Molecular Genetics. RNA, Transcription, & Protein Synthesis
|
|
|
- Margery Nash
- 9 years ago
- Views:
Transcription
1 Molecular Genetics RNA, Transcription, & Protein Synthesis
2 Section 1 RNA AND TRANSCRIPTION
3 Objectives Describe the primary functions of RNA Identify how RNA differs from DNA Describe the structure and function of each type of RNA Describe the basic process of transcription
4 Remember DNA is coded instructions on how to make specific proteins In eukaryotes, the genes that code for production are located in the nucleus, while the enzymes and amino acids needed for protein production are located in the cytosol
5 RNA Function RNA is responsible for the movement of genetic information from the DNA in the nucleus to the site of protein production in the cytosol RNA is also involved in the production of proteins (protein synthesis)
6 RNA Structure RNA is made of a chain of nucleotides, like DNA However, the sugar in RNA is ribose Instead of thymine (T), RNA has the N-base called Uracil (U) Uracil is a pyrimidine and pairs with adenine RNA is made of a single strand of nucleotides
7 Types of RNA There are 3 types of RNA: Messenger RNA (mrna) Ribosomal RNA (rrna) Transfer RNA (trna) All 3 types of are involved in protein synthesis All 3 types of RNA are made from DNA in the nucleus
8 Messenger RNA (mrna) mrna forms a single, uncoiled chain of nucleotides mrna carries genetic information from the DNA in the nucleus to the cytosol In this sense, they are messengers from the DNA to the rest of the cell
9 Transfer RNA (trna) trna consists of a single chain of about 80 nucleotides folded up into a hairpin shape trna binds to a specific amino acid
10 Ribosomal RNA (rrna) rrna is the most abundant form of RNA rrna consists of RNA nucleotides in a globular form rrna joins with proteins to make ribosomes
11 Transcription RNA carries genetic information from the DNA in the nucleus to the cytosol The process by which genetic information is copied from DNA to RNA is called transcription
12 Transcription RNA polymerase is the primary enzyme that synthesizes RNA copies of specific sequences of DNA RNA polymerase binds to DNA promoters and separates the two strands of DNA Promoters are regions of DNA that are specific base sequences that mark the beginning of a single gene RNA polymerase moves along the DNA strand and adds complimentary RNA nucleotides to the forming RNA molecule It moves until it reaches the termination signal A termination signal is a specific sequence of nucleotides that marks the end of a gene
13 Transcription RNA Base Pairing
14 Review What is the function of RNA? RNA carries genetic information from DNA in the nucleus to the cytosol to be used in protein synthesis. What is the structure of RNA? RNA is a single strand of nucleotides made up of a sugar (ribose), a phosphate group, and nitrogen base pairs (A,U,G,C).
15 Review Describe the structure and function of the 3 types of RNA. Messenger RNA (mrna) is a single, uncoiled strand of nucleotides that carries genetic information from the DNA in the nucleus to the cytosol. Transfer RNA (trna) is a single coil of RNA in a hairpin shape that binds to a certain amino acid. Ribosomal RNA (rrna) is made of RNA nucleotides in a globular form and joins with proteins to form ribosomes. Describe transcription. RNA polymerase binds to DNA promoters and separates the two strands of DNA. RNA polymerase then moves along the DNA strand and adds complimentary RNA nucleotides to form an RNA molecule. It stops at the terminal signal.
16 Section 2 PROTEIN SYNTHESIS
17 Objectives Describe the genetic code Distinguish between a codon and an anticodon Summarize the process of translation
18 Introduction The amount and kind of proteins that are produced in a cell determine the structure and function of the cell In this way, proteins carry out the genetic instructions encoded in an organism s DNA
19 Protein Structure Proteins, DNA, and RNA are polymers Proteins are made up of one or more polypeptides, each of which consists of a specific sequence of amino acids linked together by peptide bonds Polypeptides can have 100 s or 1000 s of the 20 different amino acids
20 Protein Structure The sequence of amino acids determines how the polypeptides twist and fold The function of a proteins depends on its ability to bind with another molecule, which is determined by it three-dimensional shape
21 The Genetic Code During protein synthesis, the sequence of nucleotides in mrna is translated into a sequence of amino acids Organisms use the genetic code to translate the mrna transcript into amino acids The genetic code consists of 4 letters A,U,G,C
22 The Genetic Code The genetic code is read three letters at a time Each three-letter group is called a codon Each codon codes for a specific amino acid Since there are four bases, there are 64 possible three-base codons (4x4x4=64) that code for 20 different amino acids Some amino acids can be coded by more than one codon Codons often differ from each other by the codon in the third position Some codons do not code for amino acids at all
23 The Genetic Code AUG can code for the amino acid methionine or serve as a start codon A start codon codes for a ribosome to start translating mrna UAA, UAG, and UGA are stop codons Stop codons cause a ribosome to stop translating mrna
24 The Genetic Code RNA Sequence UCGCACGGU Codons: UCG-CAC-GGU Code for the amino acids: Serine-Histidine-Glycine
25 Translation The process of assembling polypeptides (proteins) from the code in mrna is called translation Translation takes place on ribosomes All 3 types of RNA are used in translation
26 Translation Translation begins when mrna leaves the nucleus through the pores in the nuclear membrane mrna then migrates to a ribosome in the cytosol trna transports free floating amino acids to the ribosomes based on the codons in mrna One side of trna attaches to an amino acid On the loop opposite of the amino acid attachment site is a sequence of 3 nucleotides called anticodons Anticodons are complimentary to and pair with the corresponding codon in mrna
27 Translation In the ribosome, each amino acid is added to a growing chain of polypeptides The polypeptide chain continues to grow until the ribosome reaches the stop codon on mrna
28 Protein Assembly The assembly of proteins begins when a ribosome attaches to the start codon (AUG) on an mrna transcript The start codon pairs with the anticodon UAC on a trna Because trna carries the anticodon UAC, it also carries the amino acid methionine Therefore, the first amino acid of every polypeptide is initially methionine, but it may be removed later so that every polypeptide does not start with methionine
29 Protein Assembly The ribosome moves along mrna, pairing each codon with its trna anticodon Each pairing of codon and anticodon adds an amino acid to the polypeptide chain When the ribosome reaches the mrna stop codon, translation ends and the mrna is released As the polypeptide folds and associates with other polypeptides that make up the protein, it assumes the functional structure of the completed protein
30 Review Describe the genetic code Genetic code is used to translate mrna transcripts into proteins. The genetic information is encoded in groups of three mrna nucleotides called codons. Distinguish between a codon and an anticodon Codons are series of three mrna nucleotides that code for a specific amino acid Anticodons are carried by trna and are complementary to and pair with its corresponding mrna codon
31 Review Summarize the process of translation Translation is the process of decoding mrna into proteins Translation begins when mrna leaves the nucleus mrna then goes to the Ribosomes in the cytosol for protein synthesis The start codon pairs with the anticodon UAC on trna Each pairing of anticodon and codon adds an amino acid to the growing polypeptide chain When the ribosome reaches a stop codon, translation ends and the mrna is released
13.2 Ribosomes & Protein Synthesis
13.2 Ribosomes & Protein Synthesis Introduction: *A specific sequence of bases in DNA carries the directions for forming a polypeptide, a chain of amino acids (there are 20 different types of amino acid).
DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!
DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other
Transcription and Translation of DNA
Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes
Protein Synthesis How Genes Become Constituent Molecules
Protein Synthesis Protein Synthesis How Genes Become Constituent Molecules Mendel and The Idea of Gene What is a Chromosome? A chromosome is a molecule of DNA 50% 50% 1. True 2. False True False Protein
Translation Study Guide
Translation Study Guide This study guide is a written version of the material you have seen presented in the replication unit. In translation, the cell uses the genetic information contained in mrna to
Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )
Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins
From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains
Proteins From DNA to Protein Chapter 13 All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequence of a gene The Path From Genes
The Steps. 1. Transcription. 2. Transferal. 3. Translation
Protein Synthesis Protein synthesis is simply the "making of proteins." Although the term itself is easy to understand, the multiple steps that a cell in a plant or animal must go through are not. In order
DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3
DNA, RNA, Protein synthesis, and Mutations Chapters 12-13.3 1A)Identify the components of DNA and explain its role in heredity. DNA s Role in heredity: Contains the genetic information of a cell that can
Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.
13 Multiple Choice RNA and Protein Synthesis Chapter Test A Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are found in both
RNA & Protein Synthesis
RNA & Protein Synthesis Genes send messages to cellular machinery RNA Plays a major role in process Process has three phases (Genetic) Transcription (Genetic) Translation Protein Synthesis RNA Synthesis
Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in
DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results
PRACTICE TEST QUESTIONS
PART A: MULTIPLE CHOICE QUESTIONS PRACTICE TEST QUESTIONS DNA & PROTEIN SYNTHESIS B 1. One of the functions of DNA is to A. secrete vacuoles. B. make copies of itself. C. join amino acids to each other.
From DNA to Protein
Nucleus Control center of the cell contains the genetic library encoded in the sequences of nucleotides in molecules of DNA code for the amino acid sequences of all proteins determines which specific proteins
a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled
Biology 101 Chapter 14 Name: Fill-in-the-Blanks Which base follows the next in a strand of DNA is referred to. as the base (1) Sequence. The region of DNA that calls for the assembly of specific amino
Thymine = orange Adenine = dark green Guanine = purple Cytosine = yellow Uracil = brown
1 DNA Coloring - Transcription & Translation Transcription RNA, Ribonucleic Acid is very similar to DNA. RNA normally exists as a single strand (and not the double stranded double helix of DNA). It contains
Structure and Function of DNA
Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four
Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons
Tutorial II Gene expression: mrna translation and protein synthesis Piergiorgio Percipalle, PhD Program Control of gene transcription and RNA processing mrna translation and protein synthesis KAROLINSKA
Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme.
Provincial Exam Questions Unit: Cell Biology: Protein Synthesis (B7 & B8) 2010 Jan 3. Describe the process of translation. (4 marks) 2009 Sample 8. What is the role of ribosomes in protein synthesis? A.
2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three
Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,
Academic Nucleic Acids and Protein Synthesis Test
Academic Nucleic Acids and Protein Synthesis Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Each organism has a unique combination
Coding sequence the sequence of nucleotide bases on the DNA that are transcribed into RNA which are in turn translated into protein
Assignment 3 Michele Owens Vocabulary Gene: A sequence of DNA that instructs a cell to produce a particular protein Promoter a control sequence near the start of a gene Coding sequence the sequence of
Replication Study Guide
Replication Study Guide This study guide is a written version of the material you have seen presented in the replication unit. Self-reproduction is a function of life that human-engineered systems have
To be able to describe polypeptide synthesis including transcription and splicing
Thursday 8th March COPY LO: To be able to describe polypeptide synthesis including transcription and splicing Starter Explain the difference between transcription and translation BATS Describe and explain
Basic Concepts of DNA, Proteins, Genes and Genomes
Basic Concepts of DNA, Proteins, Genes and Genomes Kun-Mao Chao 1,2,3 1 Graduate Institute of Biomedical Electronics and Bioinformatics 2 Department of Computer Science and Information Engineering 3 Graduate
Ms. Campbell Protein Synthesis Practice Questions Regents L.E.
Name Student # Ms. Campbell Protein Synthesis Practice Questions Regents L.E. 1. A sequence of three nitrogenous bases in a messenger-rna molecule is known as a 1) codon 2) gene 3) polypeptide 4) nucleotide
Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.
Cellular Respiration Worksheet 1 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. 2. Where in the cell does the glycolysis part of cellular
The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized:
Module 3F Protein Synthesis So far in this unit, we have examined: How genes are transmitted from one generation to the next Where genes are located What genes are made of How genes are replicated How
Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides
Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed
Protein Synthesis. Page 41 Page 44 Page 47 Page 42 Page 45 Page 48 Page 43 Page 46 Page 49. Page 41. DNA RNA Protein. Vocabulary
Protein Synthesis Vocabulary Transcription Translation Translocation Chromosomal mutation Deoxyribonucleic acid Frame shift mutation Gene expression Mutation Point mutation Page 41 Page 41 Page 44 Page
BCH401G Lecture 39 Andres
BCH401G Lecture 39 Andres Lecture Summary: Ribosome: Understand its role in translation and differences between translation in prokaryotes and eukaryotes. Translation: Understand the chemistry of this
Genetics Module B, Anchor 3
Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for
Proteins and Nucleic Acids
Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,
CCR Biology - Chapter 8 Practice Test - Summer 2012
Name: Class: Date: CCR Biology - Chapter 8 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What did Hershey and Chase know
Translation. Translation: Assembly of polypeptides on a ribosome
Translation Translation: Assembly of polypeptides on a ribosome Living cells devote more energy to the synthesis of proteins than to any other aspect of metabolism. About a third of the dry mass of a cell
A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.
CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic
Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA.
Answer: 2. Uracil Adenine, Cytosine and Guanine are found in both RNA and DNA. Thymine is found only in DNA; Uracil takes its (Thymine) place in RNA molecules. Answer: 2. hydrogen bonds The complementary
Nucleotides and Nucleic Acids
Nucleotides and Nucleic Acids Brief History 1 1869 - Miescher Isolated nuclein from soiled bandages 1902 - Garrod Studied rare genetic disorder: Alkaptonuria; concluded that specific gene is associated
Chapter 17: From Gene to Protein
AP Biology Reading Guide Fred and Theresa Holtzclaw Julia Keller 12d Chapter 17: From Gene to Protein 1. What is gene expression? Gene expression is the process by which DNA directs the synthesis of proteins
Multiple Choice Write the letter that best answers the question or completes the statement on the line provided.
Name lass Date hapter 12 DN and RN hapter Test Multiple hoice Write the letter that best answers the question or completes the statement on the line provided. Pearson Education, Inc. ll rights reserved.
RNA and Protein Synthesis
Name lass Date RN and Protein Synthesis Information and Heredity Q: How does information fl ow from DN to RN to direct the synthesis of proteins? 13.1 What is RN? WHT I KNOW SMPLE NSWER: RN is a nucleic
Lecture 5. 1. Transfer of proper aminoacyl-trna from cytoplasm to A-site of ribosome.
Elongation & Termination of Protein Synthesis (5.1) Lecture 5 1. INITIATION Assembly of active ribosome by placing the first mrna codon (AUG or START codon) near the P site and pairing it with initiation
Name: Date: Period: DNA Unit: DNA Webquest
Name: Date: Period: DNA Unit: DNA Webquest Part 1 History, DNA Structure, DNA Replication DNA History http://www.dnaftb.org/dnaftb/1/concept/index.html Read the text and answer the following questions.
Lab # 12: DNA and RNA
115 116 Concepts to be explored: Structure of DNA Nucleotides Amino Acids Proteins Genetic Code Mutation RNA Transcription to RNA Translation to a Protein Figure 12. 1: DNA double helix Introduction Long
Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure
Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure Nucleic acids play an important role in the storage and expression of genetic information. They are divided into
Modeling DNA Replication and Protein Synthesis
Skills Practice Lab Modeling DNA Replication and Protein Synthesis OBJECTIVES Construct and analyze a model of DNA. Use a model to simulate the process of replication. Use a model to simulate the process
Transcription: RNA Synthesis, Processing & Modification
Transcription: RNA Synthesis, Processing & Modification 1 Central dogma DNA RNA Protein Reverse transcription 2 Transcription The process of making RNA from DNA Produces all type of RNA mrna, trna, rrna,
Activity 7.21 Transcription factors
Purpose To consolidate understanding of protein synthesis. To explain the role of transcription factors and hormones in switching genes on and off. Play the transcription initiation complex game Regulation
TRANSCRIPTION TRANSLATION - GENETIC CODE AND OUTLINE OF PROTEIN SYNTHESIS
TRANSCRIPTION TRANSLATION - GENETIC CODE AND OUTLINE OF PROTEIN SYNTHESIS Central Dogma of Protein Synthesis Proteins constitute the major part by dry weight of an actively growing cell. They are widely
3120-1 - Page 1. Name:
Name: 1) Which series is arranged in correct order according to decreasing size of structures? A) DNA, nucleus, chromosome, nucleotide, nitrogenous base B) chromosome, nucleus, nitrogenous base, nucleotide,
ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes
ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes Page 1 of 22 Introduction Indiana students enrolled in Biology I participated in the ISTEP+: Biology I Graduation Examination
Chapter 5: The Structure and Function of Large Biological Molecules
Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called
13.4 Gene Regulation and Expression
13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.
DNA. Discovery of the DNA double helix
DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:
Announcements. Chapter 15. Proteins: Function. Proteins: Function. Proteins: Structure. Peptide Bonds. Lab Next Week. Help Session: Monday 6pm LSS 277
Lab Next Week Announcements Help Session: Monday 6pm LSS 277 Office Hours Chapter 15 and Translation Proteins: Function Proteins: Function Enzymes Transport Structural Components Regulation Communication
Chapter 5. The Structure and Function of Macromolecule s
Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.
Chapter 11: Molecular Structure of DNA and RNA
Chapter 11: Molecular Structure of DNA and RNA Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand the major experiments that led to the discovery of DNA as
DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms!
Biological Sciences Initiative HHMI DNA omponents and Structure Introduction Nucleic acids are molecules that are essential to, and characteristic of, life on Earth. There are two basic types of nucleic
The Nucleus: DNA, Chromatin And Chromosomes
The Nucleus: DNA, Chromatin And Chromosomes Professor Alfred Cuschieri Department of Anatomy, University of Malta. Objectives By the end of this unit the student should be able to: 1. List the major structural
Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm.
Protein Trafficking/Targeting (8.1) Lecture 8 Protein Trafficking/Targeting Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein targeting is more complex
Algorithms in Computational Biology (236522) spring 2007 Lecture #1
Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: Tuesday 11:00-12:00/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office
12.1 The Role of DNA in Heredity
12.1 The Role of DNA in Heredity Only in the last 50 years have scientists understood the role of DNA in heredity. That understanding began with the discovery of DNA s structure. In 1952, Rosalind Franklin
RNA Structure and folding
RNA Structure and folding Overview: The main functional biomolecules in cells are polymers DNA, RNA and proteins For RNA and Proteins, the specific sequence of the polymer dictates its final structure
Lecture 4. Polypeptide Synthesis Overview
Initiation of Protein Synthesis (4.1) Lecture 4 Polypeptide Synthesis Overview Polypeptide synthesis proceeds sequentially from N Terminus to C terminus. Amino acids are not pre-positioned on a template.
Basic Principles of Transcription and Translation
The Flow of Genetic Information The information content of DNA is in the form of specific sequences of nucleotides The DNA inherited by an organism leads to specific traits by dictating the synthesis of
2006 7.012 Problem Set 3 KEY
2006 7.012 Problem Set 3 KEY Due before 5 PM on FRIDAY, October 13, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Which reaction is catalyzed by each
CHAPTER 30: PROTEIN SYNTHESIS
CHAPTER 30: PROTEIN SYNTHESIS (Translation) Translation: mrna protein LECTURE TOPICS Complexity, stages, rate, accuracy Amino acid activation [trna charging] trnas and translating the Genetic Code - Amino
DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) directionality along the backbone 5 (phosphate) to 3 (OH)
DNA, RNA, replication, translation, and transcription Overview Recall the central dogma of biology: DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) DNA structure
2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.
1. True or False? A typical chromosome can contain several hundred to several thousand genes, arranged in linear order along the DNA molecule present in the chromosome. True 2. True or False? The sequence
Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams.
Module 3 Questions Section 1. Essay and Short Answers. Use diagrams wherever possible 1. With the use of a diagram, provide an overview of the general regulation strategies available to a bacterial cell.
AP BIOLOGY 2009 SCORING GUIDELINES
AP BIOLOGY 2009 SCORING GUIDELINES Question 4 The flow of genetic information from DNA to protein in eukaryotic cells is called the central dogma of biology. (a) Explain the role of each of the following
Lecture 6. Regulation of Protein Synthesis at the Translational Level
Regulation of Protein Synthesis (6.1) Lecture 6 Regulation of Protein Synthesis at the Translational Level Comparison of EF-Tu-GDP and EF-Tu-GTP conformations EF-Tu-GDP EF-Tu-GTP Next: Comparison of GDP
Control of Gene Expression
Home Gene Regulation Is Necessary? Control of Gene Expression By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection favoring
Genetics Test Biology I
Genetics Test Biology I Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Avery s experiments showed that bacteria are transformed by a. RNA. c. proteins.
2007 7.013 Problem Set 1 KEY
2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you
Sample Questions for Exam 3
Sample Questions for Exam 3 1. All of the following occur during prometaphase of mitosis in animal cells except a. the centrioles move toward opposite poles. b. the nucleolus can no longer be seen. c.
Chem 465 Biochemistry II
Chem 465 Biochemistry II Name: 2 points Multiple choice (4 points apiece): 1. Formation of the ribosomal initiation complex for bacterial protein synthesis does not require: A) EF-Tu. B) formylmethionyl
CHAPTER 40 The Mechanism of Protein Synthesis
CHAPTER 40 The Mechanism of Protein Synthesis Problems: 2,3,6,7,9,13,14,15,18,19,20 Initiation: Locating the start codon. Elongation: Reading the codons (5 3 ) and synthesizing protein amino carboxyl.
1 Mutation and Genetic Change
CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds
T C T G G C C G A C C T;
1. (a) Gene is a (length) of DNA; Gene is a sequence of bases/chain of nucleotides; Triplet (base) code/read in three s; On sense/coding strand; Triplet coding for amino acid; Degenerate code; non-overlapping;
Chapter 18 Regulation of Gene Expression
Chapter 18 Regulation of Gene Expression 18.1. Gene Regulation Is Necessary By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection
Complex multicellular organisms are produced by cells that switch genes on and off during development.
Home Control of Gene Expression Gene Regulation Is Necessary? By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection favoring
Central Dogma. Lecture 10. Discussing DNA replication. DNA Replication. DNA mutation and repair. Transcription
Central Dogma transcription translation DNA RNA Protein replication Discussing DNA replication (Nucleus of eukaryote, cytoplasm of prokaryote) Recall Replication is semi-conservative and bidirectional
Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.
Cell Structure and Organization 1. All living things must possess certain characteristics. They are all composed of one or more cells. They can grow, reproduce, and pass their genes on to their offspring.
Concluding lesson. Student manual. What kind of protein are you? (Basic)
Concluding lesson Student manual What kind of protein are you? (Basic) Part 1 The hereditary material of an organism is stored in a coded way on the DNA. This code consists of four different nucleotides:
Chapter 3 Molecules of Cells
Bio 100 Molecules of cells 1 Chapter 3 Molecules of Cells Compounds containing carbon are called organic compounds Molecules such as methane that are only composed of carbon and hydrogen are called hydrocarbons
Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water
Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water
The Molecules of Cells
The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates
Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, 2.36 Email: [email protected].
Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION Professor Bharat Patel Office: Science 2, 2.36 Email: [email protected] What is Gene Expression & Gene Regulation? 1. Gene Expression
Kaustubha Qanungo Ph.D Biological Sciences Trident Technical College 7000 Rivers Avenue Charleston SC 29464
Call for action: Paradigm shift in teaching microbiology in a community colleges Kaustubha Qanungo Ph.D Biological Sciences Trident Technical College 7000 Rivers Avenue Charleston SC 29464 Project Course:
Gene Models & Bed format: What they represent.
GeneModels&Bedformat:Whattheyrepresent. Gene models are hypotheses about the structure of transcripts produced by a gene. Like all models, they may be correct, partly correct, or entirely wrong. Typically,
Overview of Eukaryotic Gene Prediction
Overview of Eukaryotic Gene Prediction CBB 231 / COMPSCI 261 W.H. Majoros What is DNA? Nucleus Chromosome Telomere Centromere Cell Telomere base pairs histones DNA (double helix) DNA is a Double Helix
Biology Final Exam Study Guide: Semester 2
Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion
Regents Biology REGENTS REVIEW: PROTEIN SYNTHESIS
Period Date REGENTS REVIEW: PROTEIN SYNTHESIS 1. The diagram at the right represents a portion of a type of organic molecule present in the cells of organisms. What will most likely happen if there is
4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose
1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen
Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.
1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.
STRUCTURES OF NUCLEIC ACIDS
CHAPTER 2 STRUCTURES OF NUCLEIC ACIDS What is the chemical structure of a deoxyribonucleic acid (DNA) molecule? DNA is a polymer of deoxyribonucleotides. All nucleic acids consist of nucleotides as building
GENE REGULATION. Teacher Packet
AP * BIOLOGY GENE REGULATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this material. Pictures
