2. The Vector Network Analyzer
|
|
|
- Martina Porter
- 10 years ago
- Views:
Transcription
1 ECE 584 Laboratory Experiments 2. The Vector Network Analyzer Introduction: In this experiment we will learn to use a Vector Network Analyzer to measure the magnitude and phase of reflection and transmission coefficients (S parameters) of several networks. Such measurements are of critical importance in the design and testing of microwave circuits. A discussion of the scattering matrix, or S-parameters, is presented in Section 4.3 of the text. The S- parameters of a network are the complex response of the network to a stimulus. S ij is the response at port i to a stimulus at port j, with any other ports terminated with matched loads. The network analyzer provides a stimulus and measures response, using two bi-directional test ports, reporting each S-parameter as a complex function across a user-specified frequency span. Reflection and transmission coefficients are discussed in Section 2.3. For Part 5 of this experiment you need to review Smith charts and understand their use. See Section 2.4 and the supplemental notes on the Smith chart handed out in class. You will measure the reflection and transmission coefficients of a circulator; for background, see Figure 7.2 and read Section 9.6. Equipment Needed: E5062A ENA Series Network Analyzer Calibration Kit USB flash memory coaxial low-pass filter coaxial circulator coaxial matched loads and shorts coaxial attenuator coaxial connector with "50 ΩΩ" resistor "black boxes" with unknown networks Note Be sure to save data for all results obtained in the lab. The network analyzer saves the data in a.csv file. This file can be imported into a data analysis and visualization program of your choice. These plots must be included in your lab report with clear axis labels. All axes in your submitted reports should contain labels and units. 1
2 1. Calibration: Set the frequency sweep to cover 1 MHz to 3 GHz. Perform a full two-port calibration as described below and in the instrument manual. You may omit the isolation test. Network analyzer calibration is different from ordinary instrument calibration as performed every year or two. With a network analyzer, every measurement setup must be calibrated. Calibration creates a reference plane for each of the two ports at the mating interface of the user-end connector of the test cable, and S-parameter magnitudes and phases are reported with respect to these reference planes. You will use the SMA-Female calibration kit provided in the lab for this exercise. This kit contains inexpensive coaxial short, open, load, and thru adapter chosen to be compatible with the SMA male connectors of the network analyzer test cables. Network analyzer measurement accuracy is very sensitive to the quality of the calibration standards and calibration methodology. Although proper Agilent or HP calibration standards are widely used, they are several orders of magnitude more expensive and very easy to break. The SMA kit characteristics (parasitic inductance, etc.) are good enough for introductory work up to 3 GHz. A calibration kit definition has been provided in the network analyzer to account for the electrical lengths in the short, open, and thru adapter. Always remember this simple rule for microwave connectors: Twist only the nut. Never rotate the bodies of two connectors against each other; this would cause grinding at the connector interface itself. Only the external threaded nut should be turned. In general, the nut should be tightened with a properly-selected torque wrench. However, for this lab, it is sufficient to make connections fingertight in order to reduce wear. Accordingly, after the connection is made, avoid putting any additional twisting force on the connectors or cables. 2-Port Calibration Procedure for ENA Series Network Analyzer 1. Set the start frequency and stop frequency (in this case, GHz to 3 GHz). 2. Press Cal 3. Check that Cal Kit is set to SMA Kit 4. Check that Port Extensions are turned off for both ports. 5. Press Cal Calibrate 2-Port Cal Reflection 6. Attach the Open to the end of the Port 1 cable, finger-tight. Press Port 1 Open. 7. Attach the Short to the end of the Port 1 cable. Press Port 1 Short. 8. Attach the Broadband Matched Load to the end of the Port 1 cable. Press Press Port 1 Load. 9. Repeat for Port Press Return and then Transmission. 11. Connect the SMA Female-Female Adapter between the two cables. Press Port 1-2 Thru. 12. Click Return and then Done. 2
3 2. Verification: Measure the return loss of a matched load, and verify that the return loss is at least 20 db over the frequency band, using Log Magnitude format. Connect a coaxial attenuator between the two ports and verify that S 21 drops by the proper amount. On each port, measure the Short. View S 11 (or S 22 ) in Log Magnitude, Phase, and Smith Chart formats. The return loss of the short should be close to 0 db (total reflection). If the results are incorrect, go back and do the calibration again. Next, determine whether the phase response of the short is what you would expect. What is the phase of the reflection coefficient of an ideal short? Why would your measurement of S 11 (a function of frequency) differ? To understand the difference, keep in mind that the reference plane of the test port is the mating interface of the test cable's connector, but the SMA Short device has a few millimeters of coaxial transmission line between the mating interface and the reflective plane. Optional: Using Port Extensions (in the Cal menu), you can artificially move the reference plane of your measurement port to obtain constant phase across the band. Consider the propagation velocity through coaxial transmission line, approximately 75% x 3 x 10 8 m/s. Note the amount of extension (seconds) that was required to simulate an ideal short at the port reference plane. This is simply for illustration, and you should turn port extensions OFF again before continuing. Once you are confident of the calibration results, save your measured S-parameters for the matched load and short on USB flash memory using csv format. Press Save/Recall and choose Save trace data, browse to the USB flash drive, and save in a subdirectory for your name. 3. Measure the coaxial low-pass filter: Measure S 11 and S 21 of the low-pass filter from GHz to 3 GHz, and plot your results. Also take a look at S 12 and S 22. Recall that the scattering matrix is defined such that unused ports must be terminated with matched loads. For a two-port device, when you measure S 11, the network analyzer will cause its Port 2 to be a matched load automatically. Now, redo the S 11 measurement without the required matched load connected to the filter output, and compare with the first result; i.e., simply remove the Port 2 cable from the filter in order to remove the automatic matched load. Be sure to use scales ranges (db/division) to display meaningful results. Note that the network analyzer has the capability of displaying Γ, SWR, Z, and Y in various formats. Try some of these options. 4. Determination of "Black Box" networks: Several "black box" microwave networks having two or three ports are available in our lab. Measure the S parameters of each of these networks, and try to determine the type of circuit or component that is inside the box. Is the network reciprocal? Lossless? Matched? Are any of the ports isolated? Any unused port must be terminated with a 50 ΩΩ matched load according to the definition of the scattering matrix. 3
4 5. Measure the coaxial circulator: One of the black boxes contains a circulator. Using the same procedure as above, measure S 21, S 32, and S 13, and then the reverse paths S 12, S 23, and S 31, for the circulator. Since this is a 3-port device, you must separately terminate the unused port with a matched load. Check S 11, S 22, and S 33. Use a scale of 1 db per division to get accurate results for the insertion loss measurements. What happens to the measurements when the unused port is not terminated? 6. Additional Measurements Perform additional measurements from components found in the lab: Measure the input impedance of the filter using the Smith chart display Measure the group delay of the filter Measure the attenuation vs. frequency of a piece of coaxial cable Measure the impedance of an ordinary 50-ohm resistor 4
5 Write-up: Calibration and verification: Explain what calibration achieves and how. Provide plots of measured S-parameters of the matched load, attenuator, and short to verify your calibration and explain the results. Return loss of matched load: What were the best and worst return losses measured over the sweep range? List the frequencies where these occurred, and the corresponding SWRs. To help understand these results, complete the following table to convert between return loss, reflection coefficient magnitude, and SWR: Return Loss Γ SWR 0 db 1 db 2 db 3 db 5 db 10 db 20 db Low-pass filter: What is the measured 3 db cutoff frequency for the filter? What is the roll-off of the attenuation of this filter in the stop-band (db/octave)? What is the frequency range for which S 12 < 20 db? What is the frequency range for which the input SWR is less than 2.0? Is there any difference in S 11 when the output is terminated with a matched load versus having port 2 connected to the network analyzer? What causes this difference? Black boxes: Discuss your measurements, and how you arrived at your idea of what is inside the box. Draw a circuit diagram of the network. Circulator: Over what frequency range is the insertion loss less than 0.5 db? Over what frequency range is the return loss greater than 20 db? What is the minimum isolation over this latter range? What is the effect on the above quantities when the matched load is removed? Why does this happen? Present and discuss your results for the additional measurements you have made. Compare the coaxial cable s measured attenuation to a calculated value or data from the manufacturer. Compare the resistor's measured impedance to its nominal DC value of 50 ohms. 5
6 6
Impedance 50 (75 connectors via adapters)
VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:
ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER
ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER Latest revision: October 1999 Introduction A vector network analyzer (VNA) is a device capable of measuring both the magnitude and phase of a sinusoidal
Agilent 8510-13 Measuring Noninsertable Devices
Agilent 8510-13 Measuring Noninsertable Devices Product Note A new technique for measuring components using the 8510C Network Analyzer Introduction The majority of devices used in real-world microwave
Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows
LS-296 Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows T. L. Smith ASD / RF Group Advanced Photon Source Argonne National Laboratory June 26, 2002 Table of Contents 1) Introduction
Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer. Application Note 1364-1
Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer Application Note 1364-1 Introduction Traditionally RF and microwave components have been designed in packages with
Experiment 7: Familiarization with the Network Analyzer
Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).
Agilent Electronic Calibration (ECal) Modules for Vector Network Analyzers
Agilent Electronic Calibration (ECal) Modules for Vector Network Analyzers N4690 Series, 2-port Microwave ECal 85090 Series, 2-port RF ECal N4430 Series, 4-port ECal Technical Overview Control ECal directly
Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note
Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer Product Note 2 3 4 4 4 4 6 7 8 8 10 10 11 12 12 12 13 15 15 Introduction Table of contents Introduction
Applying Error Correction to Network Analyzer Measurements. Application Note 1287-3. Table of Contents. Page
Applying Error Correction to Network Analyzer Measurements Application Note 287-3 Table of Contents Page Introduction 2 Sources of Errors and Types of Errors 3 Types of Error Correction 4 One-Port 4 The
Revision 1.10 April 7, 2015 Method of Implementation (MOI) for 100BASE-TX Ethernet Cable Tests Using Keysight E5071C ENA Option TDR
Revision 1.10 April 7, 2015 Method of Implementation (MOI) for 100BASE-TX Ethernet Cable Tests Using Keysight E5071C ENA Option TDR 1 Table of Contents 1. Revision History... 3 2. Purpose... 3 3. References...
1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:
ECE 584 Microwave Engineering Laboratory Experiments 1. The Slotted Line Introduction: In this experiment we will use a waveguide slotted line to study the basic behavior of standing waves and to measure
Agilent AN 1287-9 In-Fixture Measurements Using Vector Network Analyzers
Agilent AN 1287-9 In-Fixture Measurements Using Vector Network Analyzers Application Note Agilent Network Analysis Solutions Table of Contents 3 3 4 4 5 5 6 7 8 12 13 13 13 15 16 17 17 17 17 18 18 19 19
Laboratory #5: RF Filter Design
EEE 194 RF Laboratory Exercise 5 1 Laboratory #5: RF Filter Design I. OBJECTIVES A. Design a third order low-pass Chebyshev filter with a cutoff frequency of 330 MHz and 3 db ripple with equal terminations
Agilent 10 Hints for Making Better Network Analyzer Measurements. Application Note 1291-1B
Agilent 10 Hints for Making Better Network Analyzer Measurements Application Note 1291-1B Contents HINT 1. Measuring high-power amplifiers HINT 2. Compensating for time delay in cable HINT 3. Improving
Network Analysis. Specifying calibration standards for the HP 8510 network analyzer Product Note 8510-5A
Network Analysis Specifying calibration standards for the HP 8510 network analyzer Product Note 8510-5A 2 Known devices called calibration standards provide the measurement reference for network analyzer
a 1 a 2 2 Port b 2 b 1 Multi-Port Handset Switch S-Parameters Application Note AN20 Seven-Port S-Parameter Definition Introduction Summary:
AN2 Multi-Port Handset Switch S-Parameters Introduction High-power UltraCMOS switches are the nextgeneration solution for wireless handset power amplifiers and antenna switch modules. Most multi-throw
One Port Network Analyzer
99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431 Visit us at www.testequipmentdepot.com One Port Network Analyzer 5.4GHz Impendance : 50Ω(75Ωconnectors via adapters) Test
AMERICAN NATIONAL STANDARD
ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 05 2014 Test Method for F Connector Return Loss In-Line Pair NOTICE The Society of Cable Telecommunications Engineers
MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER
MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision
Performing Amplifier Measurements with the Vector Network Analyzer ZVB
Product: Vector Network Analyzer R&S ZVB Performing Amplifier Measurements with the Vector Network Analyzer ZVB Application Note This document describes typical measurements that are required to be made
MEASUREMENT OF CRYOGENIC PERFORMANCE OF 4-8 GHz PAMTECH ISOLATORS S/N 108-112. Juan Daniel Gallego Isaac López Fernández Carmen Diez González
MEASUREMENT OF CRYOGENIC PERFORMANCE OF 4-8 GHz PAMTECH ISOLATORS S/N 108-112 May 2000 TECHNICAL REPORT C.A.Y. 2000-2 ABSTRACT This report presents the results of the measurements of input and output reflection,
Experiments Using the HP8714 RF Network Analyzer
Experiments Using the HP8714 RF Network Analyzer Purpose: The purpose of this set of experiments is two folded: to get familiar with the basic operation of a RF network analyzer, and to gain a physical
RF Network Analyzer Basics
RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),
Vector Network Analyzer (VNA) Calibration: The Basics
White Paper Vector Network Analyzer (VNA) Calibration: The Basics By Michael Hiebel Note: VNA calibration has been the subject of hundreds of papers, and when discussed in terms of its mathematical derivation
ELECTRICAL ENGINEERING DEPARTMENT. California Polytechnic State University SIGNAL TRANSMISSION LABORATORY EE 353
ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University SIGNAL TRANSMISSION LABORATORY EE 353 Fall 2003 ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University EE 353
Application Guide to RF Coaxial Connectors and Cables
Application Guide to RF Coaxial Connectors and Cables By: Michael J. Hannon Product Applications Engineer and Pat Malloy, Sr. Applications Engineer There is a wide variety of coaxial connectors and cables
spinner Measurement & Calibration equipment for network analyzers
spinner Measurement & Calibration equipment for network analyzers Edition B 2011 High Frequency Performance Worldwide www.spinner-group.com SPINNER test & calibration equipment for best measurement results
Spectrum Analyzers And Network Analyzers. The Whats, Whys and Hows...
Spectrum Analyzers And Network Analyzers The Whats, Whys and Hows... Bertrand Zauhar, VE2ZAZ [email protected] June 2010 Today's Program Definitions of Spectrum and Network Analyzers, Differences between
MAURY. VNA Calibration Kits, Microwave Components & Adapters. Calibrate With Confidence IN THIS CATALOG:
MAURY VNA Calibration Kits, Microwave Components & Adapters IN THIS CATALOG: VNA Calibration Kits Calibration Standards Coaxial & Waveguide Adapters Connector Gage Kits Air Lines Torque Wrenches Manual
AUTOMATIC NETWORK ANALYZER PROCEDURES FOR 5045 KLYSTRON CAVITIES * J.G. Judkins
Introduction SLAC-TN-91-10 July 1991 AUTOMATIC NETWORK ANALYZER PROCEDURES FOR 5045 KLYSTRON CAVITIES * J.G. Judkins Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309 This Note
Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters
Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters Purpose: This technical note presents single-ended insertion loss ( SE IL) and return loss ( SE RL) data generated
February 2010 Number 201001. Vector Network Analyzer upgrade to SureCAL Power Sensor and RF Components Packages
February 2010 Number 201001 Vector Network Analyzer upgrade to SureCAL Power Sensor and RF Components Packages Overview: This Technical Note describes the addition of Vector Network Analyzer (VNA) measurement
R3765/67 CG Network Analyzer
R3765/67 CG Network Analyzer RSE 05.03.02 1 R376XG Series Overview R3765 300kHz ~ 3.8 GHz R3767 300kHz ~ 8 GHz AG BG Basic model Built-in Bridge A/R & B/R Transmission Reflection CG Built-in S-parameter
Agilent FieldFox RF Vector Network Analyzer N9923A Quick Reference Guide
Contents Agilent FieldFox RF Vector Network Analyzer N9923A Quick Reference Guide Do You Have Everything?... 2 The Power Button and LED... 2 Battery Usage... 3 Measure S-Parameters... 4 Multi-Trace Configurations...
Agilent 8753ET/8753ES Network Analyzers
Agilent 8753ET/8753ES Network Analyzers 8753ET, 300 khz to 3 or 6 GHz 8753ES, 30 khz to 3 or 6 GHz Configuration Guide System configuration summary The following summary lists the main components required
Techniques for precise cable and antenna measurements in the field
Techniques for precise cable and antenna measurements in the field Gustaaf Sutorius Application Engineer March 25, 2015 Agenda Techniques for precise cable and antenna measurements in the field Cable &
Measuring RF Parameters of Networks Bill Leonard NØCU
Measuring RF Parameters of Networks Bill Leonard NØCU NAØTC - 285 TechConnect Radio Club http://www.naøtc.org/ What is a Network? A Network is a group of electrical components connected is a specific way
Agilent Time Domain Analysis Using a Network Analyzer
Agilent Time Domain Analysis Using a Network Analyzer Application Note 1287-12 0.0 0.045 0.6 0.035 Cable S(1,1) 0.4 0.2 Cable S(1,1) 0.025 0.015 0.005 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Frequency (GHz) 0.005
Techniques for Precise Cable and Antenna Measurements in the Field
Techniques for Precise Cable and Antenna Measurements in the Field Using FieldFox handheld analyzers Application Note This application note introduces the practical aspects of cable and antenna testing,
Cable Analysis and Fault Detection using the Bode 100
Cable Analysis and Fault Detection using the Bode 100 By Stephan Synkule 2014 by OMICRON Lab V1.3 Visit www.omicron-lab.com for more information. Contact [email protected] for technical support.
75 Ω Transmission System
NRAO NTC-DSL Laboratory Report Dynamic Spectroscopy Laboratory Report Series Report 03 September, 2006 75 Ω Transmission System Chaitali R. Parashare Department of Electrical and Computer Engineering,
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the
Category 8 Cable Transmission Measurements Comparative Study between 4-port single wire measurements and 2-port balun measurements
Category 8 Cable Transmission Measurements Comparative Study between 4-port single wire measurements and 2-port balun measurements Stefan Estevanovich Rafael Herrera, Nadim Kafati Hitachi Cable USA NDC
ELC 4383 RF/Microwave Circuits I Laboratory 3: Optimization Using Advanced Design System Software
1 EL 4383 RF/Microwave ircuits I Laboratory 3: Optimization Using Advanced Design System Software Note: This lab procedure has been adapted from a procedure written by Dr. Tom Weller at the University
HP 8970B Option 020. Service Manual Supplement
HP 8970B Option 020 Service Manual Supplement Service Manual Supplement HP 8970B Option 020 HP Part no. 08970-90115 Edition 1 May 1998 UNIX is a registered trademark of AT&T in the USA and other countries.
Basic RF Technic and Laboratory Manual- Vector Network Analyzer Measurement.
Basic RF Technic and Laboratory Manual- Vector Network Analyzer Measurement. Dr. Haim Matzner& Shimshon Levy. August, 2008. 2 CONTENTS 1 Introduction 5 1.1 Objectives.............................. 5 1.2
Tuning a Monopole Antenna Using a Network Analyzer
11/21/11 Tuning a Monopole Antenna Using a Network Analyzer Chris Leonard Executive Summary: When designing a monopole antenna it is important to know at which frequency the antenna will be operating at.
Agilent 8720 Family Microwave Vector Network Analyzers
Agilent 8720 Family Microwave Vector Network Analyzers Product Overview High-Performance Solutions for Your Measurement Challenges Now more choices for solving your measurement challenges What's new in
EE 186 LAB 2 FALL 2004. Network Analyzer Fundamentals and Two Tone Linearity
Network Analyzer Fundamentals and Two Tone Linearity Name: Name: Name: Objective: To become familiar with the basic operation of a network analyzer To use the network analyzer to characterize the in-band
AGILENT E5071C ENA NETWORK ANALYZER
AGILENT E5071C ENA NETWORK ANALYZER Flow Diagram of Procedure The operational flow of the software is depicted by the flowchart shown below. Basic Calibration Before executing calibration, you need to
The N2PK Vector Network Analyzer (N2PK VNA) Original by Paul Kiciak, N2PK, 2007 * (*Pages edited or added by VE7WRS, 2009)
The N2PK Vector Network Analyzer (N2PK VNA) Original by Paul Kiciak, N2PK, 2007 * (*Pages edited or added by VE7WRS, 2009) What Does Vector Mean?! Vector: magnitude & direction (angle) 01/22/07 N2PK *
Agilent Specifying Calibration Standards for the Agilent 8510 Network Analyzer
Agilent Specifying Calibration Standards for the Agilent 8510 Network Analyzer Application Note 8510-5B Discontinued Product Information For Support Reference Only Information herein, may refer to products/services
Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance
The Performance Leader in Microwave Connectors Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance.050 *.040 c S11 Re REF 0.0 Units 10.0 m units/.030.020.010 1.0 -.010 -.020
Measurement & Modeling Device Characterization Solutions
Also Available from Maury Microwave Measurement & Modeling Device Characterization Solutions Featuring The Most Complete Selection of Load Pull Solutions in the Test & Measurement Industry Helping Your
Field Calibration Software
SIGNAL HOUND Field Calibration Software User s Manual Version 1.1.0 7/8/2016 This information is being released into the public domain in accordance with the Export Administration Regulations 15 CFR 734
PLANAR 304/1 Vector Network Analyzer. Operating Manual
PLANAR 304/1 Vector Network Analyzer Operating Manual 2012 T A B L E O F C O N T E N T S INTRODUCTION... 8 SOFTWARE VERSIONS... 8 SAFETY INSTRUCTIONS... 9 1 GENERAL OVERVIEW... 11 1.1 Description... 11
Shielding Effectiveness Test Method. Harbour s LL, SB, and SS Coaxial Cables. Designs for Improved Shielding Effectiveness
Shielding Effectiveness Test Method Harbour s LL, SB, and SS Coaxial Cables Designs for Improved Shielding Effectiveness Harbour Industries 4744 Shelburne Road Shelburne Vermont 05482 USA 802-985-3311
0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV
0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV The treatment given here is introductory, and will assist the reader who wishes to consult the standard texts
3.3 Calibration standards
C ALIBRATION STANDARDS Fig. 3.2.3 Location of the reference plane in the N-type connector. Fig. 3.2.4 Location of the reference plane in the connector types PC3.5, 2.4 mm and 1.85 mm. 3.3 Calibration standards
A Network Analyzer For Active Components
A Network Analyzer For Active Components EEEfCom 29-30 Juni ULM Marc Vanden Bossche, NMDG Engineering Remi Tuijtelaars, BSW Copyright 2005 NMDG Engineering Version 2 Outline Review of S-parameters Theory
Lab #9: AC Steady State Analysis
Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.
Agilent Test Solutions for Multiport and Balanced Devices
Agilent Test Solutions for Multiport and Balanced Devices Duplexer test solutions 8753ES option H39/006 During design and final alignment of duplexers, it is often necessary to see both the transmit-antenna
A Small, Simple, USB-Powered Vector Network Analyzer Covering 1 khz to 1.3 GHz
Prof. Dr. Thomas C. Baier, DG8SAQ University of Applied Sciences, Prittwitzstrasse 10, 89075 Ulm, Germany; [email protected] A Small, Simple, USB-Powered Vector Network Analyzer Covering 1 khz to 1.3 GHz
Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11
Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11 Introduction The purpose of this document is to illustrate the process for impedance matching of filters using the MSA software. For example,
Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99
Engineering Sciences 151 Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 WAVE PROPAGATION II: HIGH FREQUENCY SLOTTED LINE AND REFLECTOMETER MEASUREMENTS OBJECTIVES: To build greater
When designing. Inductors at UHF: EM Simulation Guides Vector Network Analyzer. measurement. EM SIMULATION. There are times when it is
Inductors at UHF: EM Simulation Guides Vector Network Analyzer Measurements John B. Call Thales Communications Inc., USA When designing There are times when it is circuits for necessary to measure a operation
Transmitter Interface Program
Transmitter Interface Program Operational Manual Version 3.0.4 1 Overview The transmitter interface software allows you to adjust configuration settings of your Max solid state transmitters. The following
HEWLETT PACKARD. HP 8510C Network Analyzer 45 MHz to 110 GHz. Unmatched excellence in microwave network analysis
HEWLETT PACKARD HP 8510C Network Analyzer 45 MHz to 110 GHz Unmatched excellence in microwave network analysis Excellence in network analysis with unmatched RF performance... The HP 85 IOC Microwave Network
Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip.
Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Each dielectric configuration has different high-frequency characteristics. All configurations
Agilent AN 154 S-Parameter Design Application Note
Agilent AN 154 S-Parameter Design Application Note Introduction The need for new high-frequency, solid-state circuit design techniques has been recognized both by microwave engineers and circuit designers.
R&S ZVA-Z75, -Z110, -Z140, -Z170, -Z220, -Z325, -Z500 Converters Quick Start Guide
R&S ZVA-Z75, -Z110, -Z140, -Z170, -Z220, -Z325, -Z500 Converters Quick Start Guide (=7ÔWÌ) 1307.7039.62 06 Test & Measurement Quick Start Guide This Quick Start Guide describes the following converter
Agilent 8762/3/4A,B,C Coaxial Switches
Agilent 8762/3/4A,B,C Coaxial Switches Technical Overview High performance switches for microwave and RF instrumentation and systems Agilent Technologies offers a ver satile line of multiport coaxial switches.
Using Simple Calibration Load Models to Improve Accuracy of Vector Network Analyzer Measurements
Using Simple Calibration Load Models to Improve Accuracy of Vector Network Analyzer Measurements Nick M. Ridler 1 and Nils Nazoa 2 1 National Physical Laboratory, UK (www.npl.co.uk) 2 LA Techniques Ltd,
Eye Doctor II Advanced Signal Integrity Tools
Eye Doctor II Advanced Signal Integrity Tools EYE DOCTOR II ADVANCED SIGNAL INTEGRITY TOOLS Key Features Eye Doctor II provides the channel emulation and de-embedding tools Adds precision to signal integrity
S-parameter Simulation and Optimization
S-parameter Simulation and Optimization Slide 5-1 S-parameters are Ratios Usually given in db as 20 log of the voltage ratios of the waves at the ports: incident, reflected, or transmitted. S-parameter
iva Cable & Antenna Analyzer
iva Cable & Antenna Analyzer VSWR, Return Loss Measurement & Distance to Fault The iva Series Cable & Antenna Analyzer is an exciting new product from Kaelus that enables users to accurately measure VSWR/return
CellAdvisor. JD725A Dual-Port Cable and Antenna Analyzer
CellAdvisor JD725A Dual-Port Cable and Antenna Analyzer Many modern wireless base stations are a complex system of multiple RF components, such as low-noise amplifiers (LNA), duplexers, and tower-mounted
Power Amplifier Gain Compression Measurements
Technical Brief Power Amplifier Gain Compression Measurements GPIB Private Bus Sweep Out Sweep In Pulse In AC Mod Out Blank/Marker Out Blanking In Overview The 1 db gain compression of an amplifier describes
Network Analyzer Basics- EE142 Fall 07
- EE142 Fall 07 Lightwave Analogy to RF Energy Incident Transmitted Reflected Lightwave DUT RF Why Do We Need to Test Components? Verify specifications of building blocks for more complex RF systems Create
The Design & Test of Broadband Launches up to 50 GHz on Thin & Thick Substrates
The Performance Leader in Microwave Connectors The Design & Test of Broadband Launches up to 50 GHz on Thin & Thick Substrates Thin Substrate: 8 mil Rogers R04003 Substrate Thick Substrate: 30 mil Rogers
Understanding the Fundamental Principles of Vector Network Analysis. Application Note 1287-1. Table of Contents. Page
Understanding the Fundamental Principles of Vector Network Analysis Application Note 1287-1 Table of Contents Page Introduction 2 Measurements in Communications Systems 2 Importance of Vector Measurements
Validation of On-Wafer Vector Network Analyzer Systems
Validation of On-Wafer Vector Network Analyzer Systems J. Randy Fenton Cascade Microtech, Inc., Beaverton, 2430 NW 206 th Avenue, Beaverton, OR, 97006, USA Abstract The case study described in this paper
Agilent Network Analysis Applying the 8510 TRL Calibration for Non-Coaxial Measurements
Agilent Network Analysis Applying the 8510 TRL Calibration for Non-Coaxial Measurements Product Note 8510-8A Discontinued Product Information For Support Reference Only Information herein, may refer to
Measurements in 75 Ω Coaxial Transmission Lines
Measurements in 75 Ω Coaxial Transmission Lines Using CMT PLANAR Vector Network Analyzers (VNAs) with 50 Ω Test Ports One application of a vector network analyzer (VNA) is the measurement of 75 Ω coaxial
Basics of RF Amplifier Measurements with the E5072A ENA Series Network Analyzer
Basics of RF Amplifier Measurements with the E5072A ENA Series Network Analyzer Application Note Introduction The RF power amplifier is a key component used in a wide variety of industries such as wireless
Calibration Procedure for Measuring S-Parameters in Balun Applications on 150-Ω High-Speed Cables
NASA/TM 2012-217296 Calibration Procedure for Measuring S-Parameters in Balun Applications on 150-Ω High-Speed Cables Onoufrios Theofylaktos and Joseph D. Warner Glenn Research Center, Cleveland, Ohio
Network analyzer and spectrum analyzer two in one
R&S ZVL Vector Network Analyzer Network analyzer and spectrum analyzer two in one The R&S ZVL is the lightest and smallest vector network analyzer in its class. On top of this, it can be used as a full-featured
A Comparison of Measurement Uncertainty in Vector Network Analyzers and Time Domain Reflectometers. White Paper
A Comparison of Measurement Uncertainty in Vector Network Analyzers and Time Domain Reflectometers White Paper May 2010 Abstract: Measurement uncertainty has a direct impact on the reliability of test
Introduction to Network Analyzer Measurements
Introduction to Network Analyzer Measurements Introduction to Network Analyzer Measurements 1 Table of Contents 1. Introduction to Network Analyzer Measurements... 3 VNA Basics...3 Applications for Network
Impedance Analysis of Automotive High Voltage Networks for EMC Measurements
Impedance Analysis of Automotive High Voltage Networks for EMC Measurements M. Reuter *, S. Tenbohlen, W. Köhler, A. udwig Institute of Power Transmission and High Voltage Technology (IEH), University
HP 8753E RF Vector Network Analyzer
HP 8753E RF Vector Network Analyzer 30 khz to 3 or 6 GHz Fast and powerful, the HP 8753E is perfectly adapted for superior, efficient measurements 2 Impressive 300% speed improvement in measurement sweep,
"FP", "FR", "FQ" Series Bandpass Filters
Description "FP", "FR", "FQ" Series Bandpass Filters The tuning instructions described on the following pages apply to all 7, 8.5, and 10 Bandpass, Notch, and Q circuit filters. Typical models and electrical
Z Analyze Software. User Manual Version 1.6 - April 2015. Frontier Technical Services 1
Frontier Technical Services 1 Z Analyze Software User Manual Version 1.6 - April 2015 Frontier Technical Services Carl Almgren Sidelinesoft Alexei Smirnov Z Analyze Software Manual Matthew Ferrand / Jared
Agilent 8757D Scalar Network Analyzer 10 MHz to 110 GHz
Agilent 8757D Scalar Network Analyzer 10 MHz to 110 GHz Data Sheet Accurate measurement of transmission and reflection characteristics is a key requirement in your selection of a scalar network analyzer.
Advanced Calibration Techniques for Vector Network Analyzers
Advanced Calibration Techniques for Vector Network Analyzers Presented by: Advanced VNA VNA Calibration Agilent Technologies, Inc. Inc. 2006 2006 Welcome to Advanced Calibration Techniques for Vector Network
Experiments with the DG8SAQ VNWA
DG8SAQ VNWA Tutorial Experiments with the DG8SAQ VNWA and the SDR-Kits Test Board Tom BAIER DG8SAQ This is an excerpt from my Ham Radio 2013 presentation which has been slightly extended (slides 6, 20
S-Parameters and Related Quantities Sam Wetterlin 10/20/09
S-Parameters and Related Quantities Sam Wetterlin 10/20/09 Basic Concept of S-Parameters S-Parameters are a type of network parameter, based on the concept of scattering. The more familiar network parameters
R&S ZCxxx Millimeter-Wave Converters Specifications
ZCxxx_dat-sw_en_3607-1471-22_v0200_cover.indd 1 Data Sheet 02.00 Test & Measurement R&S ZCxxx Millimeter-Wave Converters Specifications 21.07.2015 15:09:16 CONTENTS Definitions... 3 General information...
Improving Network Analyzer Measurements of Frequency-translating Devices Application Note 1287-7
Improving Network Analyzer Measurements of Frequency-translating Devices Application Note 1287-7 - + - + - + - + Table of Contents Page Introduction......................................................................
