Protein Synthesis Simulation

Similar documents
Gene Finding CMSC 423

Hands on Simulation of Mutation

( TUTORIAL. (July 2006)

Mutation. Mutation provides raw material to evolution. Different kinds of mutations have different effects

Molecular Facts and Figures

Coding sequence the sequence of nucleotide bases on the DNA that are transcribed into RNA which are in turn translated into protein

Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme.

a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled

Biological One-way Functions

Hiding Data in DNA. 1 Introduction

DNA Bracelets

Insulin mrna to Protein Kit

Lab # 12: DNA and RNA

Transcription and Translation of DNA

PRACTICE TEST QUESTIONS

Gene and Chromosome Mutation Worksheet (reference pgs in Modern Biology textbook)

Molecular Genetics. RNA, Transcription, & Protein Synthesis

13.2 Ribosomes & Protein Synthesis

From DNA to Protein

Today you will extract DNA from some of your cells and learn more about DNA. Extracting DNA from Your Cells

Module 3: Strawberry DNA Extraction

Protein Synthesis. Page 41 Page 44 Page 47 Page 42 Page 45 Page 48 Page 43 Page 46 Page 49. Page 41. DNA RNA Protein. Vocabulary

Thymine = orange Adenine = dark green Guanine = purple Cytosine = yellow Uracil = brown

The Steps. 1. Transcription. 2. Transferal. 3. Translation

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains

Protein Synthesis How Genes Become Constituent Molecules

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure enzymes control cell chemistry ( metabolism )

DNA SPOOLING 1 ISOLATION OF DNA FROM ONION

Problem Set 3 KEY

UNIT (12) MOLECULES OF LIFE: NUCLEIC ACIDS

ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes

LESSON PHYSICAL PROPERTIES AND DNA

RNA & Protein Synthesis

Translation Study Guide

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

DNA Sample preparation and Submission Guidelines

Biology Final Exam Study Guide: Semester 2

Name Class Date. Figure Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.

SEAC 2012 Medical Director Potpourri BANNER. WILLIAM PENN. YOUR COMPANY FOR LIFE

Ms. Campbell Protein Synthesis Practice Questions Regents L.E.

Catalytic Activity of Enzymes

Translation. Translation: Assembly of polypeptides on a ribosome

Regents Biology REGENTS REVIEW: PROTEIN SYNTHESIS

Animal & Plant Cell Slides

Mutations and Genetic Variability. 1. What is occurring in the diagram below?

Strawberry-DNA Extraction. Workshop 86 Bio. Get the number of Strawberry-DNA Extraction kits needed for class, the teacher

Genetics Module B, Anchor 3

Bob Jesberg. Boston, MA April 3, 2014

Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons

Modeling DNA Replication and Protein Synthesis

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION LIVING ENVIRONMENT. Tuesday, January 25, :15 a.m. to 12:15 p.m.

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

Crime Scenes and Genes

BioBoot Camp Genetics

EXTRACTION OF DNA FROM CALF THYMUS CELLS Revised 2/1/96 Introduction

TECHNOLOGY TOPICS PROCESS SKILLS GRADE LEVELS. Observing Following Instructions Measuring Safely Using Tools

Strawberry DNA Extraction

DNA, RNA, Protein synthesis, and Mutations. Chapters

CHALLENGES IN THE HUMAN GENOME PROJECT

The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized:

RNA and Protein Synthesis

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Structure and Function of DNA

13.4 Gene Regulation and Expression

Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA

Lab 5: DNA Fingerprinting

First Flower. Program Overview

Bio 102 Practice Problems Genetic Code and Mutation

pcas-guide System Validation in Genome Editing

Ribosomal Protein Synthesis

Cellular Respiration Worksheet What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.

GENEWIZ, Inc. DNA Sequencing Service Details for USC Norris Comprehensive Cancer Center DNA Core

SNEAK PEAK inside ACTIVITY

MCAS Biology. Review Packet

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION LIVING ENVIRONMENT. Monday, January 26, :15 a.m. to 12:15 p.m.

Review Packet- Modern Genetics

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

CCR Biology - Chapter 8 Practice Test - Summer 2012

Activity 7.21 Transcription factors

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY

Page 1. Name:

Amino Acids, Peptides, and Proteins

1 Mutation and Genetic Change

The Techniques of Molecular Biology: Forensic DNA Fingerprinting

The Making of the Fittest: Evolving Switches, Evolving Bodies

The Puzzle of Life A Lesson Plan for Life S cien ce Teach ers From: The G reat Lakes S cien ce C ent er, C lev elan d, OH

Teacher Guide: Have Your DNA and Eat It Too ACTIVITY OVERVIEW.

1. The diagram below represents a biological process

GENE REGULATION. Teacher Packet

Inverse PCR & Cycle Sequencing of P Element Insertions for STS Generation

Lecture 4. Polypeptide Synthesis Overview

Hands-On Labs SM-1 Lab Manual

Table S1. Related to Figure 4

Table of Content. Enzymes and Their Functions Teacher Version 1

To be able to describe polypeptide synthesis including transcription and splicing

Sample Questions for Exam 3

Transcription:

Protein Synthesis Simulation Name(s) Date Period Benchmark: SC.912.L.16.5 as AA: Explain the basic processes of transcription and translation, and how they result in the expression of genes. (Assessed as SC.912.L.16.3 AA) Background: DNA carries the information for the synthesis of all the proteins of an organism. Protein molecules are large and complex, composed of hundreds of amino acids. The sequence of amino acids in a protein molecule is determined by the sequence of the nucleotides in the DNA of an organism. In the first step of protein synthesis, the nucleotide sequence of the DNA is transcribed(the process is transcription) into a long single-stranded molecule of mrna (messenger). The mrna moves through pores in the nuclear membrane to the cytoplasm where it will attach to a ribosome. The genetic code on mrna is read three letters or bases at time, each group of three bases on mrna is called a codon which correspond to a specific amino acid. When the mrna is attached to a ribosome, the trna (transfer) will bring amino acids into place according to the codons on mrna. Each trna has three unpaired bases called anti-codons. The trna anticodon is complementary to the mrna codon. The decoding of the mrna message into a protein is a process called translation. The amino acids then link together by forming peptide bonds and become a protein molecule. Purpose: To simulate the roles of mrna, ribosomes, and trna in the synthesis of proteins. Protein Synthesis Simulation: 1. Obtain your DNA strand and write the number of the DNA strand here: 2. Staying at your seat, transcribe the DNA into mrna codons. Write the mrna sequence here: 3. Write the trna sequence that corresponds to your mrna here: (group them as anti-codons) 4. Move around the room looking for the trna cards that match your anti-codons. Write down the words in order: If you complete this activity correctly #5 should be a sentence. If it does not make a sense, you have made a mistake and need to go back and start over.

Questions: 1. Where in the cell do steps 1 and 2 above occur? 2. Where in the cell do steps 3-4 occur? 3. Which step of this activity represents transcription? 4. Which step of this activity represents translation? 5. What does your final sentence represent? 6. What does each of your words represent? 7. Each DNA sequence started with ATG and ended with TAG. WHY? 8. When we are talking about errors in DNA, and protein synthesis, what do we call any mistakes? 9. Explain two ways a mistake could occur in this activity: 10. Would these mistakes affect individuals or an entire species? Why? 11. What role did you play in this activity? 12. What role does your paper play in this activity?

Protein Synthesis Simulation-Teacher Packet trna Cards with words (that go on BACK of the card) UAG - Stop CCG - is CGC -water AUG- Start CCU -subject CGG- every AAA - Your CGA - drink CGU - day AAC - mother AAG - wears AAU - dresses ACG -funny ACC - have ACU - dog ACA - breath AGA - the AGG - are AGU - Beatles AGC - best AUA - rock AUC - band AUU - an CAA - old CAC - rubber CAG -breaks CAU - pulled CCA - when CCC - Biology CUA - I CUC - love CUG- roll CUU- music GAA -all GAC - demented GAG - puppies GAU- and GCA -so GCC -much GCG -fun GCU -education GGA -door GGC -to GGG- future GGU -father GUA -a GUC-dress GUG - brother GUU-nothing UAA -we UAC - in UAU - this UCA -together UCC -must UCG-be UCU-informed UGA-around UGC-you UGG-read UGU-little UUA -DNA UUC -code UUG -for UUU - life DNA Fragments (that go on the cards): 1. ATGAAAAACAAGGTACACATCTAG 13. ATGAAAGTGAAGGTTTAG 2. ATGAAAAACAATTGCACGTAG 14. ATGTAAAGGGAATACTATTCATAG 3. ATGTAAACCACTACATAG 15. ATGTAATCCTCGTCTCGGCGTTAG 4. ATGAGAAGTAGGAGAAGCATAATCTAG 16. ATGATAGATCTGCTTCCGAGAAGCTAG 5. ATGATTCAACACATCCAGCCACATTAG 17. ATGCCCCCGGAATGATGCTAG 6. ATGCCCCCGAGAAGCCCTTAG 18. ATGTGGGTATGTCGGCGTTAG 7. ATGCGACGCCGGCGTTAG 19. ATGTTACCGAGATTCTTGTTTTAG 8. ATGCTACTCATAGATCTGCTTTAG 20. ATGTTATCCTCGTGGTTGTTTTAG 9. ATGTAAAGGGAAGACGAGTAG 21.ATGCTACTCAGAAGTGATCCCTAG 10. ATGCCCCCGGCAGCCGCGTAG 22.ATGCTACTCAGAAGTGATCCCTAG 11. ATGGCTCCGAGAGGAGGCAGAGGGTAG 23.ATGGAGCGACGCCGGCGTTAG 12. ATGGCTCCGAGAGGAGGCAGAGGGTAG 24.ATGCCCCCGTACAAATTTCGGCGTTAG 25. ATGAAAAACGATGGTAGGAGAAGCTAG

KEY to the 25 Sentences: 1. Your mother wears a rubber band. 2. Your mother dresses you funny. 3. We have dog breath. 4. The Beatles are the best rock band. 5. An old rubber band breaks when pulled. 6. Biology is the best subject. 7. Drink water every day. 8. I love rock and roll music. 9. We are all demented puppies. 10. Biology is so much fun. 11. Education is the door to the future. 12. Your father wears a dress. 13. Your brother wears nothing. 14. We are all in this together. 15. We must be informed every day. 16. Rock and roll music is the best. 17. Biology is all around you. 18. Read a little every day. 19. DNA is the code of life. 20. DNA must be read for life. 21. I love the Beatles and Biology. 22. Your mother wears funny dresses. 23. Puppies drink water everyday. 24. Biology is in your life every day. 25. Your mother and father are the best. ANSWERS TO QUESTIONS: 1. Nucleus 2. Ribosome 3. Transcribing DNA into mrna or step #2 4. Finding the words and building the sentence or step # 4 5. Protein 6. Amino Acid 7. To Start and Stop the process 8. Mutations 9. Mistakes: transcribing DNA into mrna; mrna to trna; dividing up bases into threes; finding words. 10. Individuals because mistake occurring in a body cell NOT a gamete. 11. trna 12. Ribosome

DNA CARDS 1. ATGAAAAACAAGGTACACATCTAG 2. ATGAAAAACAATTGCACGTAG

3. ATGTAAACCACTACATAG 4. ATGAGAAGTAGGAGAAGCATAATCTAG

5. ATGATTCAACACATCCAGCCACATTAG 6. ATGCCCCCGAGAAGCCCTTAG

7. ATGCGACGCCGGCGTTAG 8. ATGCTACTCATAGATCTGCTTTAG

9. ATGTAAAGGGAAGACGAGTAG 10. ATGCCCCCGGCAGCCGCGTAG

11. ATGGCTCCGAGAGGAGGCAGAGGGTAG 12. ATGAAAGGTAAGGTAGTCTAG

13. ATGAAAGTGAAGGTTTAG 14. ATGTAAAGGGAATACTATTCATAG

15. ATGTAATCCTCGTCTCGGCGTTAG 16. ATGATAGATCTGCTTCCGAGAAGCTAG

17. ATGCCCCCGGAATGATGCTAG 18. ATGTGGGTATGTCGGCGTTAG

19. ATGTTACCGAGATTCTTGTTTTAG 20. ATGTTATCCTCGTGGTTGTTTTAG

21. ATGCTACTCAGAAGTGATCCCTAG 22. ATGCTACTCAGAAGTGATCCCTAG

23. ATGGAGCGACGCCGGCGTTAG 24. ATGCCCCCGTACAAATTTCGGCGTTAG

25. ATGAAAAACGATGGTAGGAGAAGCTAG COPY THE FOLLOWING PAGES FRONT TO BACK KEEPING THEM IN ORDER THESE ARE YOUR RNA/WORD CARDS-suggestion: make copies on card stock paper!

UAG CCG CGC AUG CCU CGG

IS STOP START WATER EVERY SUBJECT

AAA CGA CGU AAC AAG AAU

DRINK YOUR MOTHER DAY DRESSES WEARS

ACG ACC ACU ACA AGA AGG

HAVE FUNNY BREATH DOG ARE THE

AGU AGC AUA AUC AUU CAA

BEST BEATLES BAND ROCK OLD AN

CAC CAG CAU CCA CCC CUA

BREAKS RUBBER WHEN PULLED I BIOLOGY

CUC CUG CUU GAA GAC GAG

ROLL LOVE ALL MUSIC PUPPIES DEMENTED

GAU GCA GCC GCG GCU GGA

SO AND FUN MUCH DOOR EDUCATION

GGC GGG GGU GUA GUC GUG

FUTURE TO A FATHER BROTHER DRESS

GUU UAA UAC UAU UCA UCC

WE NOTHING THIS IN MUST TOGETHER

UCG UCU UGA UGC UGG UGU

INFORMED BE YOU AROUND LITTLE READ

UUA UUC UUG UUU

CODE DNA LIFE FOR

DNA EXTRACTION USING STRAWBERRIES Name(s) Date Period BENCHMARK: SC.912.L.16.10 AA: Evaluate the impact of biotechnology on the individual, society and the environment, including medical and ethical issues. SC.912.L.16.9 as AA: Explain how and why the genetic code is universal and is common to almost all organisms. (Assessed as SC.912.L.16.3 AA [in different benchmark group]) Background: DNA isolation is one of the most basic and essential techniques in the study of DNA. The extraction of DNA from cells and its purification are of primary importance to the field of biotechnology and forensics. Extraction and purification of DNA are the first steps in the analysis and manipulation of DNA that allow scientists to detect genetic disorders, produce DNA fingerprints of individuals, and even create genetically engineered organisms that can produce beneficial products such as insulin, antibiotics, and hormones. DNA can be extracted from many types of cells. The first step is to lyse or break open the cell. This can be done by grinding a piece of tissue in a blender. After the cells have broken open, a salt solution such as NaCl and a detergent solution is added. These solutions break down and emulsify the fat & proteins that make up a cell membrane. Finally, alcohol is added because DNA is soluble in water. The alcohol causes the DNA to precipitate, or settle out of the solution, leaving behind all the cellular components that aren't soluble in alcohol. The DNA can be spooled (wound) on a stirring rod and pulled from the solution at this point. WHY USE STRAWBERRIES? Because strawberries have eight times the amount of DNA of normal cells. Purpose: To extract DNA from plant cells. Materials: (for each group of 4) 1-3 strawberries; Frozen strawberries should be thawed at room temperature. 20 ml graduated cylinder 10 ml DNA Extraction Buffer (see procedure) Ice cold 91% isopropyl alcohol 1 Ziploc bag 1 test tube 1 funnel lined with a moistened paper towel or cheesecloth Transfer pipette Stirring rod or coffee stirrer

Procedure: 1. Prepare the extraction buffer: Extraction buffer: 100 ml liquid detergent (Dawn ) 900 distilled water 15 grams NaCl 2. Put the rubbing alcohol in the freezer to chill. (You'll need it later.) 3. Put the strawberries in the plastic bag and push out all the extra air. Seal it tightly. 4. With your fingers, squeeze and smash the strawberry mixture for 2 minutes. 5. Add 10 ml DNA Extraction buffer to your bag. Remove air and seal. 6. Mash for 1 minute. 7. Pour the strawberry mixture from the bag into the filtered funnel. Let it drip into the test tube until there is no liquid left in the funnel. This separates the cells from each other, so you now have a really thin strawberry-cell soup. 8. Let the mixture sit for 5-10 minutes. 9. Tilt the test tube and very slowly pour the cold rubbing alcohol (6 ml) down the side. The alcohol should form a layer on top of the strawberry liquid. Pour until you have about the same amount of alcohol in the tube as strawberry mixture. (Don't let the alcohol and strawberry liquid mix. The DNA collects between the two layers!) 10. Dip the stirring rod into the test tube where the alcohol and strawberry layers meet. Slowly turning the stirring rod will spool (wrap) the DNA around the rod so it can be removed from the liquid. Pull up the rod. The whitish, stringy material is DNA containing strawberry genes! Questions: 1. DNA Extraction Summary Chart Questions: Prokaryote or Eukaryote? Autotroph or Heterotroph? What lyses the cell? What protects the DNA? What precipitates the DNA? Description of DNAPrecipitate Does it Spool? Strawberry Cells 2. Which of the following identifies the CORRECT sequence of steps for isolating the DNA: A. Collect cells, separate the DNA from proteins and cellular debris, and lyse the nuclear membrane to release DNA, precipitate the DNA. B. Collect cells, lyse the nuclear membrane to release DNA, precipitate the DNA, and separate the DNA from proteins and cellular debris. C. Precipitate the DNA, collect the cells, separate the DNA from proteins and cellular debris, lyse the nuclear membrane to release DNA from proteins and cellular debris.

D. Collect cells, lyse the nuclear membrane to release DNA, separate the DNA from proteins and cellular debris, and precipitate the DNA. 3. Why didn t the alcohol freeze when you put it in the freezer? 4. Explain what happened in the final step when you added alcohol to your strawberry extract: 5. If one strand of DNA reads: ATTCCCAT; what is the complementary strand after replication? 6. Discuss 2 reasons why is it important for scientists to be able to remove DNA from an organism. 7. The use of DNA technology is moving forward faster than any other area of biology. Identify and discuss ONE ethical and ONE social issue associated with the use of biotechnology. 8. Draw a diagram of DNA containing 5 sets of nucleotide bases labeling the base pairs, hydrogen bonds and sugars.

Lab: Thumbs Up, Thumbs Down Name Date Period Benchmark: SC.912.L.15.1 AA Explain how the scientific theory of evolution is supported by the fossil record, comparative anatomy, comparative embryology, biogeography, molecular biology, and observed evolutionary change. SC.912.L.15.10 as AA Identify basic trends in hominid evolution from early ancestors six million years ago to modern humans, including brain size, jaw size, language, and manufacture of tools. (Assessed as SC.912.L.15.1 AA) Background: Primates have hands capable of grasping objects. The grasp is made possible by the opposable thumb, so called because it can move opposite to the rest of the fingers. Human thumbs have the greatest range of motion of all primates. The opposable thumb has given humans many evolutionary advantages. In this experiment, you will compare your performance on a series of tasks using and not using your thumb. 1. Why do you think that having opposable thumbs would be beneficial to living organisms? 2. How are opposable thumbs different between humans and other primates? Purpose: To examine the benefits of the evolution of the opposable thumb. To assess the difficulty of common tasks without the use of an opposable thumb. Hypothesis: Read through the procedures and develop a testable hypothesis. Materials: Roll of Packing or Masking Tape Clothing with Zipper Coins of Various sizes Clothing with Buttons Cell Phone Pencil & Paper Laced Shoes Plastic Drinking Cup Clock or stopwatch Bottle with Screw Top

Procedure: 1. Observe your hand. Notice especially the relationship of your thumb to the rest of your fingers and the rest of your hand. Note that your thumb can move in a number of directions and angles. 2. Perform the following tasks as you would normally, using your thumb and fingers. Your partner will record how long each task takes (in seconds) on the Data Table. o Write your name first, middle, & last name o Buttons unbutton & button an article of clothing o Zipper zip up an article of clothing o Tie Shoes o Open Bottle o Pick Up Coins pick up 3 random coins & place them in the cup (cannot slide them off the table!) o Text Send an email - text message to your friend that reads: "Biology is my favorite subject." 3. Once you have completed ALL of the tasks using your thumb, raise your hand and your instructor will tape your thumbs to your palms (on both hands) with masking tape. 4. With your thumbs taped, repeat the tasks in Procedure #2. Allow a maximum of 1 minute for each task. Data: Data Table: Task vs. Time Task Using Thumb (Time in seconds) Not Using Thumb (Time in seconds) Difference (Time in seconds) Writing Name Buttons Zipper Tie Shoes Open Bottle Pick up Coins Text Message

Bar Graph: Construct a bar graph of your data illustrating the relationship between time and task. Be sure to label your graph correctly. (Include a title, label each axis, and provide a key for the data bars) Title: Analysis Questions: 1. In general, what happened to the time needed to complete the tasks when your thumb was taped? _ 2. Rank the tasks from simplest to the most complex using the data collected when you were NOT using your thumb: _ 3. How did you determine which task was simplest and which task was the most complex? _ 4. In our lab experiment, what was the control group? How did this differ from the experimental group? 5. As hominids evolved, what are 2 possible tasks the opposable thumb enabled them to perform that their ancestors might not have been able to perform?

Conclusion: 1. Does your data support your hypothesis? Use your data to support your answer. 2. Identify 2 sources of error in this activity and describe 2 ways to eliminate each source of error.

Name Lab: Natural Selection in Goldfish Date Period Benchmark: SC.912.L.15.13 AA: Describe the conditions required for natural selection, including: overproduction of offspring, inherited variation, and the struggle to survive, which result in differential reproductive success. Background: A predator feeds on a fish population made up of brown fish, which are slow and easily caught; and yellow fish, which are fast and not easily caught. Purpose: To simulate the process of natural selection. Hypothesis: Read the entire investigation. Then work with your partner to develop a hypothesis for this activity. If, then. Materials: Yellow Goldfish Brown Goldfish Procedure: 1. Obtain a RANDOM mixed population of goldfish from your teacher (10 fish). 2. Place your 10 fish on a paper towel and record the number of brown fish and yellow fish on the Data Table. This represents generation 1. 3. You are a predator that preys upon these fish. Remember, that the brown fish are slow and easily caught. The yellow fish are fast and not easily caught. Eat 3 brown fish. If you do not have three brown fish, then eat the remainder in yellow fish. 4. Each surviving brown fish produces one new brown fish, and each yellow fish produces one new yellow fish. Obtain the new generation of fish from the extras given to you. Record these numbers on the data table at the start of the next generation. 5. Repeat steps 3 and 4 for two more generations and record your data. 6. Create a line graph for the totals of both types of fish in each generation. Include: a Title, Axis Labels, and a Key for each data set.

Data: Data Table: Goldfish Population Generation Brown Fish Yellow Fish Total Fish 1 2 3 4 Graph: Title: Analysis: 1. Use your knowledge of natural selection to explain what happened to each population of fish over the four generations?

2. Predict what you think will happen to each type of fish over 10 to 20 generations? Why? Conclusion: 1. Using your data, was your hypothesis correct? If not, rewrite the hypothesis: Extension: 1. A rare virus enters the ecosystem affecting only the fast swimming species causing them to swim extremely slowly. Explain how this might affect an ecosystem with both brown and yellow fish. 2. How might your results have varied if this scenario took place in murky water?