Michael Hiebel. Fundamentals of Vector Network Analysis
|
|
|
- Egbert Lewis
- 10 years ago
- Views:
Transcription
1 Michael Hiebel Fundamentals of Vector Network Analysis
2 TABIH OF CONTENTS Table of contents 1 Introduction What is a network analyzer? Wave quantities and S-parameters Why vector network analysis? A circuit example 18 2 Design of a heterodyne N-port network analyzer Block diagram Design of the test set Constancy of the a wave Reflection tracking Directivity Test port match and multiple reflections Summary Outlook Implementation of the directional element VSWR bridge Directional coupler Other implementations Other components of the test set Receiver step attenuators Generator attenuators Active and passive test sets Generator Reference and measurement receiver Measurement procedure S-parameter measurement procedure 54
3 FUNDAMENTALS OF VECTOR NETWORK ANALYSIS Measurement data processing chain Trace generation Main setting parameters User interface Channel settings Trace settings 57 5^ Remote control of the instrument Usage of simple digital signals Protocol-based interfaces Automation Simplified implementations N+l receiver analyzer Network analyzer with an N-port switching matrix 78 3 Measurement accuracy and calibration Reduction of random measurement errors Thermal drift Repeatability Noise Correction of systematic measurement errors Nonlinear influences Linear influences Calibration standards Coaxial calibration standards Waveguide calibration standards Microstrip calibration standards Coplanar calibration standards The uniform model of the calibration standards Linear error models and calibration techniques term error model (OSM technique) term error model (TOM, TRM, TRL, TNA, UOSM techniques) term and 12-term error models (TOSM technique) 119
4 TABLE OF CONTENTS term error model (TOM-X technique) Adapters and noninsertable DUTs Incomplete calibration techniques Practical hints for calibration Verification T-check and Beatty standard Measurement of the effective system data A primer to statistics Analysis of the measurement uncertainty Traceability The International System of Units The pseudo units db and dbm Some important non-si units An organization for traceability Traceability of a network analyzer Linear measurements Performing a TOM calibration Performing a TNA calibration Measurement of the reflection coefficient and the SWR Measurement of the transmission coefficient Measurement of the group delay Measurement of the phase delay, auto length Measurement of the stability Measurement with embedding Measurement with deembedding Measurement of balanced lines 188
5 - FUNDAMENTALS OF VECTOR NETWORK ANALYSIS 4.11 Measurement of the far-end and near-end crosstalk Filter with balanced and unbalanced port, imbalance and common-mode rejection Measurement of switching times and drift effects Measurements on amplifiers in pulsed operating mode Measurement of the efficiency Time-domain measurements Time-domain analysis Impulse and step response Time-domain analysis of linear RF networks Time domain reflectometry using an oscilloscope Fourier transform Numerical inverse Fourier transform Inverse discrete Fourier transform Windowing Bandpass mode Transformations optimized for computing time Using the time-domain option Operation in lowpass mode Operation in bandpass mode Benefits of extrapolation Processing sequence Time gate Tables and diagrams Impulse and step responses for important reflection coefficients Comparison of important window functions Comparison of important time gates Diagram for determination of the ambiguity range 267
6 TABLE ot 2 CONVENTS 6 Examples of time-domain measurements Distance-to-fault measurement and gating Measurements on a SAW filter in the time domain RF imaging for nondestructive evaluation Measurement of the complex effective system data and OSML calibration Nonlinear measurements Features used for nonlinear measurements Automatic level control Source power calibration Receiver power calibration Power sweep Multiple source concept Arbitrary mode Direct generator and receiver access Power sensors as receivers External generator control Additional equipment Measurement of the compression point Measuring a detector characteristic Harmonics Model of harmonic distortions Measurement of the harmonics and their intercept point Intermodulation Model of intermodulation distortions Measurement of the intermodulation products and their intercept point Boosted source with an external test set 328
7 FUNDAMENTALS OF VECTOR NETWORK ANALYSIS Measuring hot S-parameters Load-pull measurements True-differential-measurements Mixer measurements Signals and parameters for a mixer Input and output signals of a mixer Higher order mixing products Important mixer parameters Features for mixer measurements Mixer measurement mode Connection of a reference mixer Example 1: Mixer measurement Example 2: Measurements on a down-converting module Frequency extension Antenna and radar cross section measurements Antenna measurements Important antenna measurement quantities Radar cross section measurements Conclusion and acknowledgement 373
8 TABLE OF CONTENTS A Appendix 374 A1 Mathematical principles 374 A1.1 Complex numbers 374 A1.2 Matrix operations 377 A2 Important symbols and quantities 380 A3 Circuit symbols used 385 A4 Acronyms and abbreviations 386 A5 Sources of figures 390 A6 Bibliography 392 A6.1 Selected application notes 392 A6.2 Books, scientific publications and standards 393 A7 Index 398 A8 Current network analyzer product lines from Rohde&Schwarz 415
Impedance 50 (75 connectors via adapters)
VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:
MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER
MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision
Performing Amplifier Measurements with the Vector Network Analyzer ZVB
Product: Vector Network Analyzer R&S ZVB Performing Amplifier Measurements with the Vector Network Analyzer ZVB Application Note This document describes typical measurements that are required to be made
Microwave Measurements. 3rd Edition. Edited by RJ. Collier and A.D. Skinner. The Institution of Engineering and Technology
Microwave Measurements 3rd Edition Edited by RJ. Collier and A.D. Skinner The Institution of Engineering and Technology Contents List of contributors Preface xvii xix 1 Transmission lines - basic principles
Automatic compression measurement using network analyzers
Automatic compression measurement using network analyzers Introduction The dynamic range of an amplifier is determined by noise figure and compression. In multi carrier applications third order intercept
Agilent 8720 Family Microwave Vector Network Analyzers
Agilent 8720 Family Microwave Vector Network Analyzers Product Overview High-Performance Solutions for Your Measurement Challenges Now more choices for solving your measurement challenges What's new in
Agilent 10 Hints for Making Better Network Analyzer Measurements. Application Note 1291-1B
Agilent 10 Hints for Making Better Network Analyzer Measurements Application Note 1291-1B Contents HINT 1. Measuring high-power amplifiers HINT 2. Compensating for time delay in cable HINT 3. Improving
Vector Network Analyzer (VNA) Calibration: The Basics
White Paper Vector Network Analyzer (VNA) Calibration: The Basics By Michael Hiebel Note: VNA calibration has been the subject of hundreds of papers, and when discussed in terms of its mathematical derivation
0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV
0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV The treatment given here is introductory, and will assist the reader who wishes to consult the standard texts
Application Note Noise Frequently Asked Questions
: What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random
Fundamentals of Vector Network Analysis Fundamentals of Vector Network Analysis Primer
Fundamentals of Vector Network Analysis Fundamentals of Vector Network Analysis Primer www.rohde-schwarz.com 1 Fundamentals of Vector Network Analysis Version 1.1 Published by Rohde & Schwarz USA, Inc.
Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer. Application Note 1364-1
Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer Application Note 1364-1 Introduction Traditionally RF and microwave components have been designed in packages with
1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:
ECE 584 Microwave Engineering Laboratory Experiments 1. The Slotted Line Introduction: In this experiment we will use a waveguide slotted line to study the basic behavior of standing waves and to measure
A Guide to Calibrating Your Spectrum Analyzer
A Guide to Calibrating Your Application Note Introduction As a technician or engineer who works with electronics, you rely on your spectrum analyzer to verify that the devices you design, manufacture,
Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows
LS-296 Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows T. L. Smith ASD / RF Group Advanced Photon Source Argonne National Laboratory June 26, 2002 Table of Contents 1) Introduction
Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics
Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency
Vector Network Analyzer Family ZVR
Vector Network Analyzer Family ZVR 4 models for all requirements: ZVRE, ZVCE, ZVR, ZVC Excellent dynamic range >130 db (measurement bandwidth 10 Hz) Low inherent noise < 130 dbm (measurement bandwidth
Understanding Mixers Terms Defined, and Measuring Performance
Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden
Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note
Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer Product Note 2 3 4 4 4 4 6 7 8 8 10 10 11 12 12 12 13 15 15 Introduction Table of contents Introduction
Introduction to Network Analyzer Measurements
Introduction to Network Analyzer Measurements Introduction to Network Analyzer Measurements 1 Table of Contents 1. Introduction to Network Analyzer Measurements... 3 VNA Basics...3 Applications for Network
Agilent 8510-13 Measuring Noninsertable Devices
Agilent 8510-13 Measuring Noninsertable Devices Product Note A new technique for measuring components using the 8510C Network Analyzer Introduction The majority of devices used in real-world microwave
R&S ZVA Vector Network Analyzer High performance up to 110 GHz with up to four test ports
R&S ZVA Vector Network Analyzer High performance up to 110 GHz with up to four test ports Test & Measurement Product Brochure 09.00 R&S ZVA Vector Network Analyzer At a glance The R&S ZVA series is the
R&S ZVA Vector Network Analyzer High performance up to 67 GHz with up to four test ports
Test & Measurement Product Brochure 06.01 ООО "Техэнком" Контрольно-измерительные приборы и оборудование www.tehencom.com R&S ZVA Vector Network Analyzer High performance up to 67 GHz with up to four test
Visual System Simulator White Paper
Visual System Simulator White Paper UNDERSTANDING AND CORRECTLY PREDICTING CRITICAL METRICS FOR WIRELESS RF LINKS Understanding and correctly predicting cellular, radar, or satellite RF link performance
Keysight Technical Training Catalog
Keysight Technical Training Catalog Keysight provides a comprehensive portfolio of technical training courses that allow you to achieve the technical proficiency necessary to optimize the effectiveness
Applying Error Correction to Network Analyzer Measurements. Application Note 1287-3. Table of Contents. Page
Applying Error Correction to Network Analyzer Measurements Application Note 287-3 Table of Contents Page Introduction 2 Sources of Errors and Types of Errors 3 Types of Error Correction 4 One-Port 4 The
MATRIX TECHNICAL NOTES
200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR
Network analyzer and spectrum analyzer two in one
R&S ZVL Vector Network Analyzer Network analyzer and spectrum analyzer two in one The R&S ZVL is the lightest and smallest vector network analyzer in its class. On top of this, it can be used as a full-featured
RF Network Analyzer Basics
RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),
How To Measure Power Loss On A Cable Or Antenna System
Understanding Cable & Antenna Analysis www.anritsu.com In this guide, the fundamentals of line sweeping cable and antenna systems are discussed. After reading this guide, the reader will understand what
Agilent Time Domain Analysis Using a Network Analyzer
Agilent Time Domain Analysis Using a Network Analyzer Application Note 1287-12 0.0 0.045 0.6 0.035 Cable S(1,1) 0.4 0.2 Cable S(1,1) 0.025 0.015 0.005 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Frequency (GHz) 0.005
Curriculum and Concept Module Development in RF Engineering
Introduction Curriculum and Concept Module Development in RF Engineering The increasing number of applications students see that require wireless and other tetherless network solutions has resulted in
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. 4y Springer Contents Preface xiii Chapter 1. Introduction 1 1.1. Wireless Systems 1 1.1.1. Mobile Communications
The purpose of this paper is as follows: Examine the architectures of modern vector network analyzers (VNAs) Provide insight into nonlinear
1 The purpose of this paper is as follows: Examine the architectures of modern vector network analyzers (VNAs) Provide insight into nonlinear characterizations of amplifiers, mixers, and converters using
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the
DSA800 Series Spectrum Analyzer
DSA800 Series Spectrum Analyzer Configuration Guide This guide is used to help users to configure DSA800 series spectrum analyzer according to their requirements. You can get an overall understanding of
RF and Microwave Accessories. CD-ROM Catalog. Find the right component for your Rohde & Schwarz test & measurement equipment
RF and Microwave Accessories CD-ROM Catalog Find the right component for your Rohde & Schwarz test & measurement equipment Product group Typical applications Adapters Interchanging of various connector
HEWLETT PACKARD. HP 8510C Network Analyzer 45 MHz to 110 GHz. Unmatched excellence in microwave network analysis
HEWLETT PACKARD HP 8510C Network Analyzer 45 MHz to 110 GHz Unmatched excellence in microwave network analysis Excellence in network analysis with unmatched RF performance... The HP 85 IOC Microwave Network
A Network Analyzer For Active Components
A Network Analyzer For Active Components EEEfCom 29-30 Juni ULM Marc Vanden Bossche, NMDG Engineering Remi Tuijtelaars, BSW Copyright 2005 NMDG Engineering Version 2 Outline Review of S-parameters Theory
R&S ZVA Vector Network Analyzer High performance up to 110 GHz with up to four test ports
ZVA_bro_en_5213-5680-12_v1100.indd 1 Product Brochure 11.00 Test & Measurement R&S ZVA Vector Network Analyzer High performance up to 110 GHz with up to four test ports 30.07.2014 13:17:26 R&S ZVA Vector
Basic of Load Pull Measurements Active and Passive load pull & Harmonic load pull testbench
Basic of Load Pull Measurements Active and Passive load pull & Harmonic load pull testbench credits to Prof. Andrea Ferrero, Politecnico di Torino Basics of load-pull Definitions Load-pull Controlling
CAS: Network Analysis (Part 2)
CAS: Network Analysis (Part 2) F. Caspers CERN, Geneva, Switzerland Abstract The network analyzer has become an absolutely indispensable tool for RF signal analysis. In this lecture, the operating principles
Keysight Technologies 8 Hints for Better Spectrum Analysis. Application Note
Keysight Technologies 8 Hints for Better Spectrum Analysis Application Note The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope
Optimizing IP3 and ACPR Measurements
Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.
Frequently Asked Questions about Vector Network Analyzer ZVR
Frequently Asked Questions about Vector Network Analyzer ZVR Application Note 1EZ38_3E Subject to change 19 January 1998, Olaf Ostwald Products: ZVR ZVRE ZVRL CONTENTS FREQUENTLY ASKED QUESTIONS PAGE 1-11
Power Amplifier Gain Compression Measurements
Technical Brief Power Amplifier Gain Compression Measurements GPIB Private Bus Sweep Out Sweep In Pulse In AC Mod Out Blank/Marker Out Blanking In Overview The 1 db gain compression of an amplifier describes
Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics
Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Agenda Overview: Spectrum analysis and its measurements Theory of Operation: Spectrum analyzer hardware Frequency Specifications
Agilent Network Analyzer Basics
Agilent Network Analyzer Basics 2 Abstract This presentation covers the principles of measuring high-frequency electrical networks with network analyzers. You will learn what kinds of measurements are
Network Analyzer Basics- EE142 Fall 07
- EE142 Fall 07 Lightwave Analogy to RF Energy Incident Transmitted Reflected Lightwave DUT RF Why Do We Need to Test Components? Verify specifications of building blocks for more complex RF systems Create
Six-Port Reflectometer: an Alternative Network Analyzer for THz Region. Guoguang Wu
Six-Port Reflectometer: an Alternative Network Analyzer for THz Region Guoguang Wu Outline General Background of Network Analyzer Principles of Six-Port Reflectometer WR-15 Six-port Reflectometer Design,
Making Spectrum Measurements with Rohde & Schwarz Network Analyzers
Making Spectrum Measurements with Rohde & Schwarz Network Analyzers Application Note Products: R&S ZVA R&S ZVB R&S ZVT R&S ZNB This application note describes how to configure a Rohde & Schwarz Network
Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal
Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal 2013 The MathWorks, Inc. 1 Outline of Today s Presentation Introduction to
R&S FSW signal and spectrum analyzer: best in class now up to 50 GHz
R&S FSW signal and spectrum analyzer: best in class now up to 50 GHz The new R&S FSW 43 and R&S FSW 50 signal and spectrum analyzers make the outstanding features of the R&S FSW family available now also
PLANAR 304/1 Vector Network Analyzer. Operating Manual
PLANAR 304/1 Vector Network Analyzer Operating Manual 2012 T A B L E O F C O N T E N T S INTRODUCTION... 8 SOFTWARE VERSIONS... 8 SAFETY INSTRUCTIONS... 9 1 GENERAL OVERVIEW... 11 1.1 Description... 11
Advanced Nonlinear Device Characterization Utilizing New Nonlinear Vector Network Analyzer and X-parameters
Advanced Nonlinear Device Characterization Utilizing New Nonlinear Vector Network Analyzer and X-parameters presented by: Loren Betts Research Scientist Presentation Outline Nonlinear Vector Network Analyzer
The Application of Vector Network Analyzers in Balanced Transmission Line Signal Integrity Measurements
1 The Application of Vector Network Analyzers in Balanced Transmission Line Signal Integrity Measurements Agenda 1. Introduction 1.1 The Application and Advantages of Balanced Transmission Lines 1.2 Important
Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters
Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters Purpose: This technical note presents single-ended insertion loss ( SE IL) and return loss ( SE RL) data generated
Basics of RF Amplifier Measurements with the E5072A ENA Series Network Analyzer
Basics of RF Amplifier Measurements with the E5072A ENA Series Network Analyzer Application Note Introduction The RF power amplifier is a key component used in a wide variety of industries such as wireless
SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION
1 SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION By Lannes S. Purnell FLUKE CORPORATION 2 This paper shows how standard signal generators can be used as leveled sine wave sources for calibrating oscilloscopes.
Improving Network Analyzer Measurements of Frequency-translating Devices Application Note 1287-7
Improving Network Analyzer Measurements of Frequency-translating Devices Application Note 1287-7 - + - + - + - + Table of Contents Page Introduction......................................................................
R3765/67 CG Network Analyzer
R3765/67 CG Network Analyzer RSE 05.03.02 1 R376XG Series Overview R3765 300kHz ~ 3.8 GHz R3767 300kHz ~ 8 GHz AG BG Basic model Built-in Bridge A/R & B/R Transmission Reflection CG Built-in S-parameter
Network Analyzer Operation
Network Analyzer Operation 2004 ITTC Summer Lecture Series John Paden Purposes of a Network Analyzer Network analyzers are not about computer networks! Purposes of a Network Analyzer Measures S-parameters
Agilent E5063A ENA Series Network Analyzer. 100 khz to 4.5/ 8.5/18 GHz
Agilent E5063A ENA Series Network Analyzer 100 khz to 4.5/ 8.5/18 GHz The Best Balance Between Price and Performance The E5063A is a low cost network analyzer for simple passive component testing up to
iva Cable & Antenna Analyzer
iva Cable & Antenna Analyzer VSWR, Return Loss Measurement & Distance to Fault The iva Series Cable & Antenna Analyzer is an exciting new product from Kaelus that enables users to accurately measure VSWR/return
Agilent 8753ET/8753ES Network Analyzers
Agilent 8753ET/8753ES Network Analyzers 8753ET, 300 khz to 3 or 6 GHz 8753ES, 30 khz to 3 or 6 GHz Configuration Guide System configuration summary The following summary lists the main components required
Field Calibration Software
SIGNAL HOUND Field Calibration Software User s Manual Version 1.1.0 7/8/2016 This information is being released into the public domain in accordance with the Export Administration Regulations 15 CFR 734
Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP
Products: Spectrum Analyzer FSP Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP This application note explains the concept of Adjacent Channel Leakage Ratio (ACLR) measurement
HP 8753E RF Vector Network Analyzer
HP 8753E RF Vector Network Analyzer 30 khz to 3 or 6 GHz Fast and powerful, the HP 8753E is perfectly adapted for superior, efficient measurements 2 Impressive 300% speed improvement in measurement sweep,
Understanding the Fundamental Principles of Vector Network Analysis. Application Note 1287-1. Table of Contents. Page
Understanding the Fundamental Principles of Vector Network Analysis Application Note 1287-1 Table of Contents Page Introduction 2 Measurements in Communications Systems 2 Importance of Vector Measurements
High Power Amplifier Measurements Using Agilent s Nonlinear Vector Network Analyzer
High Power Amplifier Measurements Using Agilent s Nonlinear Vector Network Analyzer Application Note 1408-19 Table of Contents Introduction...2 PNA-X Performance...3 Hardware Setup...6 Setup Examples...12
Category 8 Cable Transmission Measurements Comparative Study between 4-port single wire measurements and 2-port balun measurements
Category 8 Cable Transmission Measurements Comparative Study between 4-port single wire measurements and 2-port balun measurements Stefan Estevanovich Rafael Herrera, Nadim Kafati Hitachi Cable USA NDC
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
Introduction to Receivers
Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range
Agilent Test Solutions for Multiport and Balanced Devices
Agilent Test Solutions for Multiport and Balanced Devices Duplexer test solutions 8753ES option H39/006 During design and final alignment of duplexers, it is often necessary to see both the transmit-antenna
Large-Signal Network Analysis
Large-Signal Network Analysis Going beyond S-parameters Dr. Jan Verspecht URL: http://www.janverspecht.com This presentation contains several slides which are used with the permission of Agilent Technologies,
R&S ZVB Vector Network Analyzer High measurement speed up to 20 GHz with two or four test ports
Test & Measurement Product Brochure 07.00 R&S ZVB Vector Network Analyzer High measurement speed up to 20 GHz with two or four test ports R&S ZVB Vector Network Analyzer At a glance Built using innovative
R&S ZNC Vector Network Analyzer Solid performance on a future-oriented platform
Test & Measurement Product Brochure 01.00 R&S ZNC Vector Network Analyzer Solid performance on a future-oriented platform R&S ZNC Vector Network Analyzer At a glance High reliability, outstanding ease
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance
The Performance Leader in Microwave Connectors Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance.050 *.040 c S11 Re REF 0.0 Units 10.0 m units/.030.020.010 1.0 -.010 -.020
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?
RF System Design and Analysis Software Enhances RF Architectural Planning
From April 2010 High Frequency Electronics Copyright 2010 Summit Technical Media, LLC RF System Design and Analysis Software Enhances RF Architectural Planning By Dale D. Henkes Applied Computational Sciences
Techniques for Precise Cable and Antenna Measurements in the Field
Techniques for Precise Cable and Antenna Measurements in the Field Using FieldFox handheld analyzers Application Note This application note introduces the practical aspects of cable and antenna testing,
Advanced Photon Source. RF Beam Position Monitor Upgrade Robert M. Lill
Advanced Photon Source RF Beam Position Monitor Upgrade Robert M. Lill Filter Comparator (original design) to ATT LPF A+B ATT BPF S bo ATT ATT LPF 180 A-B 180 ATT BPF D x ti ATT LPF C+D ATT BPF D y 180
One Port Network Analyzer
99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431 Visit us at www.testequipmentdepot.com One Port Network Analyzer 5.4GHz Impendance : 50Ω(75Ωconnectors via adapters) Test
Jitter Transfer Functions in Minutes
Jitter Transfer Functions in Minutes In this paper, we use the SV1C Personalized SerDes Tester to rapidly develop and execute PLL Jitter transfer function measurements. We leverage the integrated nature
R&S ZNB Vector Network Analyzer Leading in speed, dynamic range and ease of operation
ZNB_bro_en_5214-5384-12_v0601.indd 1 Product Brochure 06.01 Test & Measurement R&S ZNB Vector Network Analyzer Leading in speed, dynamic range and ease of operation 02.09.2015 10:56:56 R&S ZNB Vector Network
UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040)
UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040 Overview This application note reviews noise theory & measurements and S-parameter measurements used to characterize transistors and amplifiers at
for Communication Systems Protection EMI CD-ROM INCLUDED
Krešimir Malarić EMI Protection for Communication Systems CD-ROM INCLUDED Contents Preface xiii CHAPTER 1 Communications Systems 1 1.1 Components of Communications Systems 1 1.2 Transmitter Systems 2 1.2.1
ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER
ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER Latest revision: October 1999 Introduction A vector network analyzer (VNA) is a device capable of measuring both the magnitude and phase of a sinusoidal
A Low Frequency Adapter for your Vector Network Analyzer (VNA)
Jacques Audet, VE2AZX 7525 Madrid St, Brossard, QC, Canada J4Y G3: [email protected] A Low Frequency Adapter for your Vector Network Analyzer (VNA) This compact and versatile unit extends low frequency
The N2PK Vector Network Analyzer (N2PK VNA) Original by Paul Kiciak, N2PK, 2007 * (*Pages edited or added by VE7WRS, 2009)
The N2PK Vector Network Analyzer (N2PK VNA) Original by Paul Kiciak, N2PK, 2007 * (*Pages edited or added by VE7WRS, 2009) What Does Vector Mean?! Vector: magnitude & direction (angle) 01/22/07 N2PK *
R&S ZVA-Z75, -Z110, -Z140, -Z170, -Z220, -Z325, -Z500 Converters Quick Start Guide
R&S ZVA-Z75, -Z110, -Z140, -Z170, -Z220, -Z325, -Z500 Converters Quick Start Guide (=7ÔWÌ) 1307.7039.62 06 Test & Measurement Quick Start Guide This Quick Start Guide describes the following converter
Agilent AN 1287-9 In-Fixture Measurements Using Vector Network Analyzers
Agilent AN 1287-9 In-Fixture Measurements Using Vector Network Analyzers Application Note Agilent Network Analysis Solutions Table of Contents 3 3 4 4 5 5 6 7 8 12 13 13 13 15 16 17 17 17 17 18 18 19 19
Revision 1.10 April 7, 2015 Method of Implementation (MOI) for 100BASE-TX Ethernet Cable Tests Using Keysight E5071C ENA Option TDR
Revision 1.10 April 7, 2015 Method of Implementation (MOI) for 100BASE-TX Ethernet Cable Tests Using Keysight E5071C ENA Option TDR 1 Table of Contents 1. Revision History... 3 2. Purpose... 3 3. References...
Spectrum Analyzer Basics www. agilent.com/find/backtobasics
www. agilent.com/find/backtobasics Abstract Learn why spectrum analysis is important for a variety of applications and how to measure system and device performance using a spectrum analyzer. To introduce
MAINTENANCE & ADJUSTMENT
MAINTENANCE & ADJUSTMENT Circuit Theory The concept of PLL system frequency synthesization is not of recent development, however, it has not been a long age since the digital theory has been couplet with
ELECTRICAL ENGINEERING
EE ELECTRICAL ENGINEERING See beginning of Section H for abbreviations, course numbers and coding. The * denotes labs which are held on alternate weeks. A minimum grade of C is required for all prerequisite
T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
2. The Vector Network Analyzer
ECE 584 Laboratory Experiments 2. The Vector Network Analyzer Introduction: In this experiment we will learn to use a Vector Network Analyzer to measure the magnitude and phase of reflection and transmission
