# Timing Errors and Jitter

Size: px
Start display at page:

Transcription

1 Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big at this instant and does subsequent maths on it. In most digital systems, the assumption is that samples are taken on a regular basis, controlled by a clock. They are exactly equally spaced in time. This is reflected in the maths, which is written in terms of z 0, z -, z -2, etc with z representing a sample period. To do DSP, we do not need all samples evenly spaced but the maths is best left to someone else if they are not. In any case, modern ADCs are best suited to producing a regular stream of evenly spaced samples. As in all things where we want perfection there are sources of error. There are small variations in timing for the reference points at which the samples are supposedly taken, and there are in addition much larger (although less important) errors in the timing of when the samples, or subsequently processed samples, are presented to the outside world. The names for these things are not all well established in DSP literature, so the terms used here are given below. In some literature, the terms jitter is used to cover all these effects but this should be treated with caution. The errors in the reference point are either (a) random (like noise) or (b) related to the signal. The latter are not often referred to in the literature, but are probably the single most performance limiting aspect of ADCs and DACs as the frequency goes up. Their effect shows up in non-linearity measurements. The third effect (c) is a variation in when a data bit becomes valid, and is mainly of concern to digital designers. It can be a problem for conversion of the digital signal back to analogue. We (dcs) refer to these types of timing variations as: (a) Jitter (b) Signal related timing error (SRTE) (c) Data jitter Jitter is often quoted as being the cause of some audible problem when no other explanation is clearly forthcoming. In the author s view, this is not always correct. Jitter certainly causes measurable effects, and these are as audible as the measurement would suggest. It also would appear to cause some effects that are rather hard to explain 2 but it is probably not the cause of all the problems ascribed to it. There are a number of methods of measuring jitter. Because we are often looking in the psec region, this is not easy to see on a scope, so test methods that measure it by implication are sometimes used. The user should be careful to check that these methods really are measuring jitter, and not something else. Scale of the Problem Jitter causes a problem when analogue source material is first converted to digital because for one reason or another the sample is taken at slightly the wrong instant. It can also cause a problem when a digital signal is turned back to analogue, because the assumption that the signal was this big for one sample period breaks down (the DAC gets this big right but it gets the sample period wrong). In between, as long as the equipments are synchronous, data jitter is only a problem if it causes the receiving bit of equipment to make an error and 2 with dcs Ltd, Mull House, Great Chesterford Court, Great Chesterford, Saffron Walden, UK for example, in one demonstration using the same analogue source material, the same ADC and the same DAC, but changing just the digital interface used between them, one particular backing vocal dramatically changed in prominence Page of 6 Issue 2

2 if it causes build up of low frequency jitter such that it cannot be removed by the final DAC. Such a build up can be completely eliminated by the distribution and use of a master clock. For asynchronous links (with asynchronous sample rate converters on the input of the receiving equipment), data jitter causes additional jitter to be processed into the data domain, irrevocably. Asynchronous interfacing should be used with care. For both (a) and (b) a small timing error δt causes a problem only when a signal is slewing. For an ADC, with an input signal slewing at δv/δt then the error will be δv. For a DAC, which puts out digital values, the error will be related to the difference between two consecutive samples as: δt/t s (A n -A n- ) where t s is the sample period. In both cases, the effect of the jitter δt increases as the signal frequency and the signal amplitude increases. For random jitter (a), a khz sine wave with nsec rms of jitter will cause an amplitude modulated noise signal with rms in the big bits of at 04dB relative to the khz. The overall rms (taking into account the peaks and troughs of the envelope) is approximately 08dB relative to the khz sine. See figure for an exaggerated example. Random Jitter.5 Signal Output with Jitter Error rms effect in noise measurement Signal Amplitude Jitter Amplitude (expanded) Time in usecs Figure For (b), SRTE, where the timing variation is related to the signal, and synchronous to it, the effect is distortion. Figure 2 shows khz sine wave with a large SRTE that is proportional to slew rate (the commonest sort). Note that the peak amplitude of the signal is not affected, but that the shape is the distortion is phase distortion, rather than amplitude distortion. In reality, SRTE with a peak value of nsec, and whose value is proportional to slew rate, will produce a 2 nd harmonic at 0dB relative to a khz sine, and 90dB relative to a 0 khz sine. For any circuitry using a sample/hold (residue converters or switched capacitor oversampling converters) this effect is important. Although not strictly of relevance to audio, for fast circuitry the state of the art for this parameter is about psec, and this limits the accuracy with which a 300 MHz signal can be digitised to about 60dB. Page 2 of 6 Issue 2

3 Signal Related Timing Error (SRTE).5 Signal Output with SRTE SRTE Error Signal Amplitude SRTE Amplitude (expanded) Time in usecs Figure 2 SRTE proportional to slew rate Data jitter (c) depends on the hardware used, and is a function of both the source hardware and the interconnect (cabling). The effect can be minimised at source by re-clocking output data just before the output drivers, and making the output drivers high bandwidth. After this, the interconnect bandwidth must not degrade the waveforms. In practice, degradation of waveforms by long cable runs is probably the most important effect. Figure 3 shows the effect of 20m of twisted pair cabling on a double speed AES3 signal for 96 ks/s use, with the top trace the waveform at source prior to balanced pair transmission, and the bottom trace the waveform after the differential receiver at the end of the cable run. The scope is triggered from the transmitted data, and due to cable delays, the transitions are not the same. Data jitter is nearly 5 nsecs p-p. Figure 3 Data Jitter due to cabling see text Page 3 of 6 Issue 2

4 Where Does Jitter Come From? (Random) jitter originates in clock circuitry. Crystal based clocks (XCO s, VCXO s) generally have the lowest jitter but they still have some. Manufacturers plot the spectrum of crystal oscillators in terms of offset from the nominal frequency, as in figure 4 (solid line). They generally refer to this as the phase noise plot. We can turn this information into jitter as follows 3 : (a) Assume that half the power in the area of the spectrum away from the nominal frequency is due to phase noise (phase errors, rather than amplitude errors) in the oscillator output. (b) RMS up the phase errors, as one does for ordinary noise, to get rms radians error (for example, the error sums up to radians rms from 0Hz to MHz offset) (c) Use the oscillator centre frequency to turn radians into secs (for example, for a MHz oscillator radian 6.48 nsecs, so our example has 3 psecs rms jitter from Hz to MHz offset. Phase Noise from Good VCXO psecs Phase Noise rel Fundamental in Hz psecs Offset Noise in Hz jitter for decade 0.3 psecs 0 0. Integrated Jitter, for decade, in psecs psecs Offset from Fundamental Figure 4 Figure 4 also shows what parts of the phase noise spectrum contribute to jitter. It shows some interesting points: The phase noise in the oscillator close to the nominal frequency (close to carrier phase noise) makes a big contribution to the jitter. It is likely that this jitter does not have much perceived effect on audio, because to detect it, our ears would have to have higher Q detection mechanisms than a crystal. In fact, the ears frequency discriminating mechanism has a Q of less than 0, whereas crystals have a Q of 0,000 upwards. By khz, there is very little contribution being made However, above this as we approach the thermal noise floor of around 50dBc to -60dBc, the effect builds up again by the time noise is integrated up over many MHz. Clock circuitry in digital equipment in inherently quite wide bandwidth, and we must allow for this in our integration. There are other sources of jitter inside equipment, that may contribute substantially more than the VCXO. Typically, these might be power supply noise causing variation in logic level See, for example, Phase-Locked Loop Circuit Design Dan H.Wolaver, published by Prentice-Hall Inc, 99. ISBN Page 4 of 6 Issue 2

5 switch points. With a slow edge speed, the variation will cause small timing variations in the apparent switching instant - jitter. Data Jitter and Clock Recovery In the absence of a distributed master clock, items in a digital audio chain have to recover their clocks from the data stream they are fed. They will generally do this by locking a local phase locked loop (PLL) to the incoming data stream, and to keep data transfers inside the equipment synchronous, this locked clock is then used internally. The PLL usually locks to the edges in the incoming data stream, because these are convenient timing points. The incoming edges will have jitter from their controlling oscillator (psecs) and additional data jitter the latter often of several nsecs. The PLL has to filter this out, which it does by effectively averaging over many incoming edges. The averaging is performed by making the bandwidth of the oscillator control loop small. For example, a control loop bandwidth of Hz effectively averages over a period of /2π seconds. For a PLL locking to a 48kS/s AES3 data stream, and looking for sync codes (these occur at 96kHz) averaging is effectively over about 5,000 edges, which will reduce the data jitter by 5,000 times (about 24 times) if the spectrum of the jitter is flat. AES3 at 48 ks/s allows a peak to peak jitter of 80 nsecs on a data edge (it is usually better than this) which is equivalent to about 3 nsecs rms jitter. Reducing this by 24 times (above) will drop it to around 0 psecs rms. In practice, things are better than this: the spectrum of the jitter is not flat, but is slightly noise shaped, so the averaging works better than expected, and the data jitter is not usually as bad as the spec allows, although long cable runs will make it bad again. Use of a FIFO to store incoming data works in exactly the same way, by allowing a very low bandwidth in the control loop of the PLL used. It does not eliminate jitter it is just easier to achieve low control loop bandwidths. Note that for this to offer lower bandwidths than a conventional analogue PLL, and for the FIFO to operate half full, FIFO depths of 64K or more are needed. If this method of synchronising items in a digital audio chain is used (locking to the previous equipment rather than a distributed master clock), then it becomes important to avoid jitter build up in the area of a few Hz around the centre frequencies of the various oscillators used in the chain. Data Jitter and Asynchronous Sample Rate Converters Asynchronous sample rate converters can respond to data jitter and process it into the signal, irrevocably. For this reason they should be used with care, and if they have to be used, should be used with low data jitter sources with short cable runs. Optical Interfaces Optical interfaces are sometimes thought to have desirable properties, and occasionally one sees this extended to having some low jitter property. Optical interfaces certainly do offer very good immunity to electrical interference, and also very wide bandwidth to an optical signal that has been injected into them. However, the problem is usually that: the optical power that can be injected into them is limited, the bandwidth with which the signal can be injected is limited, or the transmitter is expensive and losses at connectors build up rapidly, so that the optical signal reaching the far end is small if more than a few connectors are involved Page 5 of 6 Issue 2

6 The signal reaching the far end is usually sufficiently small that the receiver has to carefully control (minimise) its bandwidth to get adequate signal/noise ratio. Minimising bandwidth is just the mechanism that increases data jitter, because it reduces the slew rate associated with a logic transition. The position can be improved if laser diodes (rather than the more common LEDs) are used to inject signal into the link, because more signal can be injected into the link but laser diodes are very expensive. Optical links are fine for telecomms applications, where links cover large distances uninterrupted (no connector losses) and expensive transmitters can be used. They are also of value where the high bandwidth of the link makes the cost of a high bandwidth driver (and receiver) economic for example, some multi-channel applications. For the relatively short links used in two channel audio, the benefits are less clear. If low jitter is sought, we recommend that optical interfaces should be minimised or avoided. Page 6 of 6 Issue 2

### CLOCK AND SYNCHRONIZATION IN SYSTEM 6000

By Christian G. Frandsen Introduction This document will discuss the clock, synchronization and interface design of TC System 6000 and deal with several of the factors that must be considered when using

### Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D.

Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D. Abstract: The definition of a bit period, or unit interval, is much more complicated than it looks. If it were just the reciprocal of the data

### GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy

GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy Introduction A key transmitter measurement for GSM and EDGE is the Output RF Spectrum, or ORFS. The basis of this measurement

### Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

### QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications

0 QAM Demodulation o o o o o Application area What is QAM? What are QAM Demodulation Functions? General block diagram of QAM demodulator Explanation of the main function (Nyquist shaping, Clock & Carrier

### DEVELOPMENT OF DEVICES AND METHODS FOR PHASE AND AC LINEARITY MEASUREMENTS IN DIGITIZERS

DEVELOPMENT OF DEVICES AND METHODS FOR PHASE AND AC LINEARITY MEASUREMENTS IN DIGITIZERS U. Pogliano, B. Trinchera, G.C. Bosco and D. Serazio INRIM Istituto Nazionale di Ricerca Metrologica Torino (Italia)

### RF Network Analyzer Basics

RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

### Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 1304-6

Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements Application Note 1304-6 Abstract Time domain measurements are only as accurate as the trigger signal used to acquire them. Often

### Basics of Digital Recording

Basics of Digital Recording CONVERTING SOUND INTO NUMBERS In a digital recording system, sound is stored and manipulated as a stream of discrete numbers, each number representing the air pressure at a

### Application Note Noise Frequently Asked Questions

: What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random

### Non-Data Aided Carrier Offset Compensation for SDR Implementation

Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center

### VCO Phase noise. Characterizing Phase Noise

VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which

### Introduction to Digital Audio

Introduction to Digital Audio Before the development of high-speed, low-cost digital computers and analog-to-digital conversion circuits, all recording and manipulation of sound was done using analog techniques.

### Modification Details.

Front end receiver modification for DRM: AKD Target Communications receiver. Model HF3. Summary. The receiver was modified and capable of receiving DRM, but performance was limited by the phase noise from

### PCM Encoding and Decoding:

PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth

### Optimizing VCO PLL Evaluations & PLL Synthesizer Designs

Optimizing VCO PLL Evaluations & PLL Synthesizer Designs Today s mobile communications systems demand higher communication quality, higher data rates, higher operation, and more channels per unit bandwidth.

### Understand the effects of clock jitter and phase noise on sampled systems A s higher resolution data converters that can

designfeature By Brad Brannon, Analog Devices Inc MUCH OF YOUR SYSTEM S PERFORMANCE DEPENDS ON JITTER SPECIFICATIONS, SO CAREFUL ASSESSMENT IS CRITICAL. Understand the effects of clock jitter and phase

### The Phase Modulator In NBFM Voice Communication Systems

The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called

### Simplifying System Design Using the CS4350 PLL DAC

Simplifying System Design Using the CS4350 PLL 1. INTRODUCTION Typical Digital to Analog Converters (s) require a high-speed Master Clock to clock their digital filters and modulators, as well as some

### ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

### Experiment # (4) AM Demodulator

Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (4) AM Demodulator Communications Engineering I (Lab.) Prepared by: Eng. Omar A. Qarmout Eng. Mohammed K. Abu Foul Experiment

### Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

### T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

### Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption

Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption Introduction By: Analog Devices, Inc. (ADI) Daniel E. Fague, Applications

### Ultrasound Distance Measurement

Final Project Report E3390 Electronic Circuits Design Lab Ultrasound Distance Measurement Yiting Feng Izel Niyage Asif Quyyum Submitted in partial fulfillment of the requirements for the Bachelor of Science

### Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:

Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional

### RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

### Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care. by Walt Kester

ITRODUCTIO Taking the Mystery out of the Infamous Formula, "SR = 6.0 + 1.76dB," and Why You Should Care by Walt Kester MT-001 TUTORIAL You don't have to deal with ADCs or DACs for long before running across

### W a d i a D i g i t a l

Wadia Decoding Computer Overview A Definition What is a Decoding Computer? The Wadia Decoding Computer is a small form factor digital-to-analog converter with digital pre-amplifier capabilities. It is

### Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

### USB 3.0 CDR Model White Paper Revision 0.5

USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

### AN-837 APPLICATION NOTE

APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

### AN-756 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com

APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com Sampled Systems and the Effects of Clock Phase Noise and Jitter by Brad Brannon

### Multi-Carrier GSM with State of the Art ADC technology

Multi-Carrier GSM with State of the Art ADC technology Analog Devices, October 2002 revised August 29, 2005, May 1, 2006, May 10, 2006, November 30, 2006, June 19, 2007, October 3, 2007, November 12, 2007

### Jitter Transfer Functions in Minutes

Jitter Transfer Functions in Minutes In this paper, we use the SV1C Personalized SerDes Tester to rapidly develop and execute PLL Jitter transfer function measurements. We leverage the integrated nature

Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range

### Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

### Managing High-Speed Clocks

Managing High-Speed s & Greg Steinke Director, Component Applications Managing High-Speed s Higher System Performance Requires Innovative ing Schemes What Are The Possibilities? High-Speed ing Schemes

### Analog Representations of Sound

Analog Representations of Sound Magnified phonograph grooves, viewed from above: The shape of the grooves encodes the continuously varying audio signal. Analog to Digital Recording Chain ADC Microphone

### EECC694 - Shaaban. Transmission Channel

The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,

### Title: Low EMI Spread Spectrum Clock Oscillators

Title: Low EMI oscillators Date: March 3, 24 TN No.: TN-2 Page 1 of 1 Background Title: Low EMI Spread Spectrum Clock Oscillators Traditional ways of dealing with EMI (Electronic Magnetic Interference)

### DAC Digital To Analog Converter

DAC Digital To Analog Converter DAC Digital To Analog Converter Highlights XMC4000 provides two digital to analog converters. Each can output one analog value. Additional multiple analog waves can be generated

### DAC-R. Digital to Analogue Converter

DAC-R Digital to Analogue Converter Contents Introduction 1 Technology 2 Front panel indicators & operation 3 Back panel - inputs and outputs 4 In use - Digital output & optical inputs 5 Filter settings

### Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1

ing Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle 6.884 - Spring 2005 2/18/05

### Lab 5 Getting started with analog-digital conversion

Lab 5 Getting started with analog-digital conversion Achievements in this experiment Practical knowledge of coding of an analog signal into a train of digital codewords in binary format using pulse code

### Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,

### LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS

LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS March 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com

### INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

### The Future of Multi-Clock Systems

NEL FREQUENCY CONTROLS, INC. 357 Beloit Street P.O. Box 457 Burlington,WI 53105-0457 Phone:262/763-3591 FAX:262/763-2881 Web Site: www.nelfc.com Internet: sales@nelfc.com The Future of Multi-Clock Systems

### FREQUENCY RESPONSE ANALYZERS

FREQUENCY RESPONSE ANALYZERS Dynamic Response Analyzers Servo analyzers When you need to stabilize feedback loops to measure hardware characteristics to measure system response BAFCO, INC. 717 Mearns Road

### 155 Mb/s Fiber Optic Light to Logic Receivers for OC3/STM1

155 Mb/s Fiber Optic Light to Logic Receivers for OC3/STM1 Application Note 1125 RCV1551, RGR1551 Introduction This application note details the operation and usage of the RCV1551 and RGR1551 Light to

### Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)

### Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have

### Clock Jitter Definitions and Measurement Methods

January 2014 Clock Jitter Definitions and Measurement Methods 1 Introduction Jitter is the timing variations of a set of signal edges from their ideal values. Jitters in clock signals are typically caused

### Abstract. Cycle Domain Simulator for Phase-Locked Loops

Abstract Cycle Domain Simulator for Phase-Locked Loops Norman James December 1999 As computers become faster and more complex, clock synthesis becomes critical. Due to the relatively slower bus clocks

### The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally

### FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER

2014 Amplifier - 1 FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER The objectives of this experiment are: To understand the concept of HI-FI audio equipment To generate a frequency response curve for an audio

### Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)

Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques

### DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS

DDX 7000 & 8003 Digital Partial Discharge Detectors The HAEFELY HIPOTRONICS DDX Digital Partial Discharge Detector offers the high accuracy and flexibility of digital technology, plus the real-time display

### MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com

MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com Abstract: Ultra Narrow Band Modulation ( Minimum Sideband Modulation ) makes

### Agilent 8904A Multifunction Synthesizer dc to 600 khz

Agilent 8904A Multifunction Synthesizer dc to 600 khz Technical Specifications Build complex waveforms from common signals The Agilent Technologies 8904A Multifunction Synthesizer uses VLSIC technology

### PCI Express Transmitter PLL Testing A Comparison of Methods. Primer

PCI Express Transmitter PLL Testing A Comparison of Methods Primer Primer Table of Contents Abstract...3 Spectrum Analyzer Method...4 Oscilloscope Method...6 Bit Error Rate Tester (BERT) Method...6 Clock

### Clocks Basics in 10 Minutes or Less. Edgar Pineda Field Applications Engineer Arrow Components Mexico

Clocks Basics in 10 Minutes or Less Edgar Pineda Field Applications Engineer Arrow Components Mexico Presentation Overview Introduction to Clocks Clock Functions Clock Parameters Common Applications Summary

### TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This

### LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays

AN-5059 Fairchild Semiconductor Application Note May 2005 Revised May 2005 LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays Differential technologies such as

### 11. High-Speed Differential Interfaces in Cyclone II Devices

11. High-Speed Differential Interfaces in Cyclone II Devices CII51011-2.2 Introduction From high-speed backplane applications to high-end switch boxes, low-voltage differential signaling (LVDS) is the

### The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal

### DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

Receive Line Interface www.dalsemi.com FEATURES Line interface for T1 (1.544 MHz) and CEPT (2.048 MHz) primary rate networks Extracts clock and data from twisted pair or coax Meets requirements of PUB

### Jitter in PCIe application on embedded boards with PLL Zero delay Clock buffer

Jitter in PCIe application on embedded boards with PLL Zero delay Clock buffer Hermann Ruckerbauer EKH - EyeKnowHow 94469 Deggendorf, Germany Hermann.Ruckerbauer@EyeKnowHow.de Agenda 1) PCI-Express Clocking

### ECONseries Low Cost USB DAQ

ECONseries Low Cost USB Data Acquisition Modules ECONseries Low Cost USB DAQ The ECONseries is a flexible yet economical series of multifunction data acquisition modules. You choose the number of analog

### Signal Types and Terminations

Helping Customers Innovate, Improve & Grow Application Note Signal Types and Terminations Introduction., H, LV, Sinewave, Clipped Sinewave, TTL, PECL,,, CML Oscillators and frequency control devices come

### Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

### Propagation Channel Emulator ECP_V3

Navigation simulators Propagation Channel Emulator ECP_V3 1 Product Description The ECP (Propagation Channel Emulator V3) synthesizes the principal phenomena of propagation occurring on RF signal links

### DVB-T. The echo performance of. receivers. Theory of echo tolerance. Ranulph Poole BBC Research and Development

The echo performance of DVB-T Ranulph Poole BBC Research and Development receivers This article introduces a model to describe the way in which a single echo gives rise to an equivalent noise floor (ENF)

### 2.1 CAN Bit Structure The Nominal Bit Rate of the network is uniform throughout the network and is given by:

Order this document by /D CAN Bit Timing Requirements by Stuart Robb East Kilbride, Scotland. 1 Introduction 2 CAN Bit Timing Overview The Controller Area Network (CAN) is a serial, asynchronous, multi-master

### Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative

### SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION

1 SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION By Lannes S. Purnell FLUKE CORPORATION 2 This paper shows how standard signal generators can be used as leveled sine wave sources for calibrating oscilloscopes.

### Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage

Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport

### AM/FM/ϕM Measurement Demodulator FS-K7

Data sheet Version 02.00 AM/FM/ϕM Measurement Demodulator FS-K7 July 2005 for the Analyzers FSQ/FSU/FSP and the Test Receivers ESCI/ESPI AM/FM/ϕM demodulator for measuring analog modulation parameters

### RF Communication System. EE 172 Systems Group Presentation

RF Communication System EE 172 Systems Group Presentation RF System Outline Transmitter Components Receiver Components Noise Figure Link Budget Test Equipment System Success Design Remedy Transmitter Components

### bel canto The Computer as High Quality Audio Source A Primer

The Computer as High Quality Audio Source A Primer These are exciting times of change in the music world. With CD sales dropping and downloaded MP3 music, streamed music and digital music players taking

### PERF10 Rubidium Atomic Clock

Owner s Manual Audio Stanford Research Systems Revision 1.0 February, 2011 2 Certification Stanford Research Systems certifies that this product met its published specifications at the time of shipment.

### Clocking, Jitter and the Digidesign 192 I/O Audio Interface

TECHNICAL WHITE PAPER Prepared by Gannon Kashiwa Clocking, Jitter and the Digidesign 192 I/O Audio Interface In this paper, we will discuss the nature of clocking and jitter in digital audio interfaces

### Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note

Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?

Glitch Free Frequency Shifting Simplifies Timing Design in Consumer Applications System designers face significant design challenges in developing solutions to meet increasingly stringent performance and

### Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency

### Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008

Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008 As consumer electronics devices continue to both decrease in size and increase

### DRIVING LOOOONG CABLES

DRIVING LOOOONG CABLES INTRODUCTION Microphone or line level cables may appear to be foolproof compared to loudspeaker cables. However, they are not. In particular you can easily encounter high frequency

### Jitter Budget for 10 Gigabit Ethernet Applications with SiTime SiT9120/1 Oscillators

February 2014 Jitter Budget for 10 Gigabit Ethernet Applications with SiTime SiT9120/1 Oscillators 1 Introduction The 10 Gigabit Ethernet (10GbE) specifications are defined in clauses 44 through 54 of

### Synchronization of sampling in distributed signal processing systems

Synchronization of sampling in distributed signal processing systems Károly Molnár, László Sujbert, Gábor Péceli Department of Measurement and Information Systems, Budapest University of Technology and

### Yamaha Power Amplifier. White Paper

Yamaha Power Amplifier White Paper August 2008 Table of Contents 1. About EEEngine...2 1.1. Introduction...2 1.2. Explanation of different amplifier topologies...2 2. Yamaha technology...5 2.1. Dual mono-amplifier

### CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC

CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC 1. INTRODUCTION The CBS Records CD-1 Test Disc is a highly accurate signal source specifically designed for those interested in making

MAINTENANCE & ADJUSTMENT Circuit Theory The concept of PLL system frequency synthesization is not of recent development, however, it has not been a long age since the digital theory has been couplet with

### A Multichannel Storage Capacitor System for Processing of Fast Simultaneous Signals. Atsushi Ogata. IPPJ-T-16 Oct. 1973

A Multichannel Storage Capacitor System for Processing of Fast Simultaneous Signals Atsushi Ogata IPPJ-T-16 Oct. 1973 A Multichannel Storage Capacitor System for Processing of Fast Simultaneous Signals

### Jitter in (Digital) Audio

Jitter in (Digital) Audio 1. Summary Jitter is not different from phase noise. Jitter is defined in the time domain and phase noise in the frequency domain. They can't be related to each other directly

### Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal 2013 The MathWorks, Inc. 1 Outline of Today s Presentation Introduction to

### Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP

Products: Spectrum Analyzer FSP Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP This application note explains the concept of Adjacent Channel Leakage Ratio (ACLR) measurement