IEEE TUTORIAL ON VOLTAGE SAG ANALYSIS
|
|
|
- Aileen Bailey
- 10 years ago
- Views:
Transcription
1 TP139-0 EEE TUTORAL ON VOLTAGE SAG ANALYSS EEE
2 EEE TUTORAL ON VOLTAGE SAG ANALYSS Math H.J. Bollen Department of Electric Power Engineering Chalmers University of Technology Gothenburg, Sweden
3 Preface The material presented in this tutorial is an excerpt from the manuscript of my book "Understanding power quality problems: voltage sags and interruptions", published by EEE Press in New York. SBN EEE Press publications are available from EEE Service Center 455 Hoes Lane PO Box 1331 Piscataway, NJ USA fax Math Bollen, Gothenburg, October
4 Table of Contents 1. Voltage Sag Characterisation 2. Equipment Behaviour 3. Stochastic Assessment of Voltage Sags 4. Mitigation of Voltage Sags 2
5 1. Voltage Sag Characterisation Math H J Bollen, Senior Member, EEE Department of Electric Power Engineering Chalmers University of Technology, Gothenburg, Sweden 1. NTRODUCTON Voltage sags are short duration reductions in rms voltage, mainly caused by short circuits and' starting or large motors. The large interest in voltage sags is due to the problems they cause on several types of equipment. Speciallyadjustable-speed drives, process-control equipment and computers are notorious for their sensitivity. Some pieces of equipment trip when the rms voltage drops below 90% for longer than one or two cycles. Such a piece of equipment will trip,tens of times a year. f this is the process-control equipment of a paper mill, one can imagine that the damage due to voltage sags can be enormous. Ofcourse a voltage sag is not as damaging to industry as a (long or short) interruption. But as there are far more voltage sags than interruptions the total damage due to sags is still larger. Another important aspect of voltage sags is that they are rather hard to mitigate. Short interruptions and many long interruptions can be prevented viarather simple, although relatively expensive, measures in the local distribution network. However voltage sags at equipment terminals can be due to short circuit faults hundreds of kilometres away in the transmission system. t will be clear that there is no simple method to prevent them. An example of a voltage sag in shown in Fig. 1. We see that the voltage amplitude drops to a value of about 20% of the pre-event voltage for about two cycles. After these two cycles the voltage comes back to about the presag voltage. This magnitude and duration are the main characteristics of a voltage sag. Both will be discussed in more detail in the 'forthcoming sections. We can also conclude from Fig. 1 that magnitude and duration do not completely characterise the sag. The during-sag voltage contains a rather large amount of higher frequency components. Also the voltage shows a small overshoot immediately after the sag. n how far these higher frequency components are ofany influenceon the equipment behaviour due to sags, remains a point of discussion. Voltage sags are mainly caused by short circuits. The sag in Fig. 1 is due to a short circuit. But also the starting of large load can lead to a voltage sag. Large a s CD co co g 0.5 o Tmeincydes Fig. 1. A voltage sag - voltage in one phase in time domain, data obtained from [1]. induction motors are the typical load which causes voltage sags. Voltage sags due to induction motor starting last longer than those due to short circuits. Typical durations are seconds to tens of seconds. The remainder of this chapter will concentrate on voltage sags due to short circuits.. VOLTAGE SAG MAGNTUDE - MONTORNG The magnitude of a voltage sag can be determined in a number of ways. At the moment there appears general agreement that the magnitude should be determined from the rms voltages. As voltage sags are initially recorded as sampled points in time, the rms voltage will have to be calculated. This has been done for the sag shown in Fig. 1 resulting in Fig. 2: the rms voltagehas been calculated over a windowofone cycle, which was 256 samples for the recording used. Each point in Fig. 2 is the rms voltage over the preceding 256 points (the first 255 rms values have been made equal to the value for sample 256): 1 i=le N L vi i=le-n+l 5 6 (1) with N = 256 and Vi the sampled voltage in time domain. We see that the rms voltage does not immediately
6 . VOLTAGE SAG MAGNTUDE - CALCULATONS 0.8 ~ e, c: ;0.6 C) ~ <5 > Tme in cycles Fig. 2. One-cycle nns voltage for the voltage sag shown in Fig. 1. drop to a lower value but takes one cycle for the transition. We alsosee that the rms value during the sag is not completely constant and that the voltage does not immediately recover after the fault. A surprising observation is that the rms voltage immediately after the fault is only about 90% of the pre-sag voltage. From Fig. lone can see that the voltage in time domain shows a small overvoltage instead. n this example the rms voltage has been calculated after each sample. n power quality monitors, this calculation is typically only made once a cycle. t is thus likely that the monitor will give one value with an intermediate magnitude before its rms voltage value settles down. n the US the general practice is to characterise the sag through the remaining voltage during the sag. This is then given as a percentage of the nominal voltage. Thus a 70% sag in a 120 Volt system means that the voltage dropped to"'84 V. The confusion with this terminology is clear. One could be tricked into thinking that a 70% sag refers to a drop of 70%,thus a remaining voltage of 30%. The recommendation is therefore to use the phrase"a sag down to 70%" [2]. The EC has solved this ambiguity by characterising the sag through the actual drop [3]. This hassomewhat become commonpractice in Europe. Characterising a sag through its drop in voltage does Dot solve all problems however, because the next question will be: what is the reference voltage? There are arguments in favour of using the pre-fault voltage and there are arguments in favour of using the nominal voltage. The nternational Union of Producers and Distributors of Electrical Energy (Union ntemational des Producteurs et Distributeurs d'energie Electrique, UNPEDE) recommends to use the nominal voltage as a reference [4]. n the remainder of these course notes, we will use the term "magnitude" in the meaning of the remaining voltage during the fault. 5 Consider the distribution network shown in Fig. 3, where the numbers (1 through 5) indicate fault positions and the letters (A through D) loads. A fault in the transmission network, fault position 1, will cause a serious sag for both substations bordering the faulted line. This sag is then transferred down to all customers fed from these two substations. As there is normally no generation connected at lower voltage levels, there is nothing to keep up the voltage. The result is that a deep sag is experienced by all customers A, B, C and D. The sag experienced by A is likely to be somewhat less deep, as the generators connected to that substation will keep up the voltage. A fault at position 2 will not cause much voltage drop for customer A. The impedance of the transformers between the transmission and the sub-transmission system are large enough to considerably limit the voltage drop at high-voltage side of the transformer. The sag experienced by customer A is further mitigated by the generators feeding in to its local transmission substation. The fault at position 2 will however cause a deep sag at both subtransmission substations and thus for all customers fed from here (B, C and D). A fault at position 3 will cause a very deep sag tor customer D, followed by a short or long interruption when the protection clears the fault. Customer C will only experience a deep sag. f fast reclosure is used in the distribution system, customer C will experience two or more sags shortly after each other for a permanent fault. Customer B will only experience a shallow sag due to the fault at position 3, again due to the transformer impedance. Customer A will probably not notice anything from this fault. Finally fault 4 willcause a deep sagfor customer C and a shallow one for customer D. For fault 5 the result is just the other way around: a deep sag for customer D and a shallow one for customer C. Customers A and B will not be influenced at all by faults 4 and 5. To quantify sag magnitude in radial systems, the voltage divider model, shown in Fig. 4, can be used. n Fig. 4 we see two impedances: Zs is the source impedance at the point-of-common coupling; and ZF is the impedance between the point-of-common coupling andthe fault. The point-of-common coupling is the point from which both the fault and the load are fed. n other words: it is the place where the load current branches off from the fault current. We will further on often abbreviate this as pee. n the voltage divider model, the load current before as well as during the fault is neglected. There is thus DO voltage drop between the load and the pee. The voltage at the pee, and thus the voltage at the equipment terminals, can be found from:
7 transmission "c- S ]0.6 3~ dislributiol1 ~: lowvol~e C T 7S Fig. 3. Distribution network with load positions and fault positions. E v.. t---.load Fig. 4. Voltage divider model for a voltage sag. ZF v.cg = ZS+ZF Where it has been assumed that the pre-event voltage is exactly 1 pu, thus E = 1. We see from (2) that the sag becomes deeper for faults electrically closer to the customer (when ZF becomes smaller), and for systems with a smaller fault level (when Zs becomes larger). Equation (2) can be used to calculate the sag magnitude as a function of the distance to the fault. Therefore we have to write ZF = Z x L, with z the impedance of the feeder per unit length and the distance between the fault and the pee, leading to: z v.cg = Zs+z (2) (3) ~ co EO.4 '" '" co (J) Dislanoeto the fault in kin Fig. 5. Sag magnitudeas a function of the distance to the fault, for faults on an 11 kv, 150 mm 2 overhead line. The sag magnitude as a function of the distance to the fault has been calculated for a typical llkv overhead. line resulting in Fig. 5. For the calculations a 150~ overhead line was used [5] and fault levels of 750 MVA, 200 MVA and 75 MVA. The fault level is used to calculate the source impedance at the pee, the feeder impedance to calculate the impedance between the pce and the fault. t was assumed that the source impedance is purely reactive, thus Zs = ;0.161 n for the 750 MVA source. The impedance of the 150mm 2 overhead line is ;0.315n per km. As expected the sag magnitude increases (i.e. the sag becomes less severe) for increasing distance to the fault and for increasing fault level. We also see that faults at tens of kilometres distance can still cause a severe sag. A. Faults behind Transformers At most voltage levels, the impedance ofa transformer corresponds to many kilometresof line or cable. fthere is a transformer between the pee and the fault, the "feeder impedance" ZF used in equation (2) becomes large and the sag magnitude closer to one. To show the influence of transformers on the sag magnitude, consider the situation that a 132/33 kv transformer is fed from the same bus as a 132 kv line. Fault levels are 3000MVA at the 132 kv bus, and 900 MVA at the 33 kv bus. n impedance terms: the source impedance at the 132 kv bus is 5.81n, and the transformer impedance is 13.55n, both referred to the 132 kv voltage level. The sensitive load for which we want to calculate the sag magnitude is fed from the 132 kv via another 132/33 kv transformer. We can again use equation (2), with Zs = 5.81n and ZF = 13.55n+zx.cwhere z is the feeder impedance per unit length, and.c the distance between the fault and the transformer's secondary side terminals. The feeder impedance must also be referred to the 132 kv 50
8 B. Fault Levels 400 V 11 kv 33kV 132 kv 400 kv 0.8 :::s Q. c: ~0.6.2 C C) EO.4 0) es en faultsat33kv Distance to the faultin km Fig. 6. Comparison of sag magnitude for 132 kv and 33 kv faults level: z = (1~2:~)2 x 0.3n when the feeder impedance is 0.3{2 at 33 kv. The results of the calculations are shown in Fig. 6 for faults on the 33 kv line (upper curve) and for faults on a 132 kv line (lower curve). We seethat sags -due to 33 kv faults are less severe than sags due to 132kV faults. Not only does the 33 kv curve start off at a higher level (due to the transformer impedance), also does it rise much faster. The latter is due to the fact that the feeder impedance seen from 132kV level is (132/33)2 = 16 times as high as seen from 33 kv level. t is possible to calculate the sag magnitude from the fault levels at the pee and at the fault position. Let SFLT be the fault level at the fault position and Spec at the point-of-common coupling. For a rated voltage Vn the relations between fault level and source impedance are as follows: v: 2 SFLT = Zs;ZF (4) v: 2 Spec =...!!.. (5) Zs With (2) the voltage at the pee can be written as: SFLT ~ag = (6) Spec Consider a system with the following typical fault levels: 20MVA 200 MVA 900 MVA 3,000 MVA 17,000 MVA The results of applying (6) to these values is shown in Table. The zeroes in this table indicate that the fault is at the same or at a higher voltage level. The voltage drops to a low value in such a case. We can see from Table that sags are significantly damped when they propagate upwards in the power system. n a sag study we typically only have to take faults one voltage level down into account. And even those are seldom of serious concern. An exception here could be sags due to faults at 33 kv with a pee at 132 kv. They could lead to sags down to 70%. 400 V 11 kv 33 kv 132 kv 400kV 400 V 0 90 % 98 % 99 % 100% 11 kv % 93% 99% 33 kv % 95% 132 kv % A. Typical Values TABLE UPWARD PROPAGATON OF SAGS. V. VOLTAGE SAG DURATON We have seen that the drop in voltage during a sag is due to a short circuit being present in the system. The moment the short circuit fault is cleared by the protection, the voltage can return to its original value. The duration of a sag is thus determined by the fault-clearing time. However the duration of a sag is normally longer than the fault-clearing time. We will come back to this further on in this section. Generally speaking faults in transmission systems are cleared faster than faults in distribution systems. n transmission systems the critical fault-clearing time is rather small. Thus fast protection and fast circuit breakers are essential. Also transmission and sub-transmission systems are normally operated as a grid, requiring distance protection or differential protection, both of which are rather fast. The principle form of protection in distribution systems is overcurrent protection. This requires often some time-grading which increases the fault-clearing time. An exception are systems in which current-limiting fuses are used. These have the ability to clear a fault within one half-cycle [6, 7]. The sag duration will be longer when a sag originates at a lower voltage level. This is due to the fault-clearing time typically becoming shorter for higher voltage levels. We saw before that faults in distribution systems will lead to deep sags if they are at the same voltage level as the pee and to shallow sags if they are at a lower voltage level than the pee. We also saw that transmission
9 loo9b--, r , s ~ DUl'lLtion 5 -- Fig. 7. Sags of different origin in a magnitude-duration plot. system faults lead to shorter duration sags than distribution system faults and that they cover the whole range of sag magnitude. Current-limiting fuses allow very short fault-clearing times, they are only found in low-voltage and distribution systems. n a magnitude versus duration plot we can now distinguish a number of areas. This is shown in Fig. 7. The numbers in refer to the following sag origins: 1. Transmission system faults 2. Remote distribution system faults 3. Local distribution system faults 4. Starting of large motors 5. Short interruptions 6. Fuses The magnitude-duration plot is an often used tool to show the quality of supply at a certain location or the average quality of supply of a number of locations. B. Measurement of Sag Duration Measurement of sag duration is much less trivial than it might appear from the previous section. For a sag like in Fig. 1 it is obvious that the duration is about 2~ cycles. However to come up with an automatic way for a power quality monitor to obtain the sag duration is no longer straightforward. The commonly used definition of sag duration is the number of cycles during which the rms voltage is below a given threshold. This threshold will be somewhat different for each monitor but typical values are around 90%. A power quality monitor will typically calculate the rms value once every cycle. This gives an overestimation of the sag duration as shown in Fig. 8. The normal situation is shown in the upper figure. The rms calculation is performed at regular instants in time and the voltage sag starts somewhere in between two of those instants. As there is no correlation between the calculation instants and the sag commencement, this is Fig. 8. Estimation of sag duration by power quality monitor for a two-cycle sag: overestimation by one cycle (upper graph); correct estimation (lower graph). the most likely situation. We see that the rms value is low for three samples in a row. The sag duration according to the monitor will be three cycles. Here it is assumed that the sag is deep enough for the intermediate rms value to be below the threshold. For shallow sags both intermediate values might be above the threshold and the monitor will record a one-cycle sag. The bottom curve of Fig. 8 shows the rare situation where the sag commencement almost coincides with one of the instants on which the rds voltage is calculated. n that case the monitor gives the correct sag duration. The one cycle or one half-cycle error in sag duration is only significant for short-duration sags. For longer sags it does not really matter. But for longer sags the socalled post-fault sag will give a more serious error in sag duration. When the fault is cleared the voltage does not recover immediately. Some of this effect can be seen in Fig. 2. The rms voltage after the sag is slightly lower than before the sag. The effect can be especially severe for sags due to three-phase faults. The explanation for this effect is as follows [8]. Due to the drop in voltage during the sag, induction motors will slow down. The torque produced by an induction motor is proportional to the square of the voltage, so even a rather small drop in voltage can already produce a large drop in torque and thus in speed. The moment the fault is cleared and the voltage comes back, the induction motors start to draw a large current: up to 10 times their nominal current. mmediately after the sag, the air-gap field will have to be build up again. n other words: the induction motor behaves like a short-circuited transformer. After the flux has come back into the air gap, the motor can start reaccelerating which also requires a rather large current. t is this post-fault inrush current of induction motors which leads to an extended sag. This post-fault sag can
10 Load currents, before, during and after the fault can be neglected. &» s monitor2 () ;;..;..;=:..;;.;;-..,;=~--~aoo =----- ~t ~~----- settingmonitor1 ~ duration monitor 1 duration monitor2 Time Fig. 9. Error in sag duration due to post-fault sag. last several seconds, much longer than the actual sag. The post-fault sag can cause a serious error on the sag duration as obtained by a power quality monitor. And an even more serious problem is that different monitors can give different results. This is shown schematically in Fig. 9. Assume that monitor 1 has a setting as indicated, and monitor 2 a slightly higher setting. Both monitors will record a sag duration much longer than the fault-clearing time. The fault-clearing time can be estimated from the duration of the deep part of the sag. We see that monitor 2 will record a significantly longer duration than monitor 1. V. THREE-PHASE UNBALANCE. For each type of fault, expressions can be derived for the voltages at the pee, But this voltage is not equal to the voltage at the equipment terminals. Equipment is normallyconnected at a lower voltage level than the level at which the fault occurs. The voltages at the equipment terminals therefore not only depend on the voltages at the pee but also on the winding connection of the transformers between the pee and the equipment terminals. The voltages at the equipment terminals further depend on the load connection. Three-phase load is normally connected in delta but star-connection is also used. Singlephase load is normallyconnected in star [i.e. between one phase and neutral) but sometimes in delta (between two phases). n this section we will derive a classification for threephase unbalanced voltagesags, based on the following assumptions: The zero-sequence component of the voltage does Dot propagate down to the equipment terminals, so that we can consider phase-to-neutral voltages. Positive- and negative-sequence source impedance are equal. Faults are single-phase, phase-to-phase or three-phase. We will discuss some of the limitations of this classification below, including a more comprehensive classification that covers all cases. A. Single-Phase Faults The phase-to-neutral voltages due to a single-phase-toground fault are: Va=V Vb=-~-!j~ 2 2 ~=-~+!j~ 2 2 (7) The resulting phasor diagram is shown in Fig. 10. f the load is connected in star the equipment terminal voltages are the phase-to-phase voltages. These can be obtained from equation (7) by the following transformation: TT Vb - ~ Va=] ~ TT ~ - Va Vb=J v'3 TT Vc =J v'3 Va - Vb (8) The factor.j3 is aimed at changing the base of the pu values. The 90 0 rotation by using a factor j aims at keeping the axis of symmetry of the sag along the real axis. Applying transformation (8) results in the following expression for the voltage sag experienced by a delta-connected load, due to a single-phase fault: Va=l Vb = _! - (! +!V)jv' v.: = _! +(! +!V)jv' The phasor diagram for the equipment terminal voltages is again shown in Fig. 10: two voltages show a drop in magnitude and change in phaseangle; the third voltage is not influenced.at all. The delta-connected equipment experience a sag in two phases due to a single-phase fault. Here it has been assumed that the voltage in the nonfaulted phases is not influenced by the fault. n reality this is often not the case: the voltage in the non-faulted phases (9)
11 ~'\:\'\ > Fig. 10. Phase-to-ground (left) and phase-to-phase voltages before and during a phase-to-ground fault. has the tendency to increase because the zero-sequence fault impedance is larger than the positive-sequence fault impedance. We can obtain expression (7) by adding a zero-sequence component to the voltages. As the zerosequence voltage does Dot propagate to the equipment terminals, this does not affect the voltages at the equipment terminals. B. Phase-to-Phase Faults For a phase-to-phase fault the voltages in the two faulted phases move towards each other. The expressions for the phase-to-neutral voltages during a phase-to-phase. fault read as follows: V4 =1 Vb =_! -!Vjv'S 2 2 ~ =_! +! VJ v's c 2 2 (10) Like before (8) can be used to obtain an expression for the phase-to-phase voltages, resulting in: v4=v Vb =_!V -!jv's 2 2 ~ =-~v + ~jv's (11) The corresponding phasor diagrams are shown in Fig. 11. Due to a phase-to-phase fault a star-connected load experiences a drop in two phases, a delta-connected load experiences a drop in three phases. For the star-connected Fig. 11. Phase-to-ground and phase-to-phase voltages before and during a phase-to-phase fault. load the maximum drop is 50%, for V = O. But for the delta-connected load one phase could drop all the way down to zero. The conclusion that load could therefore best be connected in star is wrong however. Most sags do not originate at the same voltage level as the equipment terminals. We will see later that the sag at the equipment terminals could be either of the two shown in Fig. 11, depending on the transformer winding connections. c. Transformer Winding Connections Transformers come with many different winding connections, but when studying the transfer of voltage sags from one voltage level to another, only three types need to be considered: 1. Transformers that do not change anything to the voltages. For this type of transformer the secondaryside voltages (in pu) are equal to the primary-side voltages (irrpu]. The only type of transformer for which this holds is the star-star connected one with both star points grounded. 2. Transformers that remove the zero-sequence voltage. The voltages on secondary side are equalto the voltages on primary side minus the zero-sequence component. Examples of this type of are the starstar connected transformer with one or both star points not grounded, and the delta-delta connected transformer. Also the delta-zigzag (Dz) transformer fits into this category. 3. Transformers that swap line and phase voltages. For these transformers each secondary-side voltage
12 equals the difference between two primary-side voltages. Examples are the delta-star (Dy) and the stardelta (Yd) transformer as well as the star-zigzag (Yz) transformer Withineach of these three categories there willbe transformers with different clock number (e.g. Ydl and Yd11), thus causing a different phase shift between primary and secondary-side voltages. But this difference is not of any importance for the voltage sags as experienced by the equipment. All that matters is the change between the pre-fault voltages and the during-fault voltages, in magnitude and in phase-angle. The whole phasor diagram, with pre-fault and during-fault phasors, can be rotated without any influence on the equipment. Such a rotation can be seen as a shift in the zero point on the time axis which of course has no influence on equipment behaviour. The three transformer types can be defined mathematically by means of the following transformation matrices: single-phase fault, star-conn load, no transf. This case has been discussed before, resulting in equation (7) and in the left diagram in Fig. 10 We will refer to this sag as sag Xl. Transformer type 1 gives the same results of course. single-phase fault, delta-conn load, no transf. The voltage sag for this case is given in equation (9) and shown in the right diagram in Fig. 10. This sag will be referred to as sag X2. single-phase fault, star-connected load, transf T2. Transformer type 2 removes the zero sequence component of the voltage. The zero sequence component of the phase voltages due to a single-phase fault is found from (7) to be equal to i(v - 1). This gives the following expression for the voltages: -1] 2-1 T2 = ~ [ [ 0 1-1] T3 = ~ v~ (12) (13) (14) Equation (12) is rather straightforward: matrix T 1 is the unity matrix. Equation (13) removes the zero sequence component of the voltage. The matrix T2 can be understood easily by realising that the zero sequence voltage equals!(v 4 +'Vb+~). Matrix T3in equation (14) describes exactly the same transformation as expression (8). The additional advantage of the 90 rotation is that twice applying matrix T3 gives the same results as once applying matrix T2- Thus Tl = T2' or in engineering terms: two Dy transformers in cascade have the same effect on the voltage sag as one Dd transformer. These three types of transformers can now be applied to the sags due to single-phase and phase-to-phase faults. As mentioned before transformer type 3 is identical to the change from star connected to delta-connected load. Thus star-connected load on secondary side ofa Dy transformer experiences the same sags as delta-connected. load on primary side. To get an overview of the resulting sags, the different combinations will be systematically treated below. (15) This looks like a new type of sag, but we will later see that it is identical to the one experienced by a delta connected load during a phase-to-phase fault. But for now it will be referred to as sag X3. single-phase fault, delta conn load, transf T2. The phase-to-phase voltages experienced by a deltaconnected load do not contain any zero-sequence component. Thus transformer type 2 does not have any influence on the sag voltages. The sag is thus still of type X2. single-phase fault, star-conn load, trans! T3. Transformer type 3 changes phase voltages in line voltages. Thus star-connected load on secondary side experienced the same sag as delta-connected load on primary side. n this case that is sag X2. single-phase fault, delta.-conn load, transf T3. There are now two transformations: from star to delta-connected load, and from primarytosecondary side of the transformer. each of these transformations can be described through matrix T3 defined in (14). Two ofthose transformations in cascade have the same effect as transformation T 2 Thus the sag experienced by this delta connected load is the same as by the star connected load behind a transformer of type 2; thus sag type X3. phase-to-phase fault, star-conn load, no transf. This case was treated before resulting in (10) and
13 in the left diagram in Fig. 11. This will be sag type X4. phase-to-phase fault, delta-conn load, no transf. The expression for the sag voltages reads as (11) and is shown towards to right in Fig. 11. This type will be referred to as X5. phase-to-phase fault, star conn load, transf T2. As phase-to-phase faults do not result in any zerosequence voltage, transformertype 2 (which removes the zero-sequence voltage) does not have any effect. The sag thus remains of type X4. ~ TypeA - tf. TypeS TypeD phase-to-phase fault, delta-conn load, transf T2. Like before, the sag is still of type X5. phase-to-phase fault, star-conn load, transf T3. Star-connected load on secondary side of transformer type 2 experiences the same sag as delta-connected load on primary side. This results in type X5. Fig. 12. Four types of sag in phasor-diagram form. The superscript (*) behind the sagtype in Table and Table V indicates that the sag magnitude is not equal to V but equal to i +! V, with V the voltage in the faulted phase-to-phase fault, delta-conn load, transf T3~ phase or between the faulted phases in Table and the This gives again two identical transformations Ts magnitude ofthe sag on primary side in Table V. in cascade, resulting in one transformation T2. But that one only removes the zero-sequence component and has thus no influence on sags due to phase-tophase faults. The result is thus again X4. TABLE FOUR TYPES OF SAGS N EQUATON FORM. Type A TypeB D. Four Types of Sags We saw above that single-phase faults lead to three types of sags, designated sag Xl, sag X2 and sag X3. Phase-to-phase faults lead to sag X4and sag X5. We saw already from the phasor diagrams in Fig. 10 that singlephase and phase-to-phase faults lead to similar sags. The sag voltages for sag type X2 are given in (9), where (10) gives the expression for sag type X4. Comparing these two sets ofequations shows that (9) can be obtained by replacing V in (10) by i + [v. f we define the magnitude of sag X4 as V then sag X2 is a sag of type X4 with magnitude 1+iV. n the same way we can compare sagx3, (15), and sag X5, (13).Again we can obtain equation (13) by replacing V in (15) by 1+ iv. The result is that only three fundamental types remain: Xl, X4 and X5. A fourth type of sag is the sag due to three-phase faults, with all three voltages down the same amount. The resulting classification is shown in Table in equation form and in Fig. 12 in phasor diagram form. All sags in Fig. 12 have a magnitude of 50%. From the discussion about sags due to single-phase and phase-to-phase faults, together with the definition of the four types, the origin and the propagation of the sags becomes straightforward. The results are summarised in Table for the origin ofsags and in Table V for their propagation to lower voltage levels. Va=V Va=V Vb = -!V -!jvv'3 Vb = -! - ~iv'3 ~ =-!V+ tjvv'3 ~ =-!+!iv'3 TypeC Va =1 TypeD Vc=l Vb =-! -!jvv'3 Vb = -!V- ijv!3 ~ =-! +!iv v'3 ~ = -!V + iiv'3 TABLE FAULT TYPE, SAG TYPE AND LOAD CONNECTON Fault type star conn load delta conn load three-phase saga saga phase-to-phase sage sagd single-phase sagb sag C E. Summary - More Characteristics As mentioned before, the zero-sequence component rarely effect the voltages at the equipment terminals, and is therefore be neglected in this classification. The only sag
14 TABLE V TRANSFORMATON OF SAG TYPE TO LOWER VOLTAGE LEVELS transformer type A type B type C type D connection YNyn type A type B type C type D Yy,Dd,Dz type A type D* type C type D Yd,Dy,Yz type A type C type D type C type with a zero-sequence component is type B. Removing the zero-sequence component results in a sag of type D. When we only consider the remaining three types, the sag magnitude doesn't change at all when the sag propagates to a lower voltage level. The resulting classification can be summarized as follows: Three-phase unbalanced voltage sags come in three different types, designated as Type A, Type C and Type D. Sag type A is a balanced sag with all three voltage magnitudes equal. Sags of type A are due to three-phase faults and due to induction motor starting. Sag types C and D are unbalanced sags, due to nonsymmetrical faults. Each sag can be characterized through one magnitude and one duration. The magnitude does not change when the sag propagates through a transformer from a higher to a lower voltage level. The only change is from type C to type D and back. This classification has been extended in [9, 10] to include casesin which positive and negative-sequence source impedance are no longer identical. This effect may be due to induction motor load present near the place where the voltage sag is experienced. Next to the characteristic magnitude a so-called "PN-factor" F is introduced for sag types C and D. The expressions for the three voltages become for a type C sag: ~=F M Vb = -2 F - 2 j Vv M ~ = -2"F + 2 j V v 3 (16) The PN-factor and characteristic magnitude are defined through the symmetrical component transformation. The definition is such that the sag characteristics can be easily obtained from measured voltage waveshapes. For more details the reader is referred to [9] and [10]. Applying this extended classification to voltage sag monitoring results has shown that the PN-factor varies between 0.9 and 1.0. The lower value is found in distribution systems, the higher value in transmission systems. t is also shown that the PN-factor gets closer to one when the characteristic magnitude gets closer to one. n specific cases, it may be suitable to extend the characterization by adding the zero-sequence voltage as a third characteristic of the three-phase unbalanced sag. V. PHASE-ANGLE JUMPS A short circuit in a system not only causes a drop in voltage magnitude but also a jump in the phase angle of the voltage. n a 50 Hz or 60 Hz system, voltage is a complex quantity (a phasor) which has magnitude and phase-angle. A change in the system, like a short circuit, causes a change in voltage. This change is not limited to the magnitude of the phasor but can equally well include a change in phase-angle. We will refer to the latter as the phase-angle jump associated with the voltage sag. The phase-angle jump manifests itself as a shift in voltage zero crossing compared to a synchronous voltage, e.g. as obtained by using a phase-locked loop. Phase-angle jumps are not ofconcern for most equipment. But power electronics converters using phase-angle information for their firing instants could easily get disturbed. The concept of phase-angle jump will be introduced by means of a three-phase fault, as that enables us to use the single-phase model. Phase-angle jumps during threephase faults are due to the difference in X/Rratio between the source and the feeder. A second cause ofphase-angle jumps is the transformation of sags to lower voltage levels. This phenomenon has already been mentioned when three-phase unbalanced sags were discussed before To understand the origin of phase-angle jumps associated with voltage sags, the single-phase voltage divider model of Fig. 4 can be used again, with the difference that Zs and Zp are complex quantities which we will denote as Zs and Zp. The (complex) voltage at the point-of-common coupling (pee) during the fault is: and for a type D sag: Vc=V ft Vb = --V - -Fjv ft ~ =--V+ -Fjv3 2 2 (17) - Zp V$Gg=~~~ ZS+ZF (18) Let Zs = Rs + jxs and Zp = Rp + jxf. The argument of V $49' the phase-angle jump in the voltage, is given by the following expression:
15 .. :-10 ;;. ~.15 S; ~2O :> 0"-25 C. c: '!'.3O :i: ~-35 l> Distance to the fault in an 50 Fig. 13. Phase-angle jump versus distance, for faults on also mm 2 11 kv overhead feeder, with different source strength. ll~ = arg (V...g) (19) = arctan (~; ) - arctan (~: : ~; ) (20) Distanc:eto the fault in an Fig. 14. Phase-angle jump versus distance, for overhead lines with cross section 300 (solid line), 150 (dashed line) and 50 mm 2 (dotted line). 25 f ~; = i;, expression (19) is zero and there is no phase-angle jump. The phase-angle jump will thus be present if the XjR ratios of the source and the feeder aredifferent. A. Phase-Angle Jumps - Calculation Consider again the system used to obtain Fig. 5. nstead of the sag magnitude, we can also calculate the phase-angle jump, resulting in Fig. 13. We again see that a stronger source makes the sag less severe: less drop in magnitude as well as a smaller phase-angle jump. The only exception is for terminal faults. The phase-angle jump for zero distance to the fault is independent of the source strength. We will later rewrite (19) in such a way that this becomes obvious. Note that this is only of theoretical value as the phase-eagle jump for zero distance to the fault, and thus for zero voltage magnitude, has no meaning. FJg. 14 plots phase-angle jump versus distance for 11 kvoverhead lines of different cross sections. The resistance of the source has been neglected in these calculations: Rs = O. From the overhead line impedance data shown in we can calculate the XjR ratio of the feeder impedances: for the 50 mm 2 line, for the 150 mm 2 and for the 300 mm 2. We see that the phase- angle jump decreases for smaller XjR ratio of the feeder. The calculations have been repeated for underground cables. The results are shown in Fig. 15. Cables with a smaller cross section have a larger phase-angle jump for small distances to the fault, but it also decays faster for increasing distance. This is due to their (in absolute value) larger impedance per unit length. 10 0, , Distanc:eto the fault in an Fig. 15. Phase-anPejump versus distance, for underground cables with cross section 300 (solid line), 150 (dashed line) and 50 mm 2 (dotted line). 25
16 20, ~ CD CZ) ~ C) CZ) ~-10 c. ~-20 CZ) ~.30 cu c» ~-40 s: no Tune in cycles Fig. 16. Phase-angle jump versus time for the voltage sag in Fig. 1. B. Phase-Angle Jump - Monitoring To obtain the phase-angle jump of a measured sag, the phase-angle of the voltage during the sag must be compared with the phase-angle of the voltage before the sag. The phase angle of the voltage can be obtained from the voltage zero-crossing or from the phase of the fundamental componentof the voltage. Fig. 16 shows the phase of the fundamental component of the voltage before and during the sagshown in Fig. 1. The complexfundamental component was obtained from a fast-fourier transform. Let 4J(t) be the argument of the complex fundamental voltage over the period [t - T, t] with T one cycle of the fundamental frequency, and </Jo the argument at t=o. The synchronous voltage has an angle ~o + wt with Wo the angular speed ofthe fundamental frequency. The phaseangle jump at/> as plotted in Fig. 16 can be calculated from: a</j = (t) - (<Po + wt) (21) Like with sag magnitude, there is no unique value for the phase-anglejumpdue to a sag. A power quality monitor should use an average value during a sag or the largest value during the sag. The oscillation of the phase-angle around sag initiation and voltage recovery are due to the shift of the window in and out of the sag. t takes about one cycle before the phase-angle jump reaches a reliable value. This could lead to erroneous values of the phaseangle jump when obtained by a power-quality monitor. V. MAGNTUDE AND PHASE-ANGLE JUMPS FOR THREE-PHASE UNBALANCED SAGS A. Definition of Magnitude and Phase-Angle Jump The magnitude of a voltage sag was defined as the rms value of the voltage during the fault. For singlephase loads this is an implementable definition, despite the problems with actually obtaining the rms value. For 5 6 three-phase unbalanced sags the problem becomes more complicated as there are now three rms values to choose from. The most commonly used definition is: The magnitude of a three-phase sag is the rms value of the lowest of the three voltages. Alternatives suggested are to use the average of the three rms values, or the lowest value but one. Based on the classification of three-phase unbalanced sags we distinguish between three different kinds of magnitude and phase-angle jump. n all cases magnitude and phase-angle jump are absolute value and argument respectively of a complex voltage. The initial complex voltage is the voltage at the point-of-commoncoupling at the faulted voltage level. For a single-phase-to-ground fault the initial complex voltage is the voltage between the faulted phase and ground at the pee. For a phase-to-phase fault the initial complex voltage is the voltage between the two faulted phases. For a two-phase-to-ground or a three-phase fault it can be either the voltage in one of the faulted phases or between two faulted phases (as long as pu values are used). The initial sag magnitude is the absolute value of the complex initial voltage; the initial phase-angle jump is the argument of the complex initial voltage. The characteristic complex voltage of a three-phase unbalanced sag is defined as the value of V in Table. We will give an alternative interpretation of the characteristic complex voltage later on. The characteristic sagmagnitude is the absolute value of the characteristic complex voltage. The characteristic phase-angle jump is theargument of the characteristic complex voltage. These can be viewed as generalised definitions of magnitude and phaseangle jumps for three-phase unbalanced sags. The complex voltages at the equipment terminals are the values of ~, li and ~ in Table and in several of the equations around these tables. The sag magnitude and phase-angle jump at the equipment terminals are absolute value and argument respectively of the complex voltages at the equipment terminals. For single-phase equipment these are simply sag magnitude and phase-angle jump as previously defined for single-phase voltage sags. B. How to Obtain Characteristic Magnitude Before, we have introduced three types of sags together with their characteristic complexvoltage V. A mathematically elegant method to obtain the characteristic complex voltage from the sampled voltages, is described in [10, 9]. Here we will give a simple method for obtaining the sag
17 magnitude. For type D the magnitude is the rms value of the lowest of the three voltages. For type C it is the rms value of the difference between the two lowest voltages (in pu). For type A, either definition holds. This leads to the following way of determining the characteristic magnitude of a three-phase sag from the voltages measured at the equipment terminals, : obtain the three voltages as a function of time: Ve(t), Vt,(t) and ~(t). determine the zero-sequence voltage: Vo(t) = Ve(t) + Vo(t) + ~(t) 3 (22) determine the remaining voltages after subtracting the zero sequence voltage: V;(t) = Ve(t) - Vo(t) V;(t) = Vi,(t) - Vo(t) V:(t) = ~(t) - Vo(t) determine the rms values of the voltages V;, V; and V;. determine the three voltage differences: sr () _ Ve(t) - Vi,(t) Veo t - v'3 T ( ) _ Vi,(t) - ~(t) Vbe t - v'3 sr () _ ~(t) - Ve(t) Veil t - v'3 (23) (24) determine the rms values of the voltages Veo, "'be and Vee. the magnitude of the three-phase sag is the lowest of the six rms values. This procedure has been applied to the voltage sag shown in Fig. 1. At first the rms values have been determined for the three measured phase-to-ground voltages, resulting in Fig. 17. The rms value has been determined each half cycle over the preceding 128 samples (one half-cycle). We see the behaviour typical for a single-phase fault on an overhead feeder: a drop in voltage in one phase and a rise in voltage in the two remaining voltages. After subtraction of the zero-sequence component, all three voltages show a drop in magnitude. This is shown in Fig. 18. The phase-to-ground voltages minus the zerosequence are indicated through solid lines, the phase-tophase voltages through dotted lines. The lowest rms value 1.4,r----~-~-- -~ 1.2 :> Co s.8 ""s- C> Tmeitcydes 5 6 Fig. 17. RMS values of the pha.se-to-ground voltages for the sag shown in Fig :> Co so.6 C> J!! "" '0 > O: ~---.J Tmeitcydes Fig. 18. RMS values of pbese-to-phese (dashed lines) and phase-to-neutral voltages after removal of the zero-sequence component (solid lines) for the sag shown in Fig. 1. is reached for a phase-to-ground voltage, which indicates a sag of type D. This is not surprising as the original sag was of type B (albeit with a larger than normal zero-sequence component). After removal of the sero-sequence voltage a sag of type D remains. The characteristic magnitude of this three-phase unbalanced sag is 63%. V. REFERENCES [1] The Excel file contaiding these measwements was obtained from a web-site with test data set up R.L. Morgan for EEE project group P1159.2, with the aim of testing methods of sag characterization. [2] EEE Recommended Practice for monitoring electric power quality, EEE Std New York: EEE, [3] Electromagnetic Compatibility (EMC). Part 2: Environment. Section 2: Compatibility levels for low-frequency conducted disturbances and signalljng in public lowvoltage power supply systems. EC Std.61QOO.2-2. lee
18 standards can be obtained from EC, P.O. Box 131, 1211 Geneva, Switzerland. [4] Measurement guide for voltage characteristics, UN PEDE report Ren UNPEDE documents can be obtained from UNPEDE 28, rue Jacques bert, paris Cedex 17, France. [5] Protective relays application guide. GEe Alsthom Protection & Control, Stafford, UK. [6] R. Wilkins, M.H.J. Bollen, The role of current limiting fuses in power quality improvement, 3rd nt Conf on Power Quality: end-use applications and perspectives, October 1994, Amsterdam. KEMA, Arnhem, The Netherlands, [7] Lj. Kojovic, S. Hassler, Application of current limiting fuses in distribution systems for improved power quality and protection, EEE Transactions on Power Delivery, Vol.12, no.2, April 1997, p [8] M.H.J. Bollen, The influence of motor reacceleration on voltage sags, EEE Transactions on ndustry Applications, Vo1.31 (1995), pp [9] L.D. Zhang, M.H.J. Bollen, A method for characterizing unbalanced voltage dips (sags) with symmetrical components, EEE Power Engineering Review, July 1998, pp [10] L.D. Zhang, M.H.J. Bollen, Characteristics of voltage dips (sags), EEE Transactions on Power Delivery, in print.
19 O~'-- ~ 2. Equipm.ent Behaviour Math H J Bollen, Senior Member, EEE Department of Electric Power Engineering Chalmers University of Technology, Gothenburg, Sweden. VOLTAGE TOLERANCE A. Voltage..Tolerance Curves Generally speaking electrical equipment prefers a constant rms voltage. That is what the equipment has been designed for and that is what it will operate best for. The other extreme is no voltage for a longer period of time. n that case the equipment will simply completely stop operating. No piece of electrical equipment can operate indefinitely without electricity. Some equipment will stop within one second like most desktop computers. Other equipment can withstand a supply interruption much longer, like a lap-top computer, which is designed to withstand (intentional) power interruptions. But even a lap-top computer's battery only contains enough energy for typically a few hours. For each piece of equipment it is possible to determine how long it will continue to operate after the supply becomes interrupted. A rather simple test would give the answer. The same test can be done for a voltage of 10% (of nominal), for a voltage of 20%, etc. f the voltage becomes high enough, the equipment will be able to operate on it indefinitely. Connecting the points obtained by performing these tests, results in the so-called "voltage-tolerance curve". An example of a voltage-tolerance curve is shown in Fig. 1. Strictly speaking one can claim that this is not a voltage-tolerance curve, but a requirement for the voltage tolerance; in this case the voltage tolerance of power stations connected to the Swedish National Grid. One could refer to this as a voltage-tolerance requirement and to the result of equipment tests as a voltage-tolerance performance. We will refer to both the measured curve as well as the required curve, as a voltage-tolerance curve. t will be clear from the context whether one refers to the voltage-tolerance requirement or the voltage-tolerance performance. We see in Fig. 1 that a Swedish power station has to withstand a voltage sag down to 25% of nominal for 250 milliseconds, and that the power station should be able to operate normally for any voltage of 95% or higher [1]. The concept of voltage-tolerance curve was introduced in 1978 by Thomas Key [2]. When studying the reliability of the power supply to military installations, he realised!1:: ) _-_-_-_-_-_-_~-_-_-_-_-_-_-_-_~-_-_-_-_-_-_-_~~-_-_-_ $..----r Oms 2SOms B. Ezamples of Voltage Tolerance 7SOms _ DlJl"atiOJl Fig. 1. Voltage-tolerance requirement for power stations in Sweden, dataobtained from [1]. that voltage sags and their resulting tripping of mainframe computers could be a greater threat than complete interruptions of the supply. He therefore contacted some manufacturers for their design criteriaand performed some tests himself. The resulting voltage-tolerance curve became known as the "CBEMA curve" several years later. An overview of the voltage tolerance of currently available equipment is presented in Table. With these data, as well as with the voltage-tolerance data presented in the rest of this chapter, one should realise that the values not necessarily apply to a specific piece of equipment. As an example, Table gives for motor starters a voltage tolerance between 20 ms, 60% and 80 ~,40%. U$lg this range to design an installation could be rather dangerous; using the average value even more. These values are only meant to give the reader an impression of the sensitivity of equipment to voltage sags, not to serve as a database for those designing installations. For the time being it is still necessary to determine the voltage tolerance ofeach critical part of an installation or to subject the whole installation to a test. n future, voltage-tolerance requirements might make thejob easier. These requirements can either be set by standards-setting bodies, similar to the
20 lee standards for harmonic currents, or be part of industry guidelines. The former appears to be the lee road, where the latter is the way in which the EEE and NEMA are moving. The values in Table should be read as follows. A voltage tolerance of (a ms, b%) implies that the equipment can tolerate a zero voltage of a ms and a voltage of b% of nominal indefinitely. Any sag longer than a ms and deeper than b% will lead to tripping or mal-function of the equipment. n other words: the equipment voltagetolerance curve is rectangular with a "knee" at (a ms, b%). c. Voltage- Tolerance Tests The only standard that describes how to obtain voltage tolerance of equipment is EC [4]. This standard does however not mention the term voltage-tolerance curve. nstead it defines a number of preferred magnitudes and durations of sags for which the equipment has to be tested. (Note: The standard uses the term "test levels", which refers to the remaining voltage during the sag. ) The equipment does not need to be tested for all these values, but one or more of the magnitudes and durations may be chosen. The preferred magnitudes and duration are shown in Table. The lee standard also allows the choice of one sag duration outside of the list of preferred durations. TABLE PREFERRED MAGNTUDES AND DURATON FOR EQUP MENT MMUNTY TESTNG ACCORDNG TO EC-6100o 4-11 [4]. Duration in cycles of 50 Hz magnitude % 40% 0% The standard in its current form, does not set any voltage-tolerance requirements. t only defines the way in which the voltage tolerance of equipment shall be obtained. The standard also does not mention any specific testing method. The only requirement is that the transition from the pre-sag to the during-sag and from the duringsag to the post-sag voltage is instantaneous. An informative appendix to the standard does however mention two examples of test set-ups: Use a transformer with two output voltages. Make one output voltage equal to 100%and the other to the required during-sag magnitude value. Switch very fast between the two outputs. Generate the sag by using a wave-form generator in cascade with a power amplifier. Both methods are only aimed at testing one piece of equipment at a time. To make a whole installation tolerate a certain voltage sag, each piece needs to be tested hoping that their interconnection does not cause any unexpected deterioration in performance. A method for testing a whole installation is presented in [5]. A threephase diesel generator is used to power the installation under test. A voltage sag is made by reducing the field voltage. t takes about two cycles for the ac voltage to drop after a drop in field voltage, so that this method can only be used for sags of 5 cycles and longer. For equipment testing this is no serious limitation.. COMPUTERS AND CONSUMER ELECTRONCS The power supply of a computer, and of most consumerelectronics equipment normally consists of a diode rectifier followed by some kind ofelectronic voltage regulator. The power supply ofall these low-power electronic devices is similar and so is their sensitivity to voltage sags. What is different are the consequences of a sag-induced trip. A television will show a black screen for up to a few seconds; a compact disc player will reset itself and start from the beginning of the disc, or just wait for a new command. But the trip of the process-control computer ofa chemical plant leads to a complete restart of the plant taking up to several days, plus sometimes a very dangerous situation. A. Estimation of Computer Voltage Tolerance A simplified configuration ofthe power supply to a computer is shown in Fig. 2. The capacitor connected to the non-regulated de bus reduces the voltage ripple at the input of the voltage regulator. The voltage regulator transforms a Don-regulated de voltage of a few hundred volts into a regulated. dc voltage of the order of 10 V. f the ac voltage drops, the voltage on dc side of the rectifier (the Don-regulated de voltage) drops. The voltage regulator is able to keep its output voltage constant over a certain range of input voltage. f the vo~tage at the de bus becomes too low the regulated de voltage willalso start to drop and ultimately errors willoccur in the digital electronics. Fig. 3 shows what happens with the de voltage during a sag. When the rms voltage drops suddenly, the maximum ac voltage remains less than the de voltage for the whole cycle. Thus the capacitor continues to discharge. This discharging goes on for a number of cycles, until the capacitor voltage drops below the maximum of the ac voltage. After that a new equilibrium will be reached. t is important to realise that the discharging of the capacitor is only determined by the load connected to the
21 Table : VOLTAGE-TOLERANCE RANGES OF VAROUS EQUPMENT PRESENTLY N USE, AS OBTANED FROM EEE STD.1346 [3]. equipment voltage tolerance upper range average lower range PLe 20 ms, 75% 260 DS, 60% 620 DS, 45% PLC input card 20 ms, 80% 40 DS, 55% 40 DS, 30% 5 h.p. ac drive 30 ms, 80% 50 DS, 75% 80 DS, 60% ac control relay 10 ms, 75% 20 DS, 65% 30 DS, 60% motor starter 20 ms, 60% 50 DS, 50% 80 ms, 40% personal computer 30 ms, 80% 50 ms, 60% 70 ms, 50% novae J1011-regulated de VOltage voltage comroller regulated de voltage 1 de bus, not by the ac voltage. Thus all sags will eause the same initial decay in de voltage. But the duration of the decay is determined by the magnitude of the sag. The deeper the sag the longer it takes before the capacitor has discharged enough to enable charging from the supply. As long as the absolute value of the ac voltage is less than the dc bus voltage, all electrical energy for the load comes from the energy stored in the capacitor. For a capacitance C. the stored energy, a time t after sag initiation, is equal to!{cv(t)}2, with Vet) the de bus voltage. This energy is equal to the energy at sag initiation minus the energy taken by the load: (1) Fig. 2. Computer power supply. with Vo the dc bus voltage at sag initiation and P the loading of the de bus. Expression (1) holds as long as the de bus voltage is higher than the absolute value ofthe ac voltage, thus during the initial decay period in Fig. 3. Solving (1) gives an expression for the voltage during this initial decay period. ~, ~ ~ :',: ':,: 0.8 :: : ~ :: : ~,'.,1, ","1'1",'", ",,"1'1 11 G)O.6,:::: ::: ~ :::::::: '"". " l5 :: :1.: :;1 :.,~ :: :: ': :: :: > 0.4 :: :: :: :: ~ : ~ : ~ : ~ ~ : : : ' :::::::;:: :: :: :: :::::::::,: 'f: :, :::::: :: :' :: " " '."1"" ' 1,'"",1,1, " " fl " " ~ ~ ~ :::: :: :' ~, :: ::.: :: :: :: ~ ~ : :: :: 0.2 ~ ~ : :: :: :: :: :: :: :; :: :: :: J : : ~ ~ ~,\,\, ~ \ ", ~.., ' " ~ "' ".., l i,, t \ t, t, f o " r.' \ f, o Tme in cycles Fig. 3. Effect of a voltage sag on de bus voltage for a single-phase rectifier: absolute value of the ae voltage (dashed line) and de bus voltage (solid line). v=jvl- 2%t The moment the de bus voltage drops below the absolute value of the ac voltage, the normal operation mode of the rectifier takes over and the de bus voltage remains constant, apart from the unavoidable de voltage ripple. From (2) we ean calculate how long it takes for the de bus voltage to decay to its new steady-state value. But first we obtain an expression for the de voltage ripple e: PT e= 2V02C with T one cycle of the fundamental frequency. The de ripple is defined as the difference between the maximum and the minimum value of the de voltage. The discharge period of the capacitor is assumed to be equal to one halfcycle. (2) (3)
22 nserting the expression for the de voltage ripple (3) in (2) gives an expression for the dc voltage during the discharge period, thus during the initial cycles of a voltage sag: V(t) = VO)l - 4!f (4) with 4: the number of cycles elapsed since sag initiation. The larger the de voltage ripple in normal operation, the faster the de voltage drops during a sag. As long as the de bus voltage remains above the minimum operating voltage of the voltage regulator, the computer will continue to operate normally. But when the de bus voltage drops below this value, the computer will trip or maloperate. The de bus voltage at which the equipment actually trips depends on its design: varying between 50% and 90% de voltage, sometimes with add itional time delay. The time it takes for the voltage to reach a level V can be found from the following expression: Fig. 4. Voltage-tolerance curve of a computer: an example of a rectangular voltage-tolerance curve. 1- (~)2 t = 0 T (5) 4 When the minimum de bus voltage, is known, (5) can be used to calculate how long it will take before tripping. Or in other words: what ds the maximum sag duration that the equipment can tolerate. Table gives some values of voltage tolerance, calculated this way. TABLE VOLTAGE TOLERANCE OF COMPUTERS AND CONSUMER ELECTRONCS EQUPMENT. min. dc bus voltage 5% de ripple 1% de ripple 0 5 cycles 25 cycles 50% 4 cycles 19 cycles 70% 2.5 cycles 13 cycles 90% 1 cycle 5 cycles Thus, if a computer trips at 50% dc bus voltage, and as the normal operation de voltage ripple is 5%, a sag of less than 4 cycles in duration will not cause a mal-trip. Any sag below 50% for more than 4 cycles will trip the computer. Of course a sag to a voltage above 50% can be withstood permanently by this computer. This results in what is called a "rectangular voltage tolerance curve", shown in Fig. 4.. VOLTAGE-TOLERANCE REQUREMENTS: AND TC CBEMA OO ~ : eo 20 CW1A r ,/ ; nc.--~ ~ :, -,' ~/.. A i J : 0! 0 0! : : _ lceo loltohzlcycln Fig. 5. Voltage-tolerance requirements for computing equipment: CBEMA curve (solid line) and "revised CBEMA curve" (dashed line). As mentioned before, the first modern voltage-tolerance curve was introduced for mainframe computers [2]. This
23 variable SO Hz de link f~ueney controlsystem Fig. 6. Typical ac drive configuration. curve is shown as a solid line in Fig. 5. We see that its shape does not correspond with the shape of the curves shown in Fig. 4. This can be understood if one realises that these figures give the voltage-tolerance performance for one piece of equipment at a time, where Fig. 5 is a voltage-tolerance requirement for a whole range of equipment. The requirement for the voltage-tolerance curves of equipment is that they should all be above the voltage-tolerance requirement. The curve shown in Fig. 5 became well-known when the Computer Business Equipment Manufacturers Association (CBEMA) started to use the curve as a recommendation for its members. The curve was subsequently taken up in an EEE standard [6] and started to become a kind of reference for equipment voltage tolerance as well as for severity of voltage sags. A number of software packages for analysing power quality data plot the magnitude and duration of the sags recorded during a certain period, against the CBEMA curve. The CBEMA curve has become a de-facto standard against which the voltage tolerance of equipment is compared. The CBEMA curve also contains a voltage tolerance part for overvoltages, which is not reproduced in Fig. 5. Recently a so-called "revised CBEMA curve" has been adopted by the nformation Technology ndustry Council (TC) which is the successor of CBEMA. The new curve is therefore also referred to as the TC curve. The revised CBEMA curve is shown as a dashed line in Fig. 5. V. ADJUSTABLE-SPEED AC DRVES Adjustable-speed drives (ASD's) are fed either through a three-phase diode rectifier, or through a three-phase controlled rectifier. Generally speaking, the first type is found in ac motor drives, the second in de drives and in large ac drives. The configuration of most ac drives up is as shown in Fig. 6. The three at voltages are fed to a threephase diode rectifier. The output voltage of the rectifier is smoothened by means 01 a dc capacitor. The inductance present in some drives aims at smoothening the de link current and so reduce the harmonic distortion in the current taken from the supply. Here we will only consider the effect of the capacitor. The de voltage is inverted to an ac voltage of variable frequency and magnitude. The motor speed is controlled through the magnitude and frequency of the output voltage of the VSC. For ac motors, the rotational speed is mainly determined by the frequency of the stator voltages. Thus by changing the frequency an easy method of speed control is obtained.. Adjustable-speed drives are often very sensitive to voltage sags. Tripping of adjustable-speed drives occurs due to several phenomena: The drive controller or protection will detect the sudden change in operating conditions and trip the drive to prevent damage to the power electronic components. Tripping of the drive is mainly on dc bus undervoltage, sometimes on ac bus undervoltage, on de voltage ripple, or on missing pulses through the rectifier diodes. The increased ac currents during the sag or the postsag overcurrents charging the de capacitorwillcause an overcurrent trip or blowing of fuses protecting the power electronics components. This effect is normally considered in the drive design, by setting the de bus undervoltage protection such that the drive will trip before a dangerous overcurrent can occur. The process driven by the motor will not be able to tolerate the drop in speed or the torque variations due to the sag. During an unbalanced sag, the currents through the rectifier diodes become unbalanced as well. Already a small unbalance in voltage can lead to a large unbalance in current, with one current twice as large as number and another current zero. The large current may lead to component damage and tripping of the overcurrent protection. Most of the existing drives still trip on de bus undervoltage. Some of the more modem drives restart immediately when the voltage comes back; others restart after a certain delay time or only after a manual restart. The various automatic restart options are only relevant when the process tolerates a certain level of speed and torque variations. A. Balanced Sags The effect ofa balanced sag on a three-phase rectifier is that the maximumac voltage no longer exceeds the de bus
24 100 ~'''' '<~<,... " "" "" " """\ \ \ <, \ \,,,,, <,... Fig. 7. Voltage tolerance of adjustable-speed drives for different capacitor sizes. Solid line: 75,."F/kW; dashed line 165 p,f/kw; dotted line: 360,."F/kW Maximum timein ms voltage. Thus the capacitor continues to discharge. This is the same effect as discussed earlier for the single-phase rectifier. The adjustable-speed drive typically trips due to an active intervention by the undervoltage protection when the de bus voltage reaches a certain value Vmin. As long as the ac voltage does not drop below this value the drive will not trip. For sags below this value, (2) can be used to calculate the time it takes for the de bus voltage to reach the value Vmin: _ c {2 2} t - 2P va - Vm in C - 2Ptmc:: YO Vm in 80 (6) The amount of capacitance connected to the de bus of modern adjustable-speed drives is between 75 and 360 p.f/kw [7]. Fig. 7 plots the relation between the undervoltage setting for the de bus (vertical) and the timeto-trip (horizontal scale), for three values of the ratio ~ tween de bus capacitance and motor size in (6). Even for very low values of the setting of the de bus undervoltage, the drive will trip within a few cycles. t is obvious that the amount of capacitance normally connected to the dc bus of an adjustable-speed drive, is not enough to offer any serious immunity against voltage sags. The immunity can be improved by adding more capacitance to the de bus. To calculate the amount of capacitance needed for a given voltage tolerance, consider (2) and assume V (t mcz ) =Vmin, leading to (7) This expression gives the amount ofde bus capacitance needed to obtain a voltage tolerance of Vmin, t m 4:1: (i.e. the drive trips when the voltage drops below Vmin for longer than tma:). As shown e.g, in [8], making a drive ride through three-phase balanced sags of looms duration would require a very large amount of capacitance or any other energy source. Adding this is not considered feasible. 1) Examples: Consider the example discussed in [8]: a drive with nominal de bus voltage Va =.620V and de bus capacitance C =4400pF powers an ac motor taking an active power P =86kW. The drive trips when the de bus voltage drops below Vmin = 560V. The time-to-trip obtained from (6) is: _ 4400j.tF 2 _ t - 2 x 86kW x (620V) ms (8) The minimum ac bus voltage for which the drive will not trip is ~~g =90%. This drive will thus trip within 2 milliseconds when the ac bus voltage drops below 90%. Suppose that it would be possible to reduce the setting of the undervoltage protection of the de bus, to 310 V (50%). That would enormously reduce the number of spurious trips of the drive, because the number of sags below 50% is only a small fraction of the number of sags below 90%. t would reduce the number of sags by about a factor of 10. But the time-to-trip for sags below 50% remains very short. Filling in Vmin = 310V in 286kW x 500ms C =(620V)2 _ (560V)2 =1.12F (9) This is a serious amount of capacitance, and probably Dot worth the investment. B. Three-Phase Unbalanced Sags 1) Effect of Characteristic Magnitude: For a three-phase unbalanced sag of type C or type D, different phases have different voltage drops. Some phase voltages also show a jump in phase angle. The behaviour of the dc bus voltage, and thus of the drive, is completely different from the behavior for a balanced sag. The de bus voltage has been calculated for three capacitor sizes: No capacitor present (6) gives t = 7.38ms. n fact, by substituting. Vmin =0 we can see that the capacitance is completely empty 9.83 ms after sag initiation, assuming that the ac voltage dropped to zero and that the load remains of constant-power type. We can conclude that no matter how good the inverter, the drive will trip for any voltage interruption longer than 10 DS. We want to make this drive tolerate sags with durations up to 500 DS. The undervoltage setting remainsat 560 V (90% ofnominal). The capacitance needed to achieve this is obtained from (7) with t m 4:1: = 500ms and Vmin = 560V:
25 fo:~ c -1 o fo:~ c -1 o Tunein c:ydes Tme in c:ydes Fig. 8. Voltage during a three-phase unbalancedsag of type C: ac side voltage (top) and dc side voltages (bottom) for large capacitance (solid line), small capacitance (dashed line) and no capacitance (dotted line). Small capacitor: initial rate of decay of the voltage is 75% per cycle. For a 620 V drive this corresponds to 57.8 pfjkw. Large capacitor: initial rate of decay of the voltage is 10% per cycle. For a 620 V drive this corresponds to 433 pfjkw. Note that "small capacitor" and "large capacitor" are only slightly outside of the range of capacitor values currently used in ac drives. The upper plot in Fig. 8 shows the voltages at the drive terminals for a sag of type C. Note that these are the line-to-line voltages, as the rectifier is connected in delta. The voltage drops in two phases, while the sinewaves move towards each other. The third phase does not drop in magnitude. Shown is a sag with a characteristic magnitude of 50%and zero characteristic phase-angle jump. The voltage magnitudes at the drive terminals are 66.1% (in two phases) and 100% (in the third phase); phase-angle jumps are -19.1, and zero. The effect of this three-phase unbalanced sag on the de bus voltage is shown in the lower plot of Fig. 8. Even for the small capacitance, the de bus voltage does not drop below 70%. For the large capacitance, the de bus voltage hardly deviates from its normal operating value. n the latter case, the drive will never trip during a sag of type C, no matter how low the characteristic magnitude of the sag. As one phase remains at its pre-event value, the three-phase rectifier simply operates as a single-phase rectifier during the voltage sag. The voltages on ac side and dc side of the rectifier are shown in Fig. 9 for a three-phase unbalanced sag of type D with characteristic magnitude 50% and no characteristic phase-angle jump. The magnitude of the voltages at the drive terminals is 50%, 90.14%, and 90.14%, with phase-angle jumps zero, and Fig. 9. Voltage duringa three-phase unbalancedsag of type D: ac side voltage (top) and dc side voltages (bottom) for large capacitance (solid line), small capacitance (dashed line) and no capacitance (dotted line). For a sag of type D, all three phases drop in voltage, thus there is no longer a phase that can keep up the de bus voltage. Fortunately the drop in voltage is moderate for two of the three phases. Even for a terminal fault where the voltage in one phase drops to zero, the voltage in the other two phases does not drop below ~v'3=86%. The top curve in Fig. 9 shows how one phase drops significantly in voltage. The other two phases drop less and their maxima move away from each other. n the bottom curve of Fig. 9 the effect of this on the de bus voltage is shown. For not too small values of the de bus capacitance, the de bus voltage reaches a value slightly below the peak value of the voltagein the two phases with the moderate drop. Again the effect of the sag on the dc bus voltage, and thus on the motor speed and torque, is much less than for a balanced sag. Fig. 10 shows the influence of the capacitor size on the minimum de bus voltage for a type C sag. The de bus undervoltage protection normally uses this value as a trip criterion. There is thus a direct relation between the minimum dc bus voltage and the voltage tolerance of the drive. t follows from the figure that the presence of sufficient capacitance makes that the de bus voltage never drops below a certain value, no matter how deep the sag at ac side is. This is obviously due to the one phase of the ac voltage which stays at its normal value. For large capacitance, the drop in dc bus voltage is very small. The smaller the capacitance, the more the drop in de bus voltage. The minimum de bus voltage for a sag of type D, is shown in Fig. 11. Comparison with Fig. 10 for type C, reveals that for a type D sagthe minimum dc bus voltage continues to drop with lower characteristic magnitude, even with large capacitor size. But again an increase in capacitance can significantly reduce the voltage drop at the de bus. For a drive with large capacitance, the de bus voltage does not drop below 80%, even for the deepest
26 5.0.8.E oc>.. '50.6 >., ::>.c.g0.4 E. ~0.2..: Olarac:teristic magnitude in po Fig. 10. Minimum dc bus voltage as a function of the characteristic magnitude of three-phase unbalanced sags of type C. Solid line: large capacitance; dashed line: small capacitance; dotted line: no capacitance connected to the de bus. ---_... - ;; , <->: /.... ~.8.~.~.~... ~ _... -_ ~0.6. os.go....5 ~0.2.' os oc>.. ~0.6., ::>.c.g0.4 E ::>.5 ~ t :': ::.~.-. :.~.7.."":..:. :~ :: - - ~ '"::, ~ ~ Olaraceristie magnitude in pu Fig. 12. Minimum de bus voltage for three-phase unbalancedsagsof type C, for threecapacitorsizes: large (top); small (middle); and none (bottom) and three values of theminimumpn-factol": 1.0 (solidline); 0.95 (dashed line); 0.90 (dotted line). 0 o Charadetislic magnilude inpo Fig. 11. Minimum dc bus voltage as a function of the characteristic magnitude of three-phase unbalanced sags of type D. Solid line: large capacitance; dashed line: small capacitance; dotted line: no capacitance. unbalanced sag. C. Effect of the PN-Factor To assess the effect of the PN-factor, as introduced before, the calculations were repeated for non-unity PNfactor. Note that a smaller value of the PN-factor indicates the presence of a serious amount of induction motor load near the place where the sag is measured. Fig. 12 and 13 show the minimum de bus voltage for sags of type C and type D. The results are given for three capacitor sizes (no capacitor, small capacitor and large capacitor, like before) and for three values of the PNfactor. t is assumed that the PN-factor gets closer to one when the characteristic magnitude gets closer to one. For the solid curves it was assumed that F = ; for the dashed curve the minimum PN-factor was 0.95, so that F = Vj the relation used for the dotted curve is: F = O.10V. Fig. 13. Minimum dc bus voltage fol" three-phase unbalancedsags of type D, fol" three capacitorsizes (top: large; middle: small; bottom: DOne) and three values of the minimum PN-factor (solid : 1.0; dashed: 0.95; dotted: 0.90).
27 From the figures it follows that a non-unity PN-factor makes the sag more severe as far as the minimum de bus voltage is concerned. For the no capacitor case the PNfactor does not affect the minimum de bus voltage. Further calculations have shown that the same holds for the average and rms de bus voltage. The de voltage ripple becomes less for non-unity PN-factor. t was concluded before that by connecting a large capacitance to the de bus, the de bus voltage could be prevented from dropping below 80% during unbalanced sags. Considering the effect of the PN-factor the dc bus voltage drops somewhat more, but it still does not become less than 77%. To make the electrical part of the drive tolerate all unbalanced sags, the dc bus undervoltage protection should be set at a value less than 77%. Of course the dimensioning of the rest of the electronics equipment should be such that no damage occurs for de bus voltages down to 77%. Alternatively a larger capacitance may be chosen, to bring the voltage back above 80%. D. Motor Deceleration 1) Balanced Sags: Most ac adjustable-speed drives trip on de bus undervoltage. After the tripping of the drive, the induction motor will simply continue to slow down until its speed gets out of the range acceptable for the process. n case the electrical part of the drive is able to tolerate the sag, the drop in system voltage will cause a drop in voltage at the motor terminals. n this section it will be considered that the electrical part of the drive continues to operate during the sag. This is a somewhat hypothetical case for most existing drives, but may be a usefulexercise when deciding about a drive with improved ridethrough. For balanced sags all three phase voltages drop the same amount. Assume that the voltages at the motor terminals are equal to the supply voltages (in p.u.], thus that the sag at the motor terminals is exactly the same as the sag at the rectifier terminals. The de bus capacitor will somewhat delay the drop in voltage at the de bus and thus at the motor terminals, but saw that this effect is relatively small. The voltage drop at the motor terminals causes a drop in torque and thus a drop in speed. This drop in speed can disrupt the production process requiring an intervention by the process control. The speed of a motor is governed by the energy balance: ~ (~Jw2) =W(Td-Tmec:hl (10) where J is the mechanical moment of motor plus load, w is the motor speed (in radians per second), Tel is the sag durationin ms Fig. 14. Voltage-tolerance curves for ac drives where the slip increase is the limiting factor. electrical torque supplied to the motor, Tmech is the mechanical load torque. Assume that the motor is running at steady state for a voltage of 1 pu and that the electrical torque Tel is proportional to the square of the voltage. The inertia constant H of the motor-load combination is introduced as the ratio of the kinetic energy and the mechanical output power: ljw 2 H= 2 WOTmech The slip is defined as follows: wo-w s=-- Wo (11) (12) From (10), (11) and (12) an expression is obtained for the increase in slip due to a sag of duration at and magnitude V: ds -V 2 ~s = -~t = --~t dt 2H (13) Based on this expression, contours have been plotted in the magnitude-duration (V,at) plane connecting points with the same increase in slip. These curves are voltagetolerance curves for drives in which the slip increase is the limiting factor. The result in shown in Fig. 14 for an intertia constant of H = 0.96s. These curves should be read like any other voltage-tolerance curve, i.e. the drive will trip for any sag for which magnitude and duration are below the curve in the magnitude-duration plane. 2) Unbalanced Sags: The effect of three-phase unbalanced sags on the motor speed has been calculated under the assumption that the positive sequence voltage at the motor terminals is equal to the lds voltage at the de bus. The de bus rms voltages have been used to calculate the drop in motor speed according to (13). Voltage-tolerance
28 ceo..~ 70.. Co.5 60 'gsa 'E g' 4O ' E '" ~...,---_.-.", c 80./ : ~ / &! : ]. Ėọ. ~ 40 "' Sag dutation in ms Sag durationin ms 1000 Fig. 15. Voltage tolerance curves for sag type C, no capacitance connected to the dc bus. Fig. 17. Voltage tolerance curves for sag type C, maximum-pennissible slip increase: 1%, large (solid line), small (dashed), and no (dotted) capacitance. ~.. Co ceo.5 60.g 2 g,40 E ọ. "' sagduralicn i\ ms eoo 1000 Fig. 16. Voltage tolerance curves for sag type C, small capacitance connected to the dc bus. curves wereobtained like in Fig. 14. The results for type C sags are shown in Fig. 15,16 and 17. Fig. 15 and 16 present voltage-tolerance curves for different values of the maximum drop in speed which the load can tolerate, for no capacitance and for a small capacitance, respectively, present at the de bus. Even the small capacitor clear~y improves the drive's voltage tolerance. Below a certain characteristic magnitude of the sag, the rms value of the de bus voltage remains constant. This shows up as a vertical line in Fig. 16. Fig. 17 compares drives with large, small and no de bus capacitance for.a l<>a:d with a 1% permissible increase in slip. The capacitor SZe has a very significant influence on the drive performance. The large improvement in drive performance with capacitorsize, for type C sags is obviously related to theone phase of the ac supply which does not drop in voltage. For a large capacitance, this phase keeps up the supply vol~ age as ifalmost nothing happened. For type D sags, this effect is much smaller, as even the least-affected phases show a drop in voltage magnitude. Fig. 18 shows the influence of the capacitor size on the voltage tolerance for type D sags. The three curves on the left are for an increase in slip of 1%, the ones on the right for a _eo c: ~ s g.4q os E co.. "' "....i~ :,,~ :", i t.~, t: :. "i H ~: :. : :. :' ":, ;' ":. o _.... -:....." ",./... /',,,, Sag du2lion i\ ms 1000 Fig. 18. Voltage tolerance curves for sag type D, maximum-permissible slip increase: 1% and 10%, large (solid line), small (dashed), and no (dotted) capacitance connected to the dc bus. 10% increase. The improvement for the 1% load might look marginal, but one should realise that the majority of deep voltage sags has a duration around 100 ms. The large capacitance increases the voltage tolerance from 50 to 95 ms for a 50% sag magnitude. This will give a serious reduction in the number of equipment trips. 3) Effect ofthe PN-Factor: Voltage-tolerance curves have been determined as well for different values of the PNfactor. For type D sags the effect turned out to be very small. Fig. 19 shows the effect of the PN-factor on the voltage tolerance for type C sags. The case with a large capacitor and 1% slip increase was chosen: the solid line in Fig. 17. Solid, dashed and dotted lines again refer to minimum PN-factor values of 1.0, 0.95 and 0.9, respectively. The PN-factor significantly affects the voltage tolerance curve. E. Overview of Mitigation Methods for AC Drives Automatic Restart The most-commonly used mitigation method is to enable the operation of the in-
29 @.. Co ~---=;::::;:::===9...-;.;,..... _ 80 c:.s60 -e 3 ~ 40 E C>.. "' Sag dura1ion in lls 1000 Fig. 19. Voltage tolerance curve for sag type C, large capacitance, 1%slip increase, three values of the minimum PN-factor: 1.0 (solid line); 0.95 (dashed line); 0.90 (dotted line). verter, so that the motor no longer loads the drive. This prevents damagedue to overeurrents, overvoltages and torque oscillations. After the voltage recovers the drive is automatically restart. The disadvantage of this method is that the motor load slows down more than needed. When synchronous restart is used the drop in speed can be somewhat limited, but non-synchronous restart leads to very large drops in speed or even stand-still of the motor. An important requirement for this type of drives is that the controller remain on-line. Powering of the controllers during the sag can be from the de capacitor or from separate capacitors or batteries. Alternatively, one can use the kinetical energy of the mechanical load to power the de bus capacitor during a sag or interruption [9, 10, 11]. nstallingadditionalenergy Storage The voltage tolerance problem of drives is ultimately an energy problem. n many applications the motor will slowdown too much to maintain the process. This can be solved by adding additional capacitors or a battery block to the dc bus. Alsothe installation of a motor generator set feeding into the dc bus will give the required energy. A large amount of stored energy is needed to ensure tolerance against threephase sags and short interruptions. For sags due to single-phase and phase-to-phase faults, which are the most common ones, only a limited amount of stored energy is needed as at least one phase of the supply voltage remains at a high value. mproving the Rectifier The use of a diode rectifier is cheap but makes control of the de bus voltage impossible. The moment the ac voltage maximum drops below the de bus voltage, the rectifier stops supplying energy and it 's up to the capacitor to power the motor. Using a controlled recti- fier consisting of thyristors, like used in de drives, gives some control of the de bus voltage. When the ac bus voltage drops, the firing angle of the thyristors can be decreased to maintain the de bus voltage. For unbalanced sags different firing-angles are needed for the three phases which could make the control rather complicated. The disadvantage is that the control system takes a few cycles to react, and the firing-angle control makes the drive sensitive to phase-angle jumps. Another option is to usesome additional powerelectronics to draw additional current from the supply during the sag. A kind of power electronic current source is installed between the diode rectifier and the de bus capacitor. This current can be controlled in such a way that it keepsthe voltage at the de bus constant during a voltage sag [11, 12]. By using an GBT front-end, complete control of the dc voltage is possible. Algorithms have been proposed to keep the dc voltage constant for any unbalance, drop, or change in phase-angle in the ac voltages [13, 14, 15]. An additional advantage is that these GBT inverters enable a sinusoidal input current, solving a lot of the harmonic problems caused by adjustable-speed drive. The main limitation of all these methods is that they have a minimum operating voltage and will certainly not operate for an interruption. mproving the nverter nstead of controlling the de bus voltage, it is also possible to control the motor terminal voltage. Normally the speed controller assumes a constant de bus voltage and calculates the switching instants of the inverter from this. Wesaw earlier that the effect of this is that the de bus voltage is amplitude modulated on the desired motor terminal voltages. This effect can be compensated by considering the de bus voltage in the algorithms used to calculate the switching instants. V. OTHER SENSTVE LOAD A. Adjustable-Speed DC Drives DC drives have traditionally been much better suited for adjustable-speed operation than ac drives. The speed of ac motors is, in first approximation, proportional to the frequency of the voltage. The speed of de motors is proportional to the magnitude of the voltage. Magnitude has been much easier to vary than frequency. Even for modem drives, de motors are used when very precise speed or position control is needed.
30 Modem de drives consist of a three-phase controlled rectifier powering the armature winding, and the singlephase controlled or non-controlled rectifier for the field winding. The armature circuit seldom contains any capacitance, as the inductance of the armatureis high enough to keep the current constant. The field circuit is more resistive and thus needs some capacitance to prevent excessive current and torque ripples. The most sensitive part of the de drive is the threephase controlled rectifier. Most sags are unbalanced and thus associated with a phase-angle jump in at least one of the phases. The firing-angle control of the rectifier will be affected by this, and might even notice it as a missing pulse. The most likely reaction of the rectifier is to simply trip the drive. f the rectifier does not trip, the drop in armature voltage will cause a fast drop in armature current and thus in torque. Even a small drop in armature voltage can bring the torque down to zero, leading to a reduction in speed. As de drives are often used for speed-sensitive processes, this will in most cases not be tolerated. During three-phase unbalanced sags, the drop in armature voltage will differ from the drop in field voltage. This can lead to strange drive behaviour, including overspeed. Regenerative drives suffer commutationfailures when a sag occurs during regeneration. B. Directly Fed nduction Motors withstand the speed drop due to a sag. As deep sags are rare it can take a long time before such a problem is discovered. When the voltage recovers, the motor takes a high inrush current: first to build up the airgap field (the electrical inrush), next to reaccelerate the motor (the mechanical inrush). This inrush can cause a post-fault sag with a duration of one second or more, and lead to tripping of undervoltage and overcurrent relays. Again this problem is more severe for a weak supply, and can thus become a problem when the amount of motor load increases. For unbalanced sags the motor is subjected to a positive sequence as well as to a negative sequence voltage at the terminals. The negative sequence voltage causes a torque ripple and a large negative sequence current. Thephasecurrents are however still smaller than the starting currents, thus should not lead to process interruption. Many induction motors are protected by contactors. These tend to drop out when the voltage drops below 50% for more than one or two cycles. f no automatic reclosing is used, the motor load will be lost. Most reported induction motor trips are actually due to tripping of the contactor. Using de contactors will solve this problem. A directly-fed induction motor is normally rather insensitive to voltage sags, but there are a few phenomena that could lead to process interruption due to a sag. Deep sags lead to severe torque oscillations at sag commencement and when the voltage recovers. These could lead to damage to the motor or to process interruptions. The recovery torque gets more severe when the internal flux is out of phase with the supply voltage, thus when the sag is associated with a phase-angle jump. At ~ commencement the magnetic field will be driven out of the airgap. The associated transient causes an additional drop in speed for deep sags. During this period the motor contributes to the short-circuit current and somewhat mitigates the fault. When the voltage recovers, the airgap field has to be build up again. n weaker systems this can last up to 100 DS, during which the motor continues to slow down. This could become a problem in systems where the motorloadhas grown over theyears. Where in the past a voltage sag would not be a problem, now"suddenly" the process can no longer C.. Directly Fed Synchronous Motors A synchronous motor has similarproblems with voltage sags as an induction motor: overcurrents, torque oscillations and drop in speed. But a synchronous motor can actually loose synchronism with the supply. An induction motor is very likely able to reaccelerate again after the fault: it might take too long for the process, the current might be too high for the motor (or its protection), or the supply might be too weak, but at least it is in theory possible. When a synchronous motor loses synchronism it has to be stopped and the load has to be removed before it can be brought back to nominal speed again. D. Lighting Most lamps just flicker when a voltagesags occur. Somebody using the lamp will probably notice it, but it will not be considered as something serious. t is different when the lamp completely extinguishes and takes several minutes to recover. n industrial environments, in places where a large number of people are gathered, or with street lighting, this can lead to dangerous situations.
31 V. REFERENCES [1] Cigre Working Group 34.01, Reliable fault clearance and back-up protection, Final report August [2] T.S.Key, Diagnosing power-quality related computer problems, EEE Transactions on ndustry Applications, Vol.15 (1979), p [3] EEE Recommended Practice for evaluating electric powersystem compatibility with electronic process equipment, EEE Std [14] E.P. Wiechmann, J.R. Espinoza, J.L. Rodriguez, Compensated carrier PWM synchronization: A novel method to achieve self-regulation and AC unbalance compensation in AC fed converters, EEE Transactions on Power Electronics, vo1.7, no.2, April 1992, pp [15] P. Rioual, H. Pouliquen, J.-P. Louis, Regulation of a PWM rectifier in the unbalanced network state using a generalized model, EEE Transactions on Power Electronics, vol.11, no.3, May pp [4] Electromagnetic Compatibility (EMC), Part 4. Testing and measurement techniques, Section 11. Voltage dips, short interruptions and voltage variations immunity tests. EC Std.610OQ-4..11, leestandards can be obtained from rsc, P.O. Box 131, 1211 Geneva, Switzerland [5] E.R. Collins, RL. Morgan, A three-phase sag generator for testing industrial equipment, EEE Transactions on Power Delivery, vol.ll, no., January 1996, pp [6] EEE Recommended. practice for emergency and standby power systems for industrial and commercial applications (EEE Orange Book), EEE Std [7] E. Camm, Preventing nuisance tripping during overvoltages caused by capacitor switching, in: P.Pilay (editor) " Motor drive f power systems interactions", EEE industry Applications Society Tutorial Course, October [8] R.A. Epperley, F.L. Hoadley, R.W. Piefer, ConsideratioDS when applying ASD's in continuous processes, EEE Transactions on ndustry Applications, vol.33, no.2, MarCh/April 1997, pp [9] J. Holtz, W. Lotzhat, Controlled AC drives with ride-through capacity at power interruption, EEE Transactions on ndustry Applications, vol.30, no.5; September/October 1994; p [10] C. Pumar, J. Amantegui, J.R. Torrealday, C. Ugarte, A comparison between DC and AC drives as regards their behaviour in the presence of voltage dips: new techniques for reducing the susceptibility of AC drives, nt Conf on Electricity Distribution (CRED), 2-5 June 1997, Birmingham, UK, p.9/-5. nstitution of Electrical Engineers, London, UK,1997. [11] K.Benson, J.R.Chapman, Boost converters provide power dip ride-through for ac drives, Power Quality Assurance Magazine, JulyAugust [12] PQTN Brief No.34, Performance of an ASD ride-through device during voltage sags, EPR Peac, Knoxville, TN, May [13] L. Moran, P.D. Ziogas, G. Joos, Design aspects of synchronous PWM rectifier-inverter systems under unbalances input voltage conditions, EEE Transactions on ndustry Applications, vol.28, no.6, November/December 1992, pp
32 3. Stochastic Assessment of Voltage Sags Math H J Bollen, Senior Member, EEE Department of Electric Power Engineering Chalmers University of Technology, Gothenburg, Sweden. COMPATBLTY BETWEEN EQUPMENT AND SUPPLY Stochastic assessment of voltage sags is needed to find out whether a piece of equipment is compatible with the supply. A study of the worst-case scenario is not feasible as the worst case voltage disturbance is a very-long interruption. n some cases, a kind of "likely-worst-casescenario" is chosen, e.g. a fault close to the equipment terminals, cleared by the primary protection, not leading to an interruption. But that will not give any information about the likelihood of an equipment trip. To obtain information like that, a "stochastic compatibilityassessment" is required. Such a study typically consists of three steps: 1. Obtain system performance. nformation must be obtained on the expected number of voltage sags with different characteristics for the supply point. There are various ways to obtain this information: contacting the utility, monitoringthe supply for several months or years, or doing a stochastic prediction study. Both voltage sag monitoring and stochastic prediction will de discussed in detail in this chapter. 2. Obtain equipment voltage tolerance. nformation has to beobtained on the behaviour of the piece of equipment for various voltage sags. This information can be obtained from the equipment manufacturer, by doing equipment tests, or simply by taking typical values for the voltage tolerance. 3. Determine expected impact. Tthe two types of information are available in an appropriate format, it is possible to estimate how often the piece of equipment is expected to trip per year, and what the (e.g. financial) impact of that will be. Based on the outcome of this study one can decide to opt for a better supply, for better equipment or to be satisfied with the situation. An example of a stochastic compatibility assessment will be given, based. on Fig. 1. The aim of the study of to compare two supply alternatives and two equipment :120 >- &100 C#) Q') :80 "0 ~ 60 '\ E "- :! 40 " ~ Fig. 1. Comparison of two supply alternatives (solid curve: supply, dashed curve: supply n) and two equipment tolerances (solid vertical line: device A, dashed line: device B). tolerances. The two supply alternatives are indicated in Fig. 1 through the expected number of sagsas a function of the sag severity: supply is indicated through a solid line; supply through a dashed line. We further assume the following costs to be associated with the two supply alternatives and the two devices (in arbitrary units): supply supply device A device B 200 units 500 units 100 units 200 units We also assume that the costs of an equipment trip are 10 units. From Fig. 1, one can read the number of spurious trips per year, for each of the four design options, at the intersection between the supply curve and the device (vertical) line. For device A and supply we find 72.6 spurious equipment trips per year, etc. The results are shown in Table. Knowing the number of trips per year, the annual costs of each of the four design options, and the costs per spurious trip, it is easy to calculate the total annual costs. For the combination of device A and supply these costs are: 72.6 x =1026, t ~o so Severity ofthe sag
33 TABLE NUMBER OF SPUROUS TRPS PER YEAR FOR FOUR DE SGN ALTERNATVES supply supply device A device B The results for the four design options are shown in Table. From this table it follows that the combination of supply and device B has the lowest annual costs. TABLE TOTAL COSTS PER YEAR FOR FOUR DESGN ALTERNA TVES supply supply device A device B n practical cases, two additional problems have to be solved before the actual comparison can be made. At first one needs to obtain the data, both about the supply performance and about the equipment voltage tolerance. Methods for obtaining the equipment voltage tolerance have been discussed in part 2 of this tutorial. Methods for obtaining the system performance are discussed further on in this part. For obtaining the data, a customer often needs co-operation from the utility and from the equipment manufacturer. The second problem which has to be solved, is the presentation of the data. System performance and equipment immunity are normally not one-dimensional, as suggested in the above example. We already saw that for voltage sags both magnitude and duration playarole, and possibly also unbalance and phaseangle jump. The data has to be presented in such a way that a compatibility study can be made. Some suggestions for this are given in the next section.. PRESENTATON OF RESULTS: VOLTAGE SAG Co-ORDNATON CHART Fig. 3. Two-dimensional bar-ehart of the sag density function for the data shown in Table m. This is done in Table for data obtained from a large power quality survey [1]. Each element in the table gives the number of events with magnitude and duration within a certain range; e.g. magnitude between 40 and 50% and duration between 400 and 600 DS. Each element gives the density of sags in that magnitude and duration range, hence the terms"sag density table" and "sag density function". The sag density function is typically presented as a barchart. This is done in Fig. 3 for thedata shown in Table. The length of each bar is now proportional to the number of sags in the corresponding range. The bar chart is easier to get an impression of the distribution of the sag characteristics, but it is less useful to get numerical values. n this case we see from Fig. 3 that the.majority of sags has a magnitude above 80% and a duration less than 200 ms. There is also a concentration of short interruptions with durations of 800 ms and over. A. The SaJtter Diagram When the supply is monitored for a certain period of time, a number of sags will occur. Each sag can be characterised with its own magnitude and duration and be plotted as a point in the magnitude duration plane. An exampleof a resulting scatter diagram is shown in Fig. 2. The scatter diagram is obtained from one year ofmonitoring at an industrial site. For a large power quality survey, the scatter diagrams of all the sites can be merged. B. The Sag Density Table A straightforward way of quantifying the number of sags is through a table with magnitudeand duration ranges. C. The Cumulative Table Of interest to the customer is not so much the number of sags in a given magnitude and duration range, but the number of times that a certain piece of equipment will trip due to a sag. t therefore makes sense to show the number of sags worse than a given magnitude and duration. For this a so-called "cumulative sag table" can be to be calculated. The cumulative table obtained from the density table in Tablem is shown in Table V. The table shows e.g. that the RMS voltage drops below 60% for longer than 200 ms, on average 4.5 times per year. fthe equipment can only tolerate a sag below 60% for 200 ms it will thus
34 :l CoM.5 ~o.s ~ co t'l:l 0," :E & : Q,2 Q, S 20 2S 30 3S 40 4S lkrbtion in cyc:l~ Fig. 2: Scatter diagram obtained by one year of monitoring at an industrial site. Table : EXAMPLE OF SAG DENSTY TABLE: NUMBER. OF SAGS PER. YEAR.; DATA OBTANED FR.OM [1]. magnitude 0-200ms ms 40o-600ms 60o-S00ms >sooms S0-90% S.0 2.S % % % % G-40% % % %
35 ~O ags p<r"f'c'" r:-1-'j.,,/ ----r- ~/ J./ / d--s sagsp<r"f'c'" f ) '/ ~ "'" Sagdur.ation 90li lloi 7Oli g' - '" 3 5OO,g -:> -;:; "",g- e Fig. 5. Contour chart of the cumulative sag function, based on Table V. Fig. 4. Bar chart of the cumulative voltage sag table shown in Table V. trip on average 4.5 times per year. From such a table the number of equipment trips per year can be obtained very easily. TABLE V EXAMPLE OF CUMULATVE SAG TABLE, NUMBER OF SAGS PER YEAR; DATA OBTANED FROM TABLE. magnitude 0 200ms 400DS 600ms 800ms 90% % % % % % % % % D. The Voltage Sag Co-ordination Chart Table V is shown as a bar-chart in Fig. 4. The values in the cumulative table belong to a continuous monotone function: the value increases towards the left-rear comer in Fig. 4. The values shown in Table V can thus be seen as a two-dimensional function of number of sags versus magnitude and duration. A common way of presenting a two-dimensional function is through a contour chart. This was done by Conrad for the two-dimensional cumulative sag function, resulting in Fig. 5 [1]. The contour chart is recommended as a "voltage sag co-ordination chart" in EEE Standard 493 [1, 2] and in EEE Standard 1346 [3]. n a voltage sag co-ordination -- ~ 'f./j ---"'" --~ V J./ ",,/.. 1/lJJ o.a o.4s 0.50$ Fig. 6. Voltage chart co-ordination chart, reproduced from Fig. 5 with two equipment voltage tolerance curves. chart the contour chart of the supply is combined with the equipment voltage tolerance curve to estimate the number of times the equipment will trip. Fig. 5 has been reproduced in Fig. 6. Drawn in the chart are two equipment voltage-tolerance curves. Both curves are rectangular; i.e. the equipment trips when the voltage drops below a certain voltage for longer than a given duration. Device A trips when the voltage drops below 65% of nominal for longer than 200 ms, According to the definition given before, the number of voltage sags below 65% for longer than 200 DS, is equal to the element of the cumulative table for 65%, 200 DS. These values are the underlying function of the contour chart in Fig. 5 and 6. n short: the number of spurious trips is equal to the function value at the knee of the voltage tolerance curve, indicated as a circle in Fig. 6. For device A this point is located exactly on the 5 sags per year contour. Thus device A will trip 5 times per year. For device B, the knee is located between the 15 and 20 sags per year contours. Now we use the knowledge that the underlying function is continuous and monotone. The number of trips will thus be between 15 and 20 per year; using interpolation gives an estimated value of 16 trips per year....
36 eo - o l;;::>.. Ė z z t4~~eo- QOc:ici~ ~~~~~ oqoc;; $<19duration r'dnc]e 80-90~ number of samples of raw data: time domain as well as RMS values. This could result in an enormous amount of data, but in the end only magnitude and duration of individual events are used for quantifying the performance of the supply. Two types of power quality monitoring need to be dis- "",gnitude $<19 tinguis. ishede : rang e monitoring the supply at a (large) number of positions at the same time, aimed at estimating an "average power quality": a so-called power quality survey. monitoring the supply at one site, aimed at estimating the power quality at that specific site. Both will be discussed in more detail below. A. Large Power Quality Surveys Fig. 7. Voltage sag co-ordination chart, reproduced from Fig. 5, with non-rectangularequipment voltage tolerance curve. For a non-rectangular equipment voltage tolerance curve, as shown in Fig. 7 the procedure becomes somewhat more complicated. Consider this device as consisting of two components, each with a rectangular voltage tolerance curve. Component A trips when the voltage drops below 50% for longer than 100 ms, according to the contour chart this happens 6 times per year. Component B trips when the voltage drops below 85% for longer than 200 ms, which happens 12 times per year. Adding these two numbers (6+12=18) would count double those voltage sags for which both components trip. Both components trip when the voltage drops below 50% for longer than 200 ms; about 4 times per year. This corresponds to point C in the cliart. The number of equipment trips is thus equal to: FA+ FB - Fe = = 14 (1) Note that making the equipment voltage tolerance curve rectangular (100 ms, 85%) would have resulted in the incorrect value of 20 trips per year.. POWER QUALTY MONTORNG A common way of obtaining an estimate of the performance of the supply is by recording the disturbance events by using a so-called power quality monitor. For each event the monitor records a magnitude and a duration plus possibly a few other characteristics and often also a certain Large power quality surveys have been performed in several countries. Typically several tens up to a few hundred monitors are connected at one or two voltage levels spread over a whole country or the service territory of a utility. The chosen sites have to be representative for the whole country or system. Choosing the sites is often more lead by accessibility of the site and willingness to co-operate of local utilities, than by other considerations. But even without that it would be difficult to make a truly random choice of sites. Sites come in different types, but it is hard to decide which sites are different from a sag viewpoint without first doing the survey. A further analysis of data from this generation of surveys will teach us more about the differences between sites. This knowledge can be used for choosing sites in future surveys. B. Magnitude Versus Duration: EF Survey The Norwegian Electric Power Research nstitute (EF, recently renamed"sntef Energy Research") has measured voltage sags and other voltage disturbances at over 400 sites in Norway. The majority (379) of the sites were at low-voltage (230 and 4OOV), 39 of them were at distribution voltages and the rest at various voltage levels [4]. The sag density functions, as obtained by the EF survey, are presented in Fig. 8. Fig. 9 give the 95% percentile of the sag distribution over the various sites. A stochastic distribution function was created for the total number of sags measured at one single site. The 95% percentile of this distribution was chosen as a reference site. The number of sags at this site is thus exceeded by only 5% of the sites. Note that other surveys give similar results as the Norwegian survey. Other surveys are described in, among others, [5, 6, 7, 8, 9, 10].
37 Fig. 8. Sag density for EF low-voltage networks.,..,.. 1m c. Variation in Time A large fraction of the voltage sags is due to lightning strokes to overhead lines. Two phenomena play a role here. First there are the short-circuit faults due to the lightning stroke, which cause voltage sags. But not all lightning strokes lead to short circuits. The first effect of the stroke is a large overvoltage on the line. f this voltage exceeds the insulation withstand it results in a short circuit, otherwise the voltage peak will start to propagate through the system. f the maximum voltage is high enough it will trigger an overvoltage protection, like a spark gap of a ZnO varistor. These eliminate the overvoltage by creating a temporary short circuit, which in its turn causes a sag of one or two cycles. A conclusion from one of the first power quality surveys [10] was that the number of voltage transients did not increase in areas with more lightning, instead the number of voltage sags increased. For a few sites in the EPR-survey, the sag frequency was compared with the lightning flash density [9]. This comparisonshowed that the correlation between sags and lightning was much stronger than expected. Plotting the sag frequency against the flash density (number of lightningflashes per km 2 per year) for 5 sites resulted in almost a straight line. This justifies the conclusion that lightning is the main cause of voltage sags in distribution systems. As sags are correlated with lightning and lightning activity varies with time, we expect the number of sags to vary with time. This is shown in Fig. 10 for the NPL survey [11]. The sagfrequency is at its maximumin summer, when also the lightning activity is highest. Thiseffect has been confirmed in other countries. Also the distribution of sags through the days follows the lightning activity, with its peakin the evening. D. ndividual Sites Monitoring is not only used for large power quality surveys, it is also used for assessing the power quality of individual sites. For harmonics and voltage transients, reliable results can be obtained in a relatively short period of time. Voltage sags and interruptions of interest for compatibility assessment have occurrence frequencies, of once a month or less. Much longer monitoring periods are needed for those events. To estimate how long the monitoring period needs to be, we assume that the time-between-events is exponentially distributed. This means that the probability of observing an event, in let's say the next minute, is independent of the time elapsed since the last event. Thus events Fig. 9. Sag density for 95% percentile of EF lowvoltage networks. occur completely independent from each other. Under that condition the number of events captured within a certain period is a stochastic variable with a so-called Poisson distribution.
38 ! i.ċ 1% ~ C 10.Ė.. C> Cl u ~ ~ i- ~ i-- i t i- t-- f ~ ' i j i i i ~ h -- - ~ - - f-! i '-- ~ ~ ~ ~ ~ ~ ~ ~. ~ ~ ~ ~ ~ Monlh 01 tm yell< Fig. 10: Variation of voltage sag frequency through the year, data obtained from Dorr [11]. Let p. be the expected number of events per year, then the observed number of events K, over a monitoring period of n years is a discrete stochastic variable with the following distribution: Pr(K = k) = e-n/j (np.)k (2) k! This Poisson distribution has an expected value np. and a standard deviation..;np.. The result of monitoring is an estimate of the expected number of events per year, obtained as follows: K p.e.t =- (3) n This estimate has an expected value p. (it is thus a true estimate) and a standard deviation ~. For a large enough value of np. [i,e, for a sufficient number of observed events) the Poisson distribution can be approximated by a normal distribution with expected value p. ana standard deviation ~. For a normal distribution with expected value p. andnstandard deviation a the socalled 95% confidence interval is between p and p u, with a the standard deviation. The relative error in the estimate of p. after n samples is thus: 1.96u p.- =..;np. ';::f,..fn with N = np. the expected number ofevents in n years, i.e. in the whole observation period. To limit the relative error to e the monitoring period n should fulfill the following inequality: (4) 4 n > - (5) p.e 2 Table V gives the minimum monitoring period for various event frequencies and accuracies. Note that sag frequencies are ultimately used to predict equipment trip frequencies. t now shows that site monitoring can only give accurate results for very sensitive equipment (high frequency of tripping events). When equipment becomes more compatible with the supply (and thus trips less often) site monitoring can no longer be used to predict the number of trips. One should not get the impression from this discussion that site surveys are useless. A reasonable monitoring period, one or two years, can still give an impression about the quality of supply at that site. For decision making in stochastic processes, a small error is often not needed. As long as one realises that there can be a serious error in the results, there is nothing wrong with using site surveys. But a site survey should not be usedto quickly draw conclusions about events happening only once or twice a year. The above reasoning assumes a stationary system with exponentially distributed times between events, thus where events appear completely at random. For a stationary system it is possible to obtain the event frequency with any required accuracy by applying a long-enough monitoring period. n the actual situation there are two more effects which make that monitoring results have a limited predictive value: A largefraction of voltagesagsis due to bad weather: lightning, heavy wind, snow. The sag frequency is
39 Table V MNMUM MONTORNG PEROD NEEDED TO OBTAN A GVEN ACCURACY event frequency 50% accuracy 10% accuracy 2% accuracy 1 per day 2 weeks 1 year 25 years 1 per week 4 months 7 years 200 years 1 per month 1 year 30 years 800 years 1 per year 16 years 400 years 10,000 years therefore not at all constant but follows the annual weather patterns. But the amount of weather activity also varies significantly from year to year. Due to the relation between voltage sags and adverse weather, the sags come in clusters. To get a certain accuracy in the estimate, one needs to observe more than a minimum number of clusters. t is obvious that this will increase the required monitoring period. To get a long-term average a long monitoring period is needed. Power systems themselves are not static but change from year to year. This especially holds for distribution networks. The number offeeders connected to a substation can change; or another protective relay can be used. Also component failure rates can change, e.g. due to ageing; increased loading of components; different maintenance policies; or because the amount of squirrels in the area suddenly decreases. Despite these disadvantages, site monitoring can be very helpful in finding and solving power quality problems, as some things are simply very hard to predict. n addition, stochastic assessment requires a certain level of understanding of voltage disturbances and their orign. This understanding can only be achieved through monitoring. V. THE METHOD OF FAULT POSTONS A. Outline of the Method The method of fault positions proceeds, schematically, as follows: Determine the area of the system in which short circuits will be considered. Split this area intosmall parts. Short circuits within one part should lead to voltage sags with similar characteristics. Each small part is represented by one fault position in an electric circuit model of the power system. For each fault position, the short-circuit frequency is determined. The short-circuit frequency is the number of short-circuit faults per year in the small part of the system represented by a fault position. By using the electric circuit model of the power system, the sag characteristics are calculated for each fault position. Any power system model, and any calculation method can be used. The choice will depend on the availability of tools' and on the characteristics which need to be calculated. The results from the two previous steps (sag characteristics and frequency of occurrence) are combined to obtain stochastical informationabout the number of sags with characteristics within certain ranges. Below we will first give an example of the processing needed, followed by a discussion about the choice of the fault positions. B. Hypothetical Example Consider, as an example, a 100 an line as shown in Fig. 11. Short circuits in this part of the system are represented through 8 fault positions. The choice of the fault positions depends on the sag characteristics which are of interest. n this example we consider magnitude and duration. Fault position 1 (representing busbar faults in the local substation) and fault position 2 (faults close to the local substation) will result in the same sag magnitude. But the fault-clearing time is different in this case, therefore two fault positions have been chosen. The fault positions along the line (2, 3, 4 and 5) have similar faultclearing time but different sag magnitude. Fault positions 6, 7 and 8 result in the same sag magnitude but different duration. For each fault position a frequency, a magnitude and a duration are determined, as shown in Table V. Failure rates of 8 faults per 100an of line per year and 10 faults per 100 substations per year, have been used. t should be realised here that not all fault positions along the line represent an equal fraction of the line; e.g. position 5 represents 25km (between 5/8th and 7/8th of the line) but position 6 only 12.51an (between 7/8th and 1). The resulting sags (1 through 8 in Table V ) are placed, either in bins or immediately in a cumulativeform. Tablevn shows how the various sags fit in the bins. Filling in the frequencies (failure rates) leads to Table Vn and its cumulative equivalent shown in Table X. Alternatively it is possible to update the cumulative table after each fault position. Please note that this is a completely
40 Table V FAULT POSTONS WTH RESULTNG SAG MAGNTUDE AND DURATON fault position frequency magnitude duration 1 busbar fault in local substation O.l/yr 0% 180 ms 2 fault on a line close to local substation 4/yr 0% 80 ms 3 fault at 25% of the line 2/yr 32% 90 ms 4 fault at 50% of the line 2/yr 49% 105 ms 5 fault at 75% of the line 2/yr 57% 110 DS 6 fault at 100% of local line l/yr 64% 250ms 7 fault at 0% of remote line 2/yr 64% 90 ns 8 busbar fault in remote substation O.l/yr 64% 180 ms fictitious example. No calculation at all has been used to obtain the magnitude and durations in Table V. TABLE V TABLE WTH EVENT FREQUENCES FOR EXAMPLE OF METHOD OF FAULT POSTONS DS ms DS 60-80% % % % load Fig. 11. Part of power system with fault positions. TABLE X CuMULATVE TABLE FOR EXAMPLE OF METHOD OF FAULT POSTONS. Oms 100 DS 200ms 80% % % % c. Choosing the Fault Positions TABLE V FAULT POSTONS SORTED FOR MAGNTUDE AND DURA TON BNS DS ns ms 60-80% % 4 and % % 2 1 The first step in applying the method of fault positions is the choice of the actual fault positions. t will be 01>vious that to obtain more accurate results, more fault positions are needed. But a random choice of new fault positions will probably not increase the accuracy, only increase the computational effort. Three decisions have to be made when choosing fault positions: 1. n which part of the power system do faults need to be applied? Only applying faults to one feeder is certainly not enough; applying faults to all feeders in the whole country is certainly too much. Some kind of compromise is needed. This question needs to be" addressed for each voltage level.
41 2. Which distance betweenfault positionsis neededicc. An expression for the critical distance can easily be? obtained from (7), resulting in: Do we only need fault positions in the substations, or also each kilometre along the lines? Again this question needs to be addressed for each voltage level. 3. Which events need to be considered? For each fault position, different events can be considered. One can decide to only study three-phase faults, only single-phase faults, or all types of faults. One can consider different fault impedances, different fault-clearing times or different scheduling of generators, each with its own frequency of occur... renee and resulting sag characteristics. The main criterion in choosing fault positions is: a fault position should represent short-circuit faults leading to sags with similar characteristics. This criterion has been applied in choosing the fault positions in Fig. 11 and Table V. V. THE METHOD OF CRTCAL DSTANCES The method ofcritical distances does not calculate the voltage at a given fault position, but the fault position for a given voltage. By using some simple expressions, it is possible to find out where in the network a fault would lead to a voltage sag down to a given value. Each fault closer to the load will cause a deeper sag. Thus the number of sags below the given value is simply the number of short-circuit faults closer to the load than the indicated positions. A. Basic Theory The method ofcritical distances is based on the voltage divider model, as was shown in before. Neglecting load currents and assuming the pre-event voltage to be one, we get for the voltage at the pee during the fault: ZF tr.09 = ZF + Zs (6) with Zi the impedance between the pee and the fault, and Zs the source impedance at the pee. Let ZF = z, with z the feeder impedance per unit length and, the distance between the pee and the fault. This results in the following expression for the sag magnitude: z ~Gg = z '+Zs (7) The "critical distance" is introduced as follows: the magnitude at the.pcc drops below a critical voltage V whenever a fault occurs within a distance [,crit from the Zs V [,erit =- x- z 1- V (8) Here it is assumed that both.source andfeeder impedance are purely reactive (a rather commonassumptionin power system analysis), or more precise: that the angle in the complex plane between these two impedances is zero. Equation (8) can be used to estimate the exposed area at every voltage level in the supply to a sensitive load. The exposed area contains all fault positions that lead to a voltage sag causing a spurious equipment trip. The expected number of spurious trips is found by simply adding the failure rates of all equipment within the exposed area. Transformer impedances are a large part of the source impedance at any point in the system. Therefore, faults on the secondary side do not cause a deep sag on the primary side. To estimate the number ofsags below a certain magnitude it is sufficient to add all lengths of lines and cables within the critical distance from the pee. The resulting exposed length has to be multiplied by the failure rate per unit length. The total length of lines and cables within the exposed area, is called the "exposed length". B. Example - Three Phase Faults Consider the 11kV network in Fig. 12. The fault level at the main 11kV bus is 151MVA(source impedance O.663pu at a loomva base), the feeder impedance is 0.336!l/km (O.278pu/km at the loomva base). The critical distance for different critical voltages, calculated from (8), is given in Table X. The next-to-last column (labelled "exposed length") gives the total feeder length within the exposed area (the "exposed length"). Fig. 12 gives the contours of the exposed area for various critical voltages. Each fault between the main 11kV bus (the pec) and the 50% contour will lead to a voltage sag at the pee with a magnitude below 50%. All points in the 50% contour are at a distance of 2.4km (see Table X ) of the main 11kV bus. The last column in Table X gives the expected number of equipment trips per year. A value of faults per year per km has been used. c. Comparison with the Method of Fault Positions The transmissionsystem study performed by Qader [12] resulted in number of sags as a function of magnitude for all substations in the UK 40o-kV transmission system. The method of fault positions has been used for this study. For a number of substations those results have been compared with the results obtained by using the method of
42 Table X' REsULTS OF METHOD OF CRTCAL DSTANCES THREE-PHASE FAULTS critical voltage critical distance exposed length number of trips per year 90% 21.4km 24.0km % 9.6km 21.6km % 5.6km 17.2km Ll 60% 3.6km 12.6km % 2.4km 8.6km % 1.6km 6.2km % 1.0km 3.0km % 0.6km 1.8km i.i 10% 0.3km O.9km 0.6 critical distances. For a transmission substations the critical distance can be calculated as a function of the sag magnitude V by using the approximated expression: 11 kv, 151MVA _+----t-- --t-"--=--,. 30$ "40$, \ 0"i- --' ""t-- 50% ~- / 60% // /~ 70% _--_ 80% Zs V.ccrit =71 _ V (9) where Zs is the source impedance and z the feeder impedance per unit length. All the lines originating at the substation are assumed infinitely long; the exposed length is simply the critical distance times the number of lines. The source impedance Zs is calculated by assuming that all lines contribute equally to the short circuit current for a busbar fault. During a fault on one of these lines, only (N - 1) out of N lines contribute to the short circuit current. Thus the source impedance in p.u. equals: Zs = ~ SblUe (10) N -1 S!ault with N the number of lines originating at the substation, Sbase the base power, and S!ault the short circuit power for a substation fault. The exposed length is found from: (11) Fig kv network used as an example for the method of critical distances. The exposed length for four substations is shown in Fig. 13, where the crosses indicate the results of the method of fault positions. There are obviously differences between the results of the two methods, with the method offault positions viewed as the most accurate one. But for the method of fault positions a large part of the national grid needs to be modelled. All the data needed for the method of critical distances is, from equation (11) : number of lines originating from the substation; fault level of the substation; feeder impedance per unit length.
43 1al 12J E su! ~mj ~C1 &.al "':m X 1 :all zm l1 ~:mj., s- :U!.:» rxd! Sl ~. a x :.:-x-x a %=~! X ~tj a 21 Cl le G D 21 Cl le G Jg.ogrftJOo..poo-.t og...ponont x :all,,2i ~2m 1SD 1al i xi 12J x E su! ~SD ~GJ f lu!!?!m ;z.-'x: Sl -:?-;. 2D. x x,--x-=' a ~ a D 21 Cl le a 21 Cl le G og...poo-.t og...ponont / Fig. 13: Exposed length for four 400-k V substations : comparison between the method of fault positions (stars) and the methodof critical distances (c:ircles).
44 All this data can be obtained without much difficulty. Another interesting observation from equation (11) is about the variation of sag frequency among different substations. The main variations can apparently be brought back to fault level, number of lines originating at the substation, and fault frequency. nformation about the first two is easy to obtain. The latter might need to be estimated. [12] M.R. Qader, M.H.J. Bollen, R.N. Allan, Stochastic prediction of voltage sags in a large transmission system, EEE Transactions on ndustry Applications, Vol.35, no., Jan. 1999, pp V. REFERENCES [1] L.E. Conrad, M.H.J. Bollen, Voltage sag coordination for reliable plant operation, EEE Transactions on ndustry Applications, November/December 1997, in print. [2] EEE Recommended Practice for the Design of Reliable ndustrial and. Commercial Power Systems, EEE Std , in print. [3] EEE Recommended Practice for evaluating electric power system compatibility with electronic process equipment, EEE Std 1346, in preparation. [4] H. Se1jeseth, A. Pleym, Spenningskvalitetsmealinger 1992 til 1996 (voltage quality measurements, 1992 to 1996, in Norwegian), report EF TR A4460 published by EF, 7034 Trondheim, Norway. [5] D.S.Dorr, T.M. Grozs, M.B. Hughes, R.E. Jurewicz, G. Dang, J.L. McClaine, nterpreting recent power quality surveys to define the electrical environment, EEE ndustry Applications Society Annual Meeting, October 1996, pp [6] M.B. Hughes, J.S. Chan, Early experiences with the Canadian national power quality survey, Transmission and Distribution nternational, Vol.4, no.3, Sept. 1993, p [7] D.O. Koval, R.A. Bocancea, M.B. Hughes, Canadian national power quality survey: frequency of industrial and commercial voltage sags, EEE Transactions on ndustry Applications, VoL35, no.5, Sept. 1998, p [8] R.E. Jurewicz, Power quality study to 1995, nt. Telecommunications Energy Con!. (NTELEC), Oct. 1990; Orlando, FL. p [9] E.W. Gunther, H. Mehta, A survey of distribution system power quality - preliminary results, EEE Transactions on Power Delivery, Vol.10, no., January 1995, pp [10] M. Goldstein, P.D. Speranza, Thequality of US commercial AC power, nt. Telecommunications Energy Conf. (NTELEC), 3-6 Oct. 1982; Washington, DC, USA, p [11] D.5. DOlT, Point of utilization power quality study results, EEE Transactions on ndustry Applications, vo1.31, no.4, July/August 1995, p
45 4. Mitigation of Voltage Sags Math H J Bollen, Senior Member, EEE Department of Electric Power Engineering Chalmers University of Technology, Gothenburg, Sweden 1. FROM FAULT TO TRP To understand the various ways of mitigation, the mechanism leading to an equipment trip needs to be understood. Fig. 1 shows how a short circuit leads to an equipment trip. The equipment trip is what makes the event a problem; if there where no equipment trips, there would be no voltage quality problem. The underlying event of the equipment trip is a short-circuit fault: a lowimpedance connection between two or more phases, or between one or more phases and ground. At the fault position the voltage drops to zero, or to a very low value. This zero voltage is changed into an event of a certain magnitude and duration at the interface between the equipment and the power system. The short-circuit fault will always cause a voltage sag for some customers. f the fault takes place in a radial part of the system, the protection intervention clearing the fault willalso lead to an interruption. T there is sufficient redundancy present, the short circuit will only lead to a voltage sag. f the resulting event exceeds a certain severity, it will cause an equipment trip. Fig. 1 enables us' to distinguish between the various mitigation methods: Reducenumber of faults mprove system design reducing the number of short-circuit faults. reducing the fault-clearing time. changing the system such that short-circuit faults result in less severe events at the equipment terminals orat the customer interface. connecting mitigation equipment between the sensitive equipment and the supply. improving the immunity of the equipment. Fig. 1. The voltage quality problem and ways of mitigation.. REDUCNG THE NUMBER OF FAULTS Reducing the number of short-circuit faults in a system, not only reduces the sag frequency but also the frequency of sustained interruptions. This is thus a very effective way of improving the quality of supply and many customers suggest this as the obvioussolution when a voltage
46 sag or short interruption problem occurs. The solution is unfortunately most of the time not that obvious. A short circuit not only leads to a voltage sag or interruption at the customer interface but also causes damage to utility equipment and plant. Therefore most utilities will already have reduced the fault frequency as far as economically feasible. n individual cases there could still be room for improvement, e.g. when the majority of trips is due to faults on one or two distribution lines. Some examples of fault mitigation are: replace overhead lines by underground cables; use special wires for overhead lines; implement a strict policy of tree trimming; install additional shielding wires; increase the insulation level; increase maintenance and inspection frequencies. One has to keep in mind however that these measures can be very expensive and that its costs have to be weighted against the consequences of the equipment trips.. REDUCNG THE FAULT-CLEARNG TME Reducing the fault-clearing time does not reduce the number of events but only their duration. The ultimate reduction offault-clearing timeis achieved by using currentlimitingfuses (a proven techology) or static circuit breakers (an emerging technology). These devices are able to clear a fault within one half-cycle, thus ensuring that no voltage sag last longer. Additionallyseveral types of faultcurrent limiters have been proposed which not so much clear the fault, but significantly reduce the fault current magnitude within one or two cycles. But the fault-clearing time is not only the time needed to open the breaker, also the time needed for the protection to make a decision. Here we need to consider two significantly different types ofdistribution networks, both shown in Fig. 2. The top drawing in Fig. 2 shows a system with one circuit breaker protecting the whole feeder. The protection relay with the breaker has a certain current setting. This setting is such that it will be exceeded for any fault on the feeder, but Dot exceeded for any fault elsewhere in the system nor for any loading situation. The moment the current value exceeds the setting the relay gives a trip signal to the breaker and the breaker opens within a few cycles. Typical fault-clearing times in these systems are around 100 milliseconds. To limit the number of long interruptions for the customers, reclosing is used in combination with (slow) expulsion fuses in the laterals or in combination with interruptors along the feeder. This type of protection is commonly used in overhead systems. Reducing the fault-clearing time mainly requires a faster breaker. The static circuit breaker or several of the other current limiters would be good options for these systems. A current-limiting fuse to protect the whole feeder is not suitable as it makesfast reclosing more complicated. Current-limitingfuses can also not be used for the protection of the laterals because they would start arcing before the main breaker opens. Using a faster clearing with the mainbreaker enables faster clearingin the lateralsas well. The network in the bottom drawing of Fig. 2 consists of a number of distribution substations in cascade. To ~chieve selectivity, time-grading ofthe overcurrent relays S used. The relays furthest away from the source trip instantaneously on overcurrent. When moving closer to the source, the tripping delay increases each time with typically 500 UlS. n the example in Fig. 2 the delay times would be 1000ms, 500ms and zero (from left to right). Close to the source, fault-clearing times can be up to several seconds. These kind of systems are used in underground networks and in industrial distribution systems. The fault-clearing time can be somewhat reduced by using inverse-time overcurrent protection where the delay time decreases for increasing fault current. But even with these schemes, fault-clearing times above one second are possible. The various techniques for reducing the faultclearing time without loosing selectivity are discussed in various publications on power system protection, e.g. [1] and [2]. To achieve a serious reduction in fault-clearing time one needs to reduce the grading margin, thereby allowing a certain loss of selectivity. The setting rules described in most publications are based on preventing incorrect trips. Future protection settings need to be based on a maximum fault-clearing time. A method of translating a voltage-tolerance curve into a time-current curve is described in [3]. The latter curve can be used in combination with relay curves to obtain the various settings. The opening time of the downstream breaker is an important term in the expression for the grading margin. By using faster breakers the grading margin can be significantly reduced, thus leading to a significant reduction in fault-clearing time. The impact of static circuit breakers might be bigger in these systems that in the ones with one breaker protecting the whole feeder. n transmission systems the fault-clearing time is already short, so further reduction is much more difficult. Thefault-clearing time is often limitedbytransient-stability constraints. Some remaining options are: n some cases faster circuit breakers could beof help. This again not only limits the fault-clearing time directly, but it also limits the grading margin for dis-
47 Fig. 2: Distribution system with one circuit breaker protecting the whole feeder (top) and with a number of substations (bottom). tance protection. One should realise however that faster circuit breakers could be very expensive. A certain reduction in grading margin is probably possible. This will not so much reduce the faultclearing time in normal situations, but in case the protection fails and a backup relay has to intervene. When reducing the grading margin one should realise that loss of selectivity is unacceptable in most transmission systems as it leads to the loss of two or more components at the same time. Faster back-up protection is one of the few effective means of reducing fault-clearing time in transmission systems. Possible options are to use intertripping for dist ance protection, and breaker-failure protection. V. CHANGNG THE POWER SYSTEM By implementing changes in the supply system, the severity of the event can be reduced. Here again the costs can become very high, especially for transmission and substransmission voltage levels. Someexamples of mitigation methods especially directed towards voltage sags are: nstall a generator near the sensitive load. The generators will keep up the voltage during a remote sag. The reduction in voltage drop is equal to the percentage contribution of the generator station to the fault current. n case a combined-heat-and-power station is planned, it is worth to consider the position of its electrical connection to the supply. Split busses or substations in the supply path to limit the number of feeders in the exposed area. nstall current-limiting coils at strategic places in the system to increase the "electrical distance" to the fault. One should realisethat this can make the sag worse for other customers. Feed the bus with the sensitive equipment from two or more substations. A voltagesag in one substation willbe mitigated by the infeed from the other substations. The more independent the substations are the more the mitigation effect. The best mitigation effect is by feeding from two different transmission substations. ntroducing the second infeedincreases the number of sags, but reduces their severity. The number of short interruptions can be prevented by conrrecting less customers to one recloser (thus by installing more reclosers), or by getting rid of the reclosure scheme altogether. Short as well as long interruptions are considerably reduced in frequency by installing additional redundancy in the system. The costs for this are onlyjustified for large industrial and commercial customers. ntermediate solutions reduce the duration of (long) interruptions by having a level of redundancy available within a certain time. V. NSTALLNG MTGATON EQUPMENT The most commonly applied method of mitigation is the installation of additional equipment at the systemequipment interface. Also recent developments point towards a continued interest in this way of mitigation. The
48 popularity of mitigation equipment is explained by it being the only place where the customer has control over the situation. Both changes in the supply as well as improvement of the equipment are often completely outside of the control of the end-user. Some examples of mitigation equipment are: V. MPROVNG EQUPMENT MMUNTY mprovement of equipment immunity is probably the most effective solution against equipment trips due to voltage sags. But as a short-time solution it is often not suitable. A customer often only finds out about equipment immunity after the equipment has been installed. For consumer electronics it is very hard for a customer to find out about immunity of the equipment as he is not in direct contact with the manufacturer. Even most Uninterruptable Power Supply (UPS). The most commonly used device to protect low-power equipment (computers, etc.) against voltage sags and interruptions. During the sag or interruptions, the power adjustable-speed drives have become off-the-shelf equipsupply is taken over by an internal battery. The ment where the customer has no influence on the specifibattery can supply the load for, typically, between cations. Only large industrial equipment is custom-made 15 and 30 minutes. for a certain application, which enables the incorporation e of voltage-tolerance requirements. Static transfer SWtch. Astatic transfer SWtch SWtches A t from i.. t (d. h h th par rom mproving arge equipmen rives, processteo h ad from the supp1y Wit t e sag to ano er ).. f.. ithi ~ 11 ds Thi ld limit control computers a thorough inspection 0 the immunity SUPP y W n a lew mi iseconcs, S wou fall 1 1 ignifi th d f t 1 th h f 1 0 contactors, re ays, sensors, etc. can a so 81 eant y e urat on 0 a sag 0 ess an one a r-cyc.... e as-. mprove th e process id th h rl e- roug. summg that a SUitable alternate supply 15 available. Wh. t is i tall d. E en new equipmen ti bo t it S ns e, mrorma on a U s Static transfer SWitches for medium voltage levels. it h ld b btai ed fr th r... mmunl y s ou e t b 0 aj.d om e manulac urer e- are a new but very promismg technology, they are.... h ld - bi ~ t s 25 kv forehand. Where possible, mmumty requirements S ou avai a e lor vo age eve Upto. be idc1u ded in th e equipmen. t speerificat on. Dynamic Voltage Restorer (DVR). This device uses For short interruptions equipment immunity is very modem power electronic components to insert a series hard to achieve; for long interruptions it is impossible voltage source between the supply and the load. to achieve. The equipment should in so far be immune The voltagesource compensates for the voltage drop to interruptions, that no damage is caused. and no dangerous due to the sag. Some devices use internal energy situation arises. This is especially important when storage to make up for the drop in active power considering a complete installation. supplied by the system. They can only mitigate sags up to a maximumduration. Other devices take the same amount of active power from the supply by increasing the current. These can only mitiga.te sagsdown to a minimum magnitude. This is also a rather new and promising technology, availa.ble both for medium voltage and low voltage levels. Also a number of alternative configurations have been suggested, some more promising than others. For lowvoltage equipment this new technology may not add much above a UPS, for medium voltage load, this may prove a very expensive but the only feasible solution. Motor-generator sets. MG-sets are the classical ~ lution for sag and interruption mitigation with large equipment. They are obviously not suitable for an office environment but the noise and the maintenance requirements are often no objection in an industrial environment. Some manufacturers combine the MG-set with a backup generator, others combine it with power-electronic converters to obtain a longer ride-through time. V. DFFERENT EVENTS AND MTGATON METH'ODS Fig. 3 shows the magnitude and duration of voltage sags and interruptions resulting from various system events. For different events different mitigation strategies apply, Sags due to short-circuit faults in the transmission and sub-transmission system are characterised by a short duration, typically up to 100ms. These sags are very hard to mitigate at the source and also improvements in the system are seldom feasible. The only way of mitigating these sags is by improvement of the equipment or, where this turns out to be unfeasible, installing mitigation equipment. For low-power equipment a UPS is a straightforward s0 lution, for high-power equipment and for complete installations several competing tools are emerging. As we saw before the duration of sags due to distribution system faults depends on the type of protection used. Ranging from less than a cycle for current-limitingfuses up to several seconds for overcurrent relays in underground or industrial distribution systems. The long sag duration makes that
49 i 100$ ~80CJ) ca ::s 50% 0%'' s 1 sec Duration Fig. 3. Overview of sags and interruptions. equipment can also trip due to faults on distribution feeders fed from another HV/MV substation. For deep long-duration sags, equipment improvement becomes more difficult and system improvement easier. The latter could well become the preferred solution, although a critical assessment of the various options is certainly needed. Sags due to faults in remote distribution systems and sags due to motor starting should not lead to equipment tripping for sags down to 85%. f there are problems the equipment needs to be improved. f equipment trips occur for long-duration sags in the 70% - 80% magnitude range, changes in the system have to be considered as an option. For interruptions, especially the longer ones, equipment improvementis no longer feasible. System improvements or a UPS in combination with an emergency generator are possible solutions here. V. REFERENCES [1] Power System Protection, nstitution of Electrical Engineers, London, [2] Protective relays application guide. GEe Alsthom Protection & Control, Stafford, UK. [3] T.H. Ortmeyer, T. Hiyama, Coordination of time overcurrent devices with voltage sag capability curves, EEE nt Con! on Harmonics and Quality of
Calculating voltage dips in power systems using probability distributions of dip durations and implementation of the Moving Fault Node method
Calculating voltage dips in power systems using probability distributions of dip durations and implementation of the Moving Fault Node method Master of Science Thesis MIKAEL WÄMUNDSON Department of Energy
Calculation of Voltage Sag Indices for Distribution Networks
Calculation of Voltage Sag Indices for Distribution Networks Juan A. Martinez-Velasco, Member, IEEE, Jacinto Martin-Arnedo, Nonmember Abstract This paper is presenting the main results of a work aimed
ACCURACY OF POTENTIALTRANSFORMERS
8 VOLTAGE TRANSFORMERS Two types of voltage transformer are used for protective-relaying purposes, as follows: (1) the "instrument potential transformer," hereafter to be called simply "potential transformer,"
DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION
ÿþ üûúùø öõöôùóùõò CT Dimensioning DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION Application note GER3973 1 CT Dimensioning ÿþ üûúùø öõöôùóùõò GER-3973 Application note ÿþ üûúùø öõöôùóùõò
Three phase circuits
Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors
De Jaeger, Emmanuel ; Du Bois, Arnaud ; Martin, Benoît. Document type : Communication à un colloque (Conference Paper)
"Hosting capacity of LV distribution grids for small distributed generation units, referring to voltage level and unbalance" De Jaeger, Emmanuel ; Du Bois, Arnaud ; Martin, Benoît Abstract This paper revisits
Three-phase analysis of unbalanced systems
Exercises of course ELEC0029 - Electric power systems analysis and operation Three-phase analysis of unbalanced systems Thierry Van Cutsem [email protected] www.montefiore.ulg.ac.be/~vct March 205
Chapter 9 Balanced Faults
Chapter 9 alanced Faults 9.1 Introduction The most common types of fault are (in order) single-line-to-ground fault, line-to-line fault, and double-line-to-ground fault. All of these are unbalanced faults.
EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID
Tension (kv) Impedance (Ohms) EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID frequency (Hz) Simon DESCHANVRES Yannick VERNAY RTE, CNER, Substations Department t (ms) EMTP-RV Users Group
General Validation Test Program for Wind Power Plants Connected to the Hydro-Québec Transmission System
General Validation Test Program for Wind Power Plants Connected to the Hydro-Québec Transmission System Direction Planification des actifs et expertise de transport February 2011 TABLE OF CONTENTS 1. CONDUCTING
ESB Networks Response. ERGEG Consultation. Voltage Quality Regulation in Europe
NETWORKS ESB Networks Response to ERGEG Consultation on Voltage Quality Regulation in Europe Date: 22 February 2007 Distribution System Operator ESB Networks Page 1 of 12 Contents 1.0 INTRODUCTION...3
The following table shows approximate percentage wise the
SHORT-CIRCUIT CALCULATION INTRODUCTION Designing an electrical system is easy and simple, if only the normal operation of the network is taken into consideration. However, abnormal conditions which are
Digital Energy ITI. Instrument Transformer Basic Technical Information and Application
g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER
SHORT CIRCUIT CURRENT CALCULATION AND PREVENTION IN HIGH VOLTAGE POWER NETS
Bachelor's Thesis Electrical Engineering June 2014 SHORT CIRCUIT CURRENT CALCULATION AND PREVENTION IN HIGH VOLTAGE POWER NETS MD FARUQUL ALAM SALMAN SAIF HAMID ALI School of Engineering Blekinge Tekniska
VOLTAGE CONTROL IN DISTRIBUTION SYSTEMS AS A LIMITATION OF THE HOSTING CAPACITY FOR DISTRIBUTED ENERGY RESOURCES
VOLTAGE CONTROL IN DISTRIBUTION SYSTEMS AS A LIMITATION OF THE HOSTING CAPACITY FOR DISTRIBUTED ENERGY RESOURCES C. Schwaegerl*, M.H.J. Bollen, K. Karoui #, A. Yagmur + *Siemens AG, # Tractebel STRI AB
TRANSFORMER: THREE PHASE
CONTENTS Transformer : Three Phase 1211 C H A P T E R 33 Learning Objectives Three-phase Transformers Three-phase Transformer Connections Star/Star or Y/Y Connection Delta-Delta or Connection Wye/Delta
Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E.
By Darrell G. Broussard, P.E. Introduction: As engineers, we are aware that electrical power systems have grown. How much have they grown? When was the last time you specified a 2400-volt system, a 4160-volt
Short Circuit Current Calculations
Introduction Several sections of the National Electrical Code relate to proper overcurrent protection. Safe and reliable application of overcurrent protective devices based on these sections mandate that
1 Introduction. 2 Two Phases. J.L. Kirtley Jr.
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061 Introduction to Power Systems Class otes Chapter 3 Polyphase etworks J.L. Kirtley Jr. 1 Introduction
Three-phase AC circuits
Three-phase AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering
Brochure More information from http://www.researchandmarkets.com/reports/2171489/ Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering Description: A forward
Radial Distribution Test Feeders
Radial Distribution Test Feeders Distribution System Analysis Subcommittee Report Abstract: Many computer programs are available for the analysis of radial distribution feeders. In 1992 a paper was published
BALANCED THREE-PHASE CIRCUITS
BALANCED THREE-PHASE CIRCUITS The voltages in the three-phase power system are produced by a synchronous generator (Chapter 6). In a balanced system, each of the three instantaneous voltages have equal
Power measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1
Experiment no 1 Power measurement in balanced 3 phase circuits and power factor improvement 1 Power in Single Phase Circuits Let v = m cos(ωt) = cos(ωt) is the voltage applied to a R-L circuit and i =
SYNCHRONOUS MACHINES
SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical
INTERNATIONAL STANDARD
INTERNATIONAL STANDARD IEC 60071-2 Third edition 1996-12 Insulation co-ordination Part 2: Application guide This English-language version is derived from the original bilingual publication by leaving out
INDUCTION REGULATOR. Objective:
INDUCTION REGULATOR Objective: Using a wound rotor induction motor an Induction Regulator, study the effect of rotor position on the output voltage of the regulator. Also study its behaviour under load
Telecommunication Line Protectors
TN CR 0025 Telecommunication Line s 1.1 The nature of telecom surges The telecom services considered in this report are transported on twisted pair. Each service has two wires, or lines, sometimes called
HARMONIC DISTORTION IN THE ELECTRIC SUPPLY SYSTEM
Technical Note No.3 March 2000 HARMONIC DISTORTION IN THE ELECTRIC SUPPLY SYSTEM This Technical Note discusses harmonic distortion, its causes and adverse effects, what levels are unacceptable and how
Equipment Performance Due to Voltage Sags Test Results for Contactor and Induction Motor
DOI 10.7603/s40707-013-0008-5 Equipment Performance Due to Voltage Sags Test Results for Contactor and Induction Motor Surya Hardi, Muhd. Hafizi, Muzamir Isa, Rohana Ismail Abstract This paper presents
Knowing the FACTS. FACTS that enhance power quality in rail feeder systems
Knowing the FACTS FACTS that enhance power quality in rail feeder systems ROLF GRÜNBAUM, PER HALVARSSON, BJÖRN THORVALDSSON The increase in traffic on existing tracks combined with new high-speed rail
Measurement, Modeling and Simulation of Capacitor Bank Switching Transients
Measurement, Modeling and Simulation of Capacitor Bank Switching Transients Mirza Softić*, Amir Tokić**, Ivo Uglešić*** *Kreka - Dubrave e, Dubrave, Bosnia and Herzegovina (e-mail: [email protected]).
Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current
Summary Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current Joachim Härsjö, Massimo Bongiorno and Ola Carlson Chalmers University of Technology Energi och Miljö,
DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS
DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS by Gunnar Asplund, Kjell Eriksson, Hongbo Jiang, Johan Lindberg, Rolf Pålsson, Kjell Svensson ABB Power Systems AB Sweden SUMMARY Voltage Source Converters
Genetic Algorithm approach to find excitation capacitances for 3- phase smseig operating single phase loads
Genetic Algorithm approach to find excitation capacitances for 3- phase smseig operating single phase loads Authors & Affiliation: V.Ravi Kiran, V.Manoj and P.Praveen Kumar Asst. Professor, EEE Dept GMRIT,
Introduction. Harmonics and IEEE 519 Page 1 of 19
Introduction In an ideal power system, the voltage supplied to customer equipment, and the resulting load current are perfect sine waves. In practice, however, conditions are never ideal, so these waveforms
Simple Methods for Calculating Short Circuit Current Without a Computer By Dennis McKeown, PE GE Senior System Application Engineer
Simple Methods for Calculating Short Circuit Current Without a Computer By Dennis McKeown, PE GE Senior System Application Engineer A Short Circuit analysis is used to determine the magnitude of short
The electrical energy produced at the gen
300 300 Principles of Power System CHAPTER CHAPTER 12 Distribution Systems General 12.1 Distribution System 12.2 Classification of Distribution Systems 12.3 A.C. Distribution 12.4 D.C. Distribution 12.5
How To Limit Voltage Unbalance
Engineering Recommendation No.10 of the Electricity Distribution Code Limits for Voltage Unbalance in the Electricity Supply System Version 1.0 30th November 2005 Prepared by: Abu Dhabi Distribution Company,
How To Understand And Understand The Theory Of Electricity
DIRECT CURRENT AND ALTERNATING CURRENT SYSTEMS N. Rajkumar, Research Fellow, Energy Systems Group, City University Northampton Square, London EC1V 0HB, UK Keywords: Electrical energy, direct current, alternating
300 MW Variable Speed Drives for Pump-Storage Plant Application Goldisthal
May 24 MW Variable Speed Drives for Aurélie Bocquel APCG / 4BOC4 (MW-Goldisthal 1-5-24).PPT MW Variable Speed Drives for Content Major benefits of the cyclo-converter driven doubly-fed induction machines
Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4
Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore Lecture - 33 3 phase System 4 Hello everybody. So, in the last class we have been
8 Speed control of Induction Machines
8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque
Power Quality Standards for Electric Service
Power Quality Standards for Electric Service Effective June 1, 2008 A transition period will exist from June 1 through December 31, 2008 in which installations may be approved and connected as long as
Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.
Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive
3-Phase AC Calculations Revisited
AN110 Dataforth Corporation Page 1 of 6 DID YOU KNOW? Nikola Tesla (1856-1943) came to the United States in 1884 from Yugosiavia. He arrived during the battle of the currents between Thomas Edison, who
Rule 5.500 Fast Track Analysis for National Life Insurance Co.
Rule 5.500 Fast Track Analysis for National Life Insurance Co. For a 500 kw Solar array to be located at 155 Northfield Street in Montpelier, Vermont Green Mountain Power Pam Allen Date: 5/31/13 SECTION
Electrical network protection. Protection guide. Guide 2003 51G 51G 51G 51G 51G. network protection solutions
Electrical network protection Protection guide Guide 2003 5 A H G G 4 D3 D2 D1 G G G 3 network protection solutions Protection guide Contents 0 Presentation 2 Power-system architecture Selection criteria
The design and performance of Static Var Compensators for particle accelerators
CERN-ACC-2015-0104 [email protected] The design and performance of Static Var Compensators for particle accelerators Karsten Kahle, Francisco R. Blánquez, Charles-Mathieu Genton CERN, Geneva, Switzerland,
Timing Errors and Jitter
Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big
Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3
Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3 Basics of Power systems Network topology Transmission and Distribution Load and Resource Balance Economic Dispatch Steady State System
Power Quality Centre VOLTAGE FLUCTUATIONS IN THE ELECTRIC SUPPLY SYSTEM. Technical Note No. 7 August 2003
Technical Note No. 7 August 2003 Power Quality Centre VOLTAGE FLUCTUATIONS IN THE ELECTRIC SUPPLY SYSTEM This Technical Note discusses voltage fluctuations, their causes and adverse effects, what levels
Measurement of Power in single and 3-Phase Circuits. by : N.K.Bhati
Measurement of Power in single and 3-Phase Circuits by : N.K.Bhati A specifically designed programme for Da Afghanistan Breshna Sherkat (DABS) Afghanistan 1 Areas Covered Under this Module 1. Power in
7CURRENT TRANSFORMERS
7CURRENT TRANSFORMERS Protective relays of the a-c type are actuated by current and voltage supplied by current and voltage transformers. These transformers provide insulation against the high voltage
TESLA Recorder Power Metering Setup Configuration for 3 and 2 Element Watt/VAR Metering
TESLA Recorder Power Metering Setup Configuration for 3 and 2 Element Watt/VAR Metering Introduction This application note will assist the user to set up 3-phase metering to monitor Watt, VAR and VA power
SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 3. Symmetrical Components & Faults Calculations
SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 3 3.0 Introduction Fortescue's work proves that an unbalanced system of 'n' related phasors can be resolved into 'n' systems of balanced phasors called the
Simulation of Ungrounded Shipboard Power Systems in PSpice
Simulation of Ungrounded Shipboard Power Systems in PSpice Haibo Zhang IEEE Student Member Karen L.Butler IEEE Member Power System Automation Lab Electrical Engineering Department Texas A&M University
GENERATOR SELECTION. a. Three phase - 120/208V, 3 phase, 4W wye; 277/408, 3 phase, 4W wye; * 120/240V 3 phase, 4W Delta
GENERATOR SELECTION Generators must be sized to handle their load based on the continuous KW, kilowatt load, and KVA, kilovoltamp load, and the worst case starting load KW + KVA. They must be derated for
Power Quality. Voltage Sag Ride-through Mitigation in Sequence by Increasing Cost
Power Quality Voltage Sag Ride-through Mitigation in Sequence by Increasing Cost A voltage sag is defined as a decrease in voltage magnitude below 90% of nominal, but not a complete interruption. The typical
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya ([email protected]) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper
The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies
The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies DATE: November 17, 1999 REVISION: AUTHOR: John Merrell Introduction In some short circuit studies, the X/R ratio is ignored when comparing
CO-ORDINATION OF PARALLEL AC-DC SYSTEMS FOR OPTIMUM PERFORMANCE
CO-ORDINATION OF PARALLEL AC-DC SYSTEMS FOR OPTIMUM PERFORMANCE Ana Diez Castro & Rickard Ellström Ying Jiang Häfner Christer Liljegren Vattenfall Utveckling AB ABB Power Systems Gotlands Energiverk AB
Eðlisfræði 2, vor 2007
[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has
Induced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
Application of Four-Pole Circuit Breakers within Data Centers
Application of Four-Pole Circuit Breakers within Data Centers December 2013/AT324 by Frank Waterer, Fellow Engineer, Schneider Electric Engineering Services Make the most of your energy SM Revision #1
TA Kahraman Yumak ELK412 - Distribution of Electrical Energy Lab. Notes v1.0 2013 Spring web.itu.edu.tr/yumakk. Distance Protection
Distance Protection Announcement: You are not supposed to prepare a pre-report. But there will be an oral examination, so you are strongly advised to study this note regarding to the pre-study questions
Bill is the author of 15 papers and lectures on transmission lines and other power system topics.
Transmission Lines Electricity s Highway This talk starts with an explanation of Surge Impedance Loading and demonstrates how it is used for transmission line work. The St. Clair Curve widely used in transmission
Power products and systems. Intelligent solutions for power distribution Zone concept
Power products and systems Intelligent solutions for power distribution Zone concept Securing continuous power supply ABB is one of the world's leading power and automation technology companies whose products,
1 Introduction. 2 The Symmetrical Component Transformation. J.L. Kirtley Jr.
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.06 Introduction to Power Systems Class Notes Chapter 4 Introduction To Symmetrical Components J.L. Kirtley
Hyperlinks are Inactive
Prepared by: NIB/EOB PLANNING GUIDE FOR SINGLE CUSTOMER SUBSTATIONS SERVED FROM TRANSMISSION LINES 05503 Department: Electric T&D Section: T&D Engineering and Technical Support Approved by: G.O. Duru (GOD)
Power Technology Issue 104. Modeling of Two-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E
SIEMENS Siemens Energy, Inc. Power Technology Issue 104 Modeling of TwoWinding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E Carlos GrandeMoran, Ph.D. Principal Consultant
Fault Characteristics in Electrical Equipment
1. Introduction Proper design and installation of electrical equipment minimizes the chance of electrical faults. Faults occur when the insulation system is compromised and current is allowed to flow through
100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center. 598 N. Buth Rd 3215 Arrowhead Rd
100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center Introduction Roger Hedding Steven Schoenherr, P.E. ABB Inc. Minnesota Power 598 N. Buth Rd 3215 Arrowhead Rd Dousman,
Isolated-Parallel UPS Configuration
Isolated-Parallel UPS Configuration 1 Inhalt 1 Introduction... 4 2 IP systems configuration... 6 3 Projects... 17 4 Conclusions... 17 2 Abstract The isolated-parallel UPS configuration has become well
Low Voltage Transformer Through-Fault Protection: A System Approach
Data Bulletin 7400DB1001 Nashville, TN USA Low Voltage Transformer Through-Fault Protection: A System Approach Introduction Low Voltage Transformer Protection Criteria NEC Article 450 Transformers and
Wide Area Monitoring Current Continental Europe TSOs Applications Overview
Wide Area Monitoring Current Continental Europe TSOs Applications Overview Version 5 System Protection & Dynamics Working Group 20th September 2015 1. Content 1. Content... 2 2. Introduction... 3 3. Main
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC
How To Swap Output Phases Of A Power Supply With A Power Converter
211 2nd Power Electronics, Drive Systems and Technologies Conference A New phase sequence Detector for the Three-Phase Rotary Loads M. Alizadeh Bidgoli, A. Soori, M. Tavakoli Bina K. N. Toosi University
Agilent Technologies. Troubleshooting Three-Phase AC Motors with U1210 Series Handheld Clamp Meters. Application Note
Agilent Technologies Troubleshooting Three-Phase AC Motors with U1210 Series Handheld Clamp Meters Application Note INTRODUCTION In today s world, the three-phase AC induction motors are widely used in
7. Reactive energy compensation
593 7. Reactive energy compensation 594 7. REACTIVE ENERGY COMPENSATION Reactive energy compensation is an important element for reducing the electricity bill and improving the quality of the electrical
Instrument Transformers Application Guide
Instrument Transformers Application Guide Edited by ABB AB High Voltage Products Department: Marketing & Sales Text: Knut Sjövall, ABB Layout, 3D and images: Mats Findell, ABB SE-771 80 LUDVIKA, Sweden
Power Quality Paper #3
The Effect of Voltage Dips On Induction Motors by: M D McCulloch 1. INTRODUCTION Voltage depressions caused by faults on the system affect the performance of induction motors, in terms of the production
Impedance Matching. Using transformers Using matching networks
Impedance Matching The plasma industry uses process power over a wide range of frequencies: from DC to several gigahertz. A variety of methods are used to couple the process power into the plasma load,
Transfer Equipment Controls
Control Types Manual Transfer Switches Nonautomatic Transfer Switches Automatic Transfer Switches The type of control system for the transfer switch will vary depending on the type of switching equipment
RISH EM 3490 DS Dual Source Energy Meter RISH EM 3490 DS. Application : Product Features:
Application : RISH Master 3490 DS measures important electrical parameters of Utility (in normal mode) & Generators (in Power back up) in three phase and single phase Network & replaces the multiple analog
COMPLIANCE REVIEW OF 2006/07 ASSET MANAGEMENT PLAN. Top Energy Limited
PB ASSOCIATES COMPLIANCE REVIEW OF 2006/07 ASSET MANAGEMENT PLAN Prepared for PB Associates Quality System: Document Identifier : 153162 Top Energy Final Report Revision : 2 Report Status : Final Date
HVDC 2000 a new generation of high-voltage DC converter stations
HVDC 2000 a new generation of high-voltage DC converter stations Improved performance and robustness, shorter lead times and faster delivery, plus reduced maintenance needs, were the development goals
For a phase-to-phase voltage between 100 V and 1000 V. The standard ratings are: 400 V - 690 V - 1000 V (at 50 Hz)
24 1. NETWORK CONFIGURATIONS definition Standard IEC 38 defines voltage ratings as follows: - Low voltage () For a phase-to-phase voltage between 100 V and 1000 V. The standard ratings are: 400 V - 690
Topic Suggested Teaching Suggested Resources
Lesson 1 & 2: DC Networks Learning Outcome: Be able to apply electrical theorems to solve DC network problems Electrical theorems and DC network problems Introduction into the unit contents, aims & objectives
Full representation of the real transformer
TRASFORMERS EQVALET CRCT OF TWO-WDG TRASFORMER TR- Dots show the points of higher potential. There are applied following conventions of arrow directions: -for primary circuit -the passive sign convention
Lab 14: 3-phase alternator.
Lab 14: 3-phase alternator. Objective: to obtain the no-load saturation curve of the alternator; to determine the voltage regulation characteristic of the alternator with resistive, capacitive, and inductive
Product Data Bulletin
Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system
Connection of micro-generation to the electricity distribution network
Connection of micro-generation to the electricity distribution network Network recommendation YA9:09 Sivu 1(20) CONTENTS INTRODUCTION...3 1. MARKINGS AND DEFINITIONS...3 2. DEFINITION OF MICRO-GENERATION
(3 )Three Phase Alternating Voltage and Current
EEE 2015 EECTRCS (3) Monophase 1 Three phase Three phase electric power is a common method of alternating current electric power generation, transmission, and distribution. t is a type of polyphase system
LIMITING SHORT-CIRCUIT CURRENTS IN MEDIUM-VOLTAGE APPLICATIONS
LIMITING SHORT-CIRCUIT CURRENTS IN MEDIUM-VOLTAGE APPLICATIONS Terence Hazel Senior Member IEEE Schneider Electric 38050 Grenoble France Abstract The power requirements for large industrial sites is increasing.
Network Theory Question Bank
Network Theory Question Bank Unit-I JNTU SYLLABUS: Three Phase Circuits Three phase circuits: Phase sequence Star and delta connection Relation between line and phase voltages and currents in balanced
Power transformers. Special transformers Railway
Power transformers Special transformers Railway A leader in railway systems Our compact and low-weight transformers fully comply with the customer s specifications. The products are developed together
