POWER HIGH-VOLTAGE CABLES

High Voltage Systems. Today. The history of cables

EDS KV TRIPLEX CABLE

Sub sea Cable Technology

XLPE PRODUCTION PLANT FOR THIRUVALLA UNIT OF TRACO CABLE LTD

High Voltage Cable Systems

RCP2 Portfolio Overview Document

SUPPLIERS INFORMATION SESSIONS MARITIME LINK PROJECT. Contract for Submarine Cable Design, Supply and. Contract No. E11-18

Overview of Submarine Cable Route Planning & Cable Route Survey Activities. Graham Evans Director EGS Survey Group

Pipelines and seabed intervention

NSW Submarine Telecom Systems. Turnkey solutions for the future, delivered today.

ZHONGTIAN TECHNOLOGIES CO., LTD ZHONGTIAN TECHNOLOGIES SUBMARINE CABLE CO., LTD

Cable Care. ABB Power Cables Service Products

Electric heat tracing

Offshore Wind. IEEE Boston PES - November 16, 2010

RGI Cable Workshop Understanding Underground Cables 13 and 14 February in Spreitenbach, Switzerland A workshop kindly hosted by Swissgrid

AORC Technical meeting 2014

6 ELECTRICAL PARAMETERS

Permanent Reservoir Monitoring (PRM) System Installation: The Installers Perspective

DOUBLE DRUM TRACTION WINCH SYSTEMS FOR OCEANOGRAPHIC RESEARCH 1.0 TRACTION WINCH SYSTEM ADVANTAGES 11-2

We specialize in low voltage cables including: Stranded Single Cable H07V-R Flexible Single Cable H05V-K

A Deeper Insight into Fault Location on Long Submarine Power Cables

Whitepaper. Modular Substation Cable Termination Design. Author: Allan Bozek P.Eng, MBA, EngWorks Inc, Calgary, Canada

Comparison of Steel Tubes and Thermoplastic Hoses in Umbilical Service

EARTHING AND BONDING AT SECONDARY SUBSTATIONS

This paper describes an instrumentation system concept which should be capable of early detection of a leak-before* break in main steam lines.

SCHEDULE ' A' TECHNICAL SPECIFICATION FOR 11/22/33KV H.T.XLPE POWER CABLE FOR DISTRIBUTION NETWORK IN MAHARASHTRA (SPECIFICATION NO.

installation, operations & maintenance

Ampacity simulation of a high voltage cable to connecting off shore wind farms

HIGH- AND EXTRA-HIGH-VOLTAGE GLOBAL CABLE SYSTEM SOLUTIONS Rely On Our Experience... Experience Our Capabilities

MAXIMISING YOUR. Offshore wind assets ASSET OPERATION & MAINTENANCE SERVICES

Corporate Profile ROYAL. MODERN ROYAL ELECTRIC Ideal Power Solution MRE ELECTRICAL, INSTRUMENTATION & COMMUNICATION SYSTEMS

Specializing in the cable business for over 38 years, PT. SUPREME CABLE

NSW OFFSHORE AND SPECIAL CABLES. Cables for the future, delivered today.

QUALITY CONTROL Prepared: V. van Gastel / team TenneT Reviewed: M. Müller Approved: F. Wester BACKGROUND MATERIAL...

Essex... A great location for offshore wind

AS COMPETITION PAPER 2007 SOLUTIONS

Electrical for Detached Garages: Updated Feb 19, 2016 for 2015 CE Code in force Jan. 1, Underground branch circuit feeding a detached garage:

Subsea Market Review. Subsea 2011 February 9 10, Quest Offshore Resources, Inc. 1

GALVANIC CATHODIC PROTECTION 1.0 CONTENTS. 1.1 Aluminium Anodes. 1.2 Zinc Anodes. 1.3 Magnesium Anodes SECTION

CTI TECHNICAL BULLETIN Number 9: A publication of the Cable Tray Institute

Unified requirements for systems with voltages above 1 kv up to 15 kv

Cutting and stripping tools

HINDUSTAN PETROLEUM CORPORATION LIMITED ENGINEERING & PROJECTS GRESHAM ASSURANCE HOUSE, 2 ND FLOOR, A-1595(3) 1-A, SIR P M ROAD, FORT MUMBAI

The Quality Connection. BETAflam Fire Resistant Safety Cables

HIGH VOLTAGE XLPE CABLE SYSTEMS. Technical User Guide

Transcription:

Feasibility Study of Deep Water Power Cable Systems Enrico Colombo CESI S.p.A

Layout of Presentation The Study Context, Objectives, Participants Study Approach & Methodology Assessments and Findings Implementation Issues Industrial Challenges Potential Criticalities Conclusion

Study Context a generic approach to the HVDC link between North Africa and Europe involving a 600km long submarine cable in the Mediterranean Sea at water depths of up to 2500m over a substantial part of its route Sea bed profile As marine survey dedicated to the selected corridor was not available, an indicative seabed profile was used

Study Objectives identify the environmental, functional, construction and installation context in which a 1000 MW, 600 km long HVDC submarine cable system may develop achieve a body of knowledge about the main issues associated with such a context investigate the possible choices in terms of design concepts, technology availability, construction capability, laying and repair methods expected to be made available by the market for the implementation of the required cable functionalities, in time for commissioning such a new product in the target Years 2020 or 2030 on

Study Participants The Consulting Team CESI SpA, Intertek, Parsons Brinckerhoff The Stakeholders to validate technical and economic assumptions or investigate innovative solutions for future application expectations of availability from the market in time for Years 2020 or 2030 Cable Manufacturers Innovative Materials Developers Cable Installers Oil & Gas Telecoms Cable Owners Others (manufacturers of buoyancy floats, cable grips, articulated shells)

Study Approach and Methodology (A&M) Technology Laying & Protection Operation & Maintenance Economic Issues Dedicated Interactive Task Forces Review of Existing Methods, Projects, R&D Initiatives Consultation Process, Market Enquiry Dedicated Questionnaires to the Stakeholders

A&M Technology : Topics of Concern Conductor Insulation Lead Sheath Armour ability of the amour to withstand the required pulling tension ability of the cable to withstand 300 bar pressure, salt water/density and to limit water propagation following a possible fault armour type and material that could be used to reduce weight cable sheath s friction value and impact on the lay operations test lab ability to have suitable equipment to undertake required tension test Pros and Cons of Mass Impregnated non Draining (MIND) vs Cross-Linked Polyethylene (XLPE) o combination of MIND and copper conductor provides the smallest possible size of insulated conductor o combination of MIND and aluminium conductor provides the lightest possible insulated conductor

A&M Technology : Requirements smallest possible outer diameter OD to enable a Laying Vessel to accommodate more single continuing cable length in order to minimise number of joints between campaigns lowest possible weight in water high electric power transmittability high electrical stress withstandability - in order to reduce insulation thickness, which subsequently would reduce amount of outer layers of lead sheath and armouring capability of withstanding 300bar of water pressure capability of withstanding tensile strength (pulling tension) while being laid at the depth of 2500m or while being recovered from the same depth

A&M -Technology : Existing Solutions examination of different deep sea power cable designs with reference a 1000 MW bipolar HVDC arrangement in order to identify the physical parameters (dimensions and weight), types and materials of conductor, insulation, sheath and armour. industrial best practice related to the conventional submarine HVDC cable technologies deployed at the depths up to 1,600 metres identification of the present limits of cable technology and cable laying for a typical deep water and steep slope installation and of the realistic range of exploitable margins obtainable from existing technologies

A&M Technology : Future Development investigation of on-going (2020) and future (2030) development, trends and innovations in submarine HVDC cable industry with reference to design, materials and applications for unusual (up to 2500m) deep sea power cable installation identification of the realistic range of exploitable margins obtainable from existing technologies, anticipating the contribution of technical innovation within the target years examination of a 2500m deep sea power cable design with reference to the physical parameters (dimensions and weight), types and materials of conductor, insulation, sheath and armour, and their relation with the high pressure (up to 300 bar) and mechanical/thermal stress gradient.

A&M - Laying & Protection : Main Topics analysis of availability of suitable marine assets capable of deepwater operations in the target years 2020 such as installation vessels, cable handling equipment and subsea intervention spreads identification of the deep water cable installation & recovery methodologies (including adaptations from oil&gas context).

A&M - Laying & Protection : Topics of Concern capability of vessel to handle deep water cable lay cable catenary control cable touch down monitoring single vs. bundle lay very deep marine survey cable recovery

A&M - Operation & Maintenance : Main Topics identification of the most feasible methods for deep water cable maintenance, spares strategy, recovery, monitoring, repair fault location and water ingress vessel size, capacity, availability faulty cable recovery and repair scenarios jointing team availability and experience cables protection

A&M - Economic Issues : Main Topics collection and analysis of cost estimates from previous similar experiences/projects identification of cost estimate assumptions from a market survey and through contact with selected suppliers and stakeholders sensitive analysis of the costs estimate of new cable installations

A&M -Economic Issues : Deep Water Installation design depth length innovation qualification assets location given the demanding laying process (600km, 2500m), there may be limited ships which could undertake the activity. The charter costs and risks of delays inherent in limited shipping availability may be considerable. deep water cables with issues related to armouring, joints, cable tension, etc, may require the manufacturers to undertake Research and Development (R&D) if they can see sufficient volume of such deep water cables in the world market the length of the cable (2 x 600km) will require several laying campaigns, exposing the cable installation to weather risks sea trials of a new vessel and a new laying procedure involve considerable up-front expenditure the cable link involving two different countries : Merchant Developers or TSOs?

A&M - Industrial Challenges forecast of availability of raw materials in 2020 and further in 2030 manufacturing limits to cable system production (cable diameter and weight, unit length, delivery length, transportation length) current and envisaged future factory capacities with suitable capabilities depending on the cable technology current and forecast future capabilities of mechanical and electrical testing facilities availability and practice of post-installation testing with examples of long length testing

A&F - Design &Technology Design Ratio Design Ratio (DR) is a scoring tool used to facilitate comparison; it contains favourable F and unfavourable U parameters that are combined in the form DR = F/U. DR for cables is offered specifically to help identify how close (i.e. to Proposed formula: grade) each of the proposed cable designs are to the set of technical ideal conditions for deep sea HVDC cables. Wpole: DR includes power of : one cable/pole diameter of the proposed cable design ST : tensile strength of the cable mass before of the it proposed reaches cable yield design point of the armouring or the conductor power of one cable/pole LA : compression load on the armour wires due to external water pressure at the maximum installation depth electrical stress Tmax : maximum dynamic tensional external force on water the pressure cable during installation or recovery tensile strength

A&F - Design & Technology: Design Ratio Recent deep sea HVDC cable designs and configurations used in SAPEI and ROMULO projects have become the base for this study : Project Voltage kv El. Stress kv/mm Type of deep sea Cable Outer Dia mm Weight in air kg/m Weight in water kg/m Design ratio ROMULO, 750mm2 CU 2x200MW, keystone The study assumes 250 as acceptable 30 for the DR the boundaries 94 29.5 resulting 22.6 from the 2.83 Max depth: conductor, two existing 1485m deep water installations MIND SAPEI, 2x500MW, Max depth: 1620m Romulo 250 kv Cable Romulo, 250kV, 750mm 500 30.8 2 CU, MIND 1150mm2 AL keystone conductor, MIND Sapei, 500kV, 1150mm 2 AL, MIND Design Ratio 2.83 119.2 36.1 24.9 5.18 Sapei 500 kv 5.18

A&F - Cable Laying dynamic tensions of 90 115 tonnes will be experienced at 2500m depths. considering the dynamic tension limits of the largest cable ships currently on the market (55 65 tonnes) and those of the flexible pipelay vessels (100 550 tonnes), the following installation arrangement is proposed:

A&F - Cable Lengths & Joints Location using a 7000 tonne carousel and the identified cable types, about 120 km of cable is assumed for the cable lay vessel for flexible pipelay vessels, using one of the larger vessels (Deep Blue) on the market, approximately 200 km of cable can be carried.

A&F - Cost Analysis : Laying Vessel Resources to cope with the assumed cable route: Cable Lay Vessel - CLV 1 x Cable lay vessel (up to 1500 m) 1 x Flexible pipelay vessel (from 1500 2500 m) 1 Flexible x Support Pipe vessel Lay Vessel (up to FPV 1000 m) 1 x Guard vessel (up to 1000 m) 1 x Jointing vessel Support Vessel

A&F O&M availability of suitable vessels for repair can be a risk in achieving a rapid repair. It may be that the Owners consider paying a retention fee to guarantee availability of a suitable vessel, within an agreed time frame. The repair vessel may be quite different from the original laying vessel. A new design of ROVs may be required to support repair activities in deep water it is advisable that the maintenance policy provides for a maintenance agreement, which aims at achieving priority in providing an independent fleet of vessels with dedicated repair teams on standby 24/7 to their members.

A&F - Economic Issues : Cost Analysis Cost assessment considered 3 max depth profiles respectively 500m, 1500m and 2500m properly scaled from the basic profile.

A&F - Economic Issues : Cost Analysis Cost Items : Manufacturing Laying Jointing Protection Spares Cost Factors evaluated with reference to the cable solutions selected for the three max depth scenarios having the basic 500m max depth at reference (per unit)

A&F - Cost Analysis : Manufacturing Cable sub-components having a cost impact on the design: conductor insulation metallic sheath armour conductor material (Al, Cu) cross section area metal cost manufacturing process type of material (MI/XLPE) voltage level manufacturing process type of material (Pb) cross section area type of material (galvanized steel) number of layers (2)

A&F - Cost Analysis : Manufacturing for 500m and 1500m max depth the cable design is chosen with reference to the proven design already implemented for said depths the identification of the cost sharing among the elementary cost items for the scenarios up to 1500m depth takes into consideration declared costs of actual installations for which final costs were found available (MI) for 2500m max depth MI and XLPE cable design are selected

A&F - Cost Analysis : Manufacturing 500 m 1500 m 2500 m DC Voltage Level [kv] 500 500 400 500 Insulation Type MIND MIND XLPE MIND Insulation Cost Factor 1 1.04 0.71 1.04 Conductor material Cu Al Al Al Conductor The Insulation: total Section cost the factor [mm cost 2 ] factor of the for 1000 cables XLPE is mainly results 1150 affected lower compared by 1400 the insulation with 1150 that and of Conductor conductor the MI solution Cost costs Factor that due represent to the 1 the cheaper biggest manufacturing 0.48 part of the 0.55 manufacturing process. The 0.48 cost cost Sheath resulting Material for the 1,500 m scenario Pb is slightly Pb higher Pb due to the Pb higher Cross Conductor: diameter section of area the [mm conductor cost 2 ] for the 7271500m and 751 500m scenarios 837 which 866 are Sheath assumed Armour: Cost made a higher Factor of cost aluminium for the 1 2500m are lower depth 1.03 due results to the 1.15 as lower the design cost 1.19 of should this Armour material ensure withstand Material compared of with a higher copper tension load during laying. Also in this case Galvan. Steel Galvan. Steel Galvan. Steel Galvan. Steel Number Sheath: the cost of the Layer factor cost of the has sheath been 2 has estimated been evaluated 2 under starting the 2 assumption from the 2 values of Cross of proportionality cross section section area [mm with area 2 ] the and cross hence 683 section from area the 1830 weight of 2730 Pb relevant 3190 to the Armour characteristics Cost Factor of the cables. The 1 cost factor 2.67 is hence 4.0 proportional 4.67 to the Manufact. cross section Cost area Factor 1 0.98 0.87 1.10

A&F - Cost Analysis : Manufacturing the Cable Manufacturing Cost Factor is assessed applying an Innovation Factor estimated considering the additional effort required to cope with the mechanical aspects related with the very high depth. 500m - MI 1500m -MI 2500m-XLPE 2500m-MI Innovation Factor 1 1.1 1.4 1.2 Cost Factor 1 1.08 1.22 1.32

A&F - Cost Analysis : Laying Laying Cost Factor estimated taking into account: loading time: time required to load the cable on the vessel at the factory transportation time: time necessary from the factory to the installation site; laying time (laying operations) daily rental cost of the vessel three max depth and three different assumed factory location, i.e.: two 2x 600 km HVDC cables delivered by one Cable Manufacturer located inside the Med Basin two 2x 600 km HVDC cables delivered by one Cable Manufacturer located outside the Med Basin. 600 km cables delivered by one Manufacturer located inside the Mediterranean Basin and the other 600 km cables delivered by one Cable Manufacturer located outside the Med basin the costs for mobilisation, demobilisation, weather downtime, vessel downtime, equipment downtime, agencies, personnel, rig/derig have been included considering an additional 30% of the total laying cost

A&F - Cost Analysis : Laying Number of cable single lay length : Vessel Cable Lay Vessel Flexible pipe-lay Vessel 500m 1500m 2500m Single laying length (km) 120 120 80 Number of single laying lengths 5 5 2 Length (km) - - ~150 Number of single laying lengths - - 3 Dependence of Laying Cost Factors on the Factory Location 500 m 1500 m 2500 m Factory in Med Basin 1 1.07 2.10 Factory out Med Basin 1.52 1.59 2.90 Consortium 1.26 1.33 2.50

A&F - Cost Analysis : Protection protection limit : assumed at 1000m depth

A&F - Cost Analysis : Protection Type of protection and protection breakdown 500m 1500m 2500m Ploughing [%] 35% 15% 15% Jetting [%] 35% 15% 15% Trenching [%] * 25% 65% 65% Remedial Protection [%] 5% 5% 5% * part of the route near the shore present a higher probability to be featured by hard seabed for which trenching may be required Cable Protection Cost Factor 500m 1500m 2500m 1 0.83 0.45

Number of joints A&F - Cost Analysis : Jointing 500m 1500m 2500m - XLPE 2500m - MI Number of joint at depth < 1500 m * 4 4 2 2 Number of joint at depth > 1500 m * 0 0 2 2 Total joints 4 4 4 4 * differentiation is made since the jointing operation time and the cost are different for the two cases Jointing operation time 500m 1500m 2500m - XLPE 2500m - MI Time for recover the two cable ends (day) 3 3 5 5 Jointing operation time (day) 10 10 5 10 Time for joint deployment (day) 3 3 5 5 Single jointing operation time (day) 16 16 15 20

A&F - Cost Analysis : Spare Cable Assumptions: spare cable length sufficient to cope two faults at max depth the joint up to 2500 m Single Repair Length (SRL) of the cable calculated using the relation: SRL=2 * catenary length at water depth + length of jointing vessel + length affected by water penetration spare cable lengths of 5km, 15km and 20 km for 500m, 1500m and 2500 m, respectively Spare Cable Cost Factor : 500m 1500m 2500m - XLPE 2500m - MI Spare cable [km] 5 10 20 20 Cost Factor 1 2.16 4.87 5.29

A&F - Cost Analysis :Total Cost Factor 500m 1500m 2500m - XLPE 2500m - MI Cable Supply 1 1,08 1,22 1,32 Weight [%] 54,1 57,8 57,4 59,0 Cable Laying 1 1,05 1,98 1,98 Weight [%] 16,5 17,2 28,6 27,0 Cable Jointing 1 1,00 0,94 1,25 Weight [%] 2,2 2,2 1,8 2,3 Cable Protection 1 0,83 0,45 0,45 Weight [%] 26,7 21,9 10,4 9,8 Spare Parts 1 2,16 4,87 5,29 Weight [%] 0,5 1,0 1,9 2,0 Total 1 1,01 1,14 1,21 The For the cost higher relative depth to the scenario 1500m max (2500m) depth the scenario higher is total similar cost to the factor, reference 1,14 case and (500 1,21 m) respectively because for the XLPE higher and cost MI for are cable due supply to higher is compensate cost for cable by a supply lower (1,22 protection and 1,32) cost. The and higher cost factor cost of for 2,16 5,29 cable laying of the (about spare two parts times); has a small on the impact other due end to there lower is a impact compensation on total for cost the (0,5 2%). lower protection cost that is 0,45.

A&F - Project Implementation To procure the complete bi-pole, following the contract award, it will take approximately 8* or 10** years broken down as follows: pre-tender activities: pre-qualification activities: project implementation: engineering and detailed marine survey: cable manufacturing: installation: commissioning: * depending on the number and capacity of production lines engaged 10 years 8 years about 2 years 1.7 years 5* or 7* year 1.25 year 3* or 5* years 1.5* or 3.4* years 0.3 year

Industrial Challenges different types of competing projects may have the potential to cause delays as they may require the engagement of same installation resources e.g. cable lay, construction vessels, ROVs, etc. some 30 projects may be identified that may have an impact to the Year 2020 scenario and 12 projects to the 2030 one.

Industrial Challenges availability of suitable equipment, innovative methods, techniques and materials across HVDC submarine cable industry to supply, install a complete deep sea HVDC cable system of 1000MW, 600km length with deep water sections up to 2500 metres. forecast of growing demand for power cables, particularly for HVDC deep sea submarine systems, and availability of credible manufacturers, suitable testing facilities (electrical and mechanical), cable installation vessels designed specifically for deep sea power cable installation and trained and qualified crews manufacturing slots and lead times for HVDC converter stations, cable systems, tools and equipment. Possibility of signing multi-vendor contracts for HVDC cable systems and converter stations in order to reduce lead times

Industrial Challenges Challenging topics expected to be launched within the context of the marine assets at the expected time frame (2020/2030) availability of specialised equipment, toolings for deep water cable laying current vessel market : conversion of deep water oil&gas equipment future availability of deep water ROVs for installation and emergency repairs to consider that as for the above aspects there is no established and acknowledged procedure for their qualification

Topics of Potential Criticality Advanced bookings materials and manufacture slot bookings would probably need to occur well in advance (4 years) ahead of manufacture because the XLPE cable market is so buoyant, and predicted to get even busier. For MI cable, the same issue arises, though not quite as severely as for XLPE. Front-end-engineering, Seabed survey and routeing, Licensing, permits and wayleaves tasks would all count towards the booking-ahead period. Marine survey (desk-top and physical aspects) its schedule cannot be brought forward significantly to the start of the project until the survey and analysis is complete, it is difficult to provide specific information for the licensing, permits and wayleaves processes. These licensing and similar processes are, in turn, also critical because until they are complete, it would be inappropriate to commit to the major cable production and installation contracts

Summary Technology MI and XLPE/extruded insulation technology equally acceptable MI solution for the near future (2020) being the technology considered to be better proven for high depths XLPE becomes a priority for near future should the foreseen reduction in MI cable production availability be confirmed for new Projects and the increasingly proven technology of XLPE insulated cables and accessories expected by that date. 500 kv XLPE insulated for the more distant future (2030) envisaging material technology advances Laying 1 x Cable Lay Vessel (up to 1500m) 1 x Flexible Pipelay Vessel (from 1500 2500m)

Conclusion The study was able to identify design, technological, installation and cost solutions for considering the feasibility of a submarine cable 600 km long with a depth of up to 2500m in HVDC bipolar configuration. This ambitious goal will have to see together actors from the different industrial contexts who will be called to contribute to the implementation of the link in the expected timetable (Year 2020 or 2030), overcoming the potential criticalities. From the contacts made with the potential Stakeholders during the development of the study and the willing shown in providing also confidential data, we can be confident of the consistency of the term "feasible".

Thank You for Your Attention