MATH 2030: SYSTEMS OF LINEAR EQUATIONS. ax + by + cz = d. )z = e. while these equations are not linear: xy z = 2, x x = 0,

Size: px
Start display at page:

Download "MATH 2030: SYSTEMS OF LINEAR EQUATIONS. ax + by + cz = d. )z = e. while these equations are not linear: xy z = 2, x x = 0,"

Transcription

1 MATH 23: SYSTEMS OF LINEAR EQUATIONS Systems of Linear Equations In the plane R 2 the general form of the equation of a line is ax + by = c and that the general equation of a plane in R 3 will be we call these type of equations linear. ax + by + cz = d Definition.. A linear equation in the n variables x, x 2,..., x n is an equation that may be written in the form a x + b 2 x a n x n = b where the coefficients a,..., a n and the constant term are constants. Example.2. The following equations are linear: 2x + y = 3, r 2 3 s 5 8 t = 3, x x 2 + 2x 3 = 3, 2x + π 4 y tan( 4 2 )z = e. while these equations are not linear: xy z = 2, x 2 + x 2 2 =, x y = 3z, 2r + s =, 2x + π 2 4 sin( 4 2z) = e. A solution of a linear equation a x +...+a n x n = b is a vector [s, s 2,..., s n ] whose components satsify the equation when we substitute x i = s i for i [, n]. Example.3. In the first example, one possible solution to the first linear equation would be [2, ] since the substitution of x = 2 and y = yields 2(2) + ( ) = 3. The vector [, ] is another solution. We already know this describes a line in the plane, and this may be written parametrically by letting x = t and solving for y, to produce [t, 3 2t]. The linear equation x x 2 + 2x 3 = 3 has [3,, ] and [,, 2] and [6,, ] as specific solutions. Of course, in R 3 this describes a plane. To see this, set x 2 = s and x 3 = t then the solutions are described parametrically by [3 + s 2t, s, t]. A system of linear equations is a fine set of linear equation, each with the same variables. A solution of a system of linear equations is a vector that is simultaneously a solution of each equation in the system. The solution set of a system of linear equations will be the set of all solutions of the system. We will call the process of calculating the solution set, solving the system. Example.4. The system, x + y =, x y = has [ 2, 2 ] as a solution, since it satisfies both equations. Notice that the vector [, ] is not a solution as it only satisfies the second equation and not the first. Example.5. In R 2 there are three typical cases for linear equations x + y =, x y =, here the lines intersect once with the solution [ 2, 2 ].

2 2 MATH 23: SYSTEMS OF LINEAR EQUATIONS x y =, 2x 2y = 2, here the lines intersect infinitely many times with the form [t, t ]. x y =, x y = 2, this equation has no solution. Geometrically these represent parallel lines, to see that this has no solution solve for in the first and substitute into the second, we find that = 2 which cannot happen on the real line. From these examples we add a few terms: a system of linear equations is consistent if it has at least one solution, a system with no solutions will be called inconsistent. Despite their simplicity the three systems in the previous example illustrate the only three possibilities for the number of solutions of a system of linear equations with real coefficients. For the moment this will be unproven but we have the following Proposition for any system of linear equations Proposition.6. A system of linear equations with real coefficients has either A unique solution (consistent) infinitely many solutions (consistent) no solutions (inconsistent). Solving a System of Linear Equations. To start we must introduce the concept of equivalence between linear systems, we say two linear systems are equivalent if they have the same solution sets. As an example, x y =, x + y = 3, x y =, y = have the same unique solution [2, ] and so they are equivalent. This example illustrates how we will go about finding the solution to a given system of linear equations; by finding increasingly simpler yet equivalent linear systems we may determine the solution by inspection, as in this example where the triangular pattern of the second system gives y = automatically. Example.7. Q What is the solution to the system x y z = 2, y + 3z = 5, 5z = A: Taking the last equation, solving for z = 2 and substituting this value into the remaining two we find that these become: x y = 4, y =. Repeating the process with y = we find x = 3. Thus [3,, 2] is a solution to this system. In this last example we used back substitution, using this tool we will determine a general strategy for transforming a given system into an equivalent one that can be solved easily. Without saying too much we will illustrate this approach with one last example Example.8. Q: Solve the system x y z = 2, 3x 3y + 2z = 6, 2x y + z = 9. A: As a start towards reducing this to a simple triangular form, as in the last example, we would like to remove the coefficient of the x-term to zero in the second and third equation. This may be done by multiplying the first equation by an appropriate constant and subtracting this new equation from the one we wish to

3 MATH 23: SYSTEMS OF LINEAR EQUATIONS 3 change. This will not affect x,y or z and so this may be written more compactly as x y = 6, or z where the first three columns contain the coefficients of the variables in order, the final column contains the constant terms and the vertical bar is meant to differentiate equality versus a sum of terms. This matrix is called the augmented matrix of the system. As we have yet to introduce the operation that will act on the matrix we will work with the system as linear equations and illustrate how our actions reflect on the augmented matrix of each system. x y z = 2 3x 3y + 2z = 6 2x y + z = Subtract 3 times the first equation from the second equation x y z = 2 2 5z = 5 2x y + z = Subtract 2 times the first equation from the third equation, x y z = 2 2 5z = 5 y + 3 = Interchange the second and third equations x y z = 2 2 y + 3 = z = 5 We can stop here, we ve found a simpler equivalent system from which we can read off the required values for this system as [3,, 2]. Thus these two examples are equivalent systems despite appearances otherwise. The above calculation shows that any solution of the given system is also a solution of the final one. As this process is reversible we have found a way to change from one equivalent system to another and backwards if need be. Furthermore these operations may be expressed as operations on the components of matrices so we may as well work with matrices since they are equivalent to systems of linear equations. Direct Methods for Solving Linear Systems We want to make this procedure more systematic and generalized for any system of linear equations. We will do this by reducing the augmented matrix of a system of linear equations to a simpler form where back substitution produces the solution. Echelon form of matrices. For any linear system we will define two helpful matrices that will be important in the work to come, the coefficient matrix containing the coefficients of the variables, and the augmented matrix which is the coefficient matrix with an extra column added containing the constant terms of the linear system.

4 4 MATH 23: SYSTEMS OF LINEAR EQUATIONS From the last example, the augmented matrix related to the linear system is again, x y z = 2 2 3x 3y + 2z = x y + z = and so the coefficient matrix for this system is If a variable, say x i is missing in the j th linear equation in the system, the (i, j)-th component will have a zero. Symbolically if we denote the coefficient matrix as A and the column vector of the constant term for each equation as b, the augmented matrix is [A b]. There will be times where a matrix may not be simplified to a triangular form; it is possible to simplify a matrix to a another helpful form nonetheless Definition.9. A matrix is in row echelon form if it satisfies the properties Any rows consisting entirely of zeros are at the bottom. In each nonzero row, the first nonzero entry, the leading entry is in a column to the left of any leading entries below it. Example.. All of these matrices are in echelon form: , 2 3, For any linear system, the equivalent augmented matrix which has been reduced to row echelon form may be solved using back substitution. Example.. Q: If we assume that each of the above matrices are augmented matrices, determine their solutions if any. A: Transforming each augmented matrix to the corresponding set of linear equations will facilitate back substitution () The equations are x + y = 2, 3y = 5 and so the solution will be [ 3, 5 3 ]. (2) Here the linear system is x = 3, 2x 2 = 3 and = 2. This cannot happen and so the system has no solution. (3) Noticing that the bottom row of this matrix implies = 5 and so we conclude no solution exists. Elementary Row Operations. To describe the procedure for reducing a matrix to row echelon form we should define the operations on a matrix that maintain the equivalence between linear systems and their augmented matrices, called elementary row operations. Definition.2. The following elementary operations can be performed on a matrix () Interchange two rows. (2) Multiply a row by a nonzero constant. (3) Add a multiple of a row to another row.

5 MATH 23: SYSTEMS OF LINEAR EQUATIONS 5 To facilitate calculations we will use a short hand to denote the row operations symbolically R i R j denotes an interchange of the i-th and j-th rows. kr i implies we multiply the i-th row by k. Adding a multiple of the i-th row to the j-th row, is simply kr i + R j The third rule allows one to subtract a row from another using k = and that division of a row s constants by a number r is easily done using k = r and the second rule. The process of applying elementary row operations to bring a matrix into row echelon form is called row reduction. Example.3. Q: Reduce the matrix to echelon form: A: We are going to work from the top left to the bottom right. The idea will be to work with the leading entry in the top-most row and use it to create zeros below it, we call this a pivot and this sub-process is called pivoting, typically one uses row operations to set the pivot to equal one as well. With this in mind, we eliminate the entries below the in the top-right-most corner Composing the row operations R 2 + 2R and R 3 3R yields The first column is in echelon form, we now move onto the next column. To simplify this matrix we interchange the rows R 2 R 3 and scale the new R 2 by We have found the second pivot, we must eliminate the seven below it to have this column in echelon form, via R 3 7R 2, At this point the entire matrix has been reduced to row echelon form. Elementary row operations are reversible, so that if a matrix A is transformed to a new matrix B by any combination of operations, there is a corresponding inverse operation to transform B into A. Definition.4. Matrices A and B are equivalent if there is a sequence of elementary row operations that converts A into B. The matrices in the previous example are equivalent. To generalize this idea we return to row echelon form. Theorem.5. Matrices A and B are equivalent if and only if they can be reduced to the same row echelon form.

6 6 MATH 23: SYSTEMS OF LINEAR EQUATIONS Proof. Supposing A and B are row equivalent, by composing the combination of row operation that converts A into B to the combination converting B into the row echelon form E, we have constructed a combination of row operations that take A to E. To prove the other direction, we suppose both A and B both have a different combination of row operations that bring them into the same row echelon form E. Inverting the combinations of elementary row operations that take B to E and appending this to the list of row operations that take A to E, we find a set of row operations that take A to B. Gaussian Elimination. The process of using elementary row operations to alter the augmented matrix of a system of linear equations we produce an equivalent system that is more easily solved using back substitution. More formally this procedure is called Gaussian elimination and it consists of the three steps () Find the augmented matrix of the system of linear equations (2) Use elementary row operations to reduce the augmented matrix to row echelon form. (3) Using back substitution, solve the equivalent system that corresponds to the row-reduced matrix. Example.6. Q: Solve the system 2x 2 + 3x 3 = 8 2x + 3x 2 + x 3 = 5, x x 2 2x 3 = 5. A: The augmented matrix is As there is a one in the first column of the third row we swap it for the first row, R R 3 and then eliminate the 2 in the second row directly below the new pivot, R 2 2R, Scaling the second row by 5 and following this by R 3 2R 2 produces the matrix The equivalent system of linear equations that correspond to this augmented matrix will be x x 2 2x 3 = 5, x 2 + x 3 = 3, x 3 = 2; back substitution gives the solution = 3 x x 2 x 3

7 MATH 23: SYSTEMS OF LINEAR EQUATIONS 7 Example.7. Q: Solve the system w 2x + y z = 2 w x + y 2z = 5 2w + 2x 2y + 4z = A: The augmented matrix will be As the first row has the leading coefficient as, we will use this as the first pivot. Applying the elementary row operation R 2 R and R 3 + 2R we produce the matrix One more row operation R 3 + 2R 2 will put this into row echelon form The linear system associated with this augmented matrix is w 2x + y z = 2, x z = 3 this will have infinitely many solutions, if we express the variables related to the leading entries of the matrix (the leading variables) in terms of the other variables (the free variables ). Substituting x = z + 3 into the equation for w, if we treat the free variables as parameters, the solution may be expressed in vector form as w 8 3 x y = 3 + y + z z This second example will showcase the fact that the free variables are just the variables that aren t leading variables. The number of leading coefficients is the number of nonzero rows in the row echelon form of the coefficient matrix, we will be able to predict the number of free variables before the solution is determined using back substitution. Definition.8. The rank of a matrix is the number of nonzero rows in its row echelon form. We will call the rank of a matrix A by rank(a), in the first example, the rank was 3, and in the second example the rank will be two (by construction). Theorem.9. Rank Theorem: Let A be the coefficient matrix of a system of linear equations with n variables. If the system is consistent, then: the number of free variables = n - rank(a).

8 8 MATH 23: SYSTEMS OF LINEAR EQUATIONS Example.2. Q: Solve the system A: The augmented matrix is now x x 2 + 2x 3 = 3 x + 2x 2 x 3 = 3 2x 2 2x 3 = subtracting the first row from the second, and scaling this by three we find To eliminate the column entries below the leading entry in the second row, R 3 2R 2 gives this matrix is inconsistent as it is giving a clear contradiction = 5, it has no solutions. Gauss-Jordan Elimination. We modify the Gaussian elimination so that back substitution is easily still. This will be helpful for when calculations are being done by hand on a system with infinitely many solutions, this is done by changing the row echelon matrix further. Definition.2. A matrix is in reduced row echelon form if it satisfies the following properties () It is already in row echelon form. (2) The leading entry in each nonzero row is a (called a leading ). (3) Each column containing a leading has zeros everywhere else. As an example here are any of the 2 2 matrices in reduced row echelon form, [ ] [ ] [ ] [ ] a,,,. where a is any number in R. Unlike row echelon form, the reduced row echelon form is unique. That is for each matrix A there is only one matrix R in reduced row echelon form that is equivalent to A. As with Gaussian elimination we introduce Gauss-Jordan elimination whose steps consist of: () Write the augmented matrix of the system of linear equations. (2) Use elementary row operations to reduce the augmented matrix to a reduce row echelon form. (3) If the resulting system is consistent, solve for the leading variables in terms of the remaining free variables (if any).,

9 MATH 23: SYSTEMS OF LINEAR EQUATIONS 9 Example.22. Q: Apply the Gauss-Jordan elimination algorithm on the example in (.7) A: We already know this linear system has an augmented matrix which is equivalent to to put this into reduced row echelon form, apply the row operation R + 2R 2 to get Immediately we find the solutions are of the form w 8 3 x y = 3 + y + z z Example.23. Q:Consider the line of intersection of the two planes x 2y 2z = 7 x + 3y + 4z = 2 A: The augmented matrix will be [ then by adding the first row from the second brings the metric into row echelon form (R 2 + R ). [ ] One more row operation brings this into reduced echelon form R + 2R 2 [ ] with the associated linear system: x + 2z = 3, y + 2z = 5 Choosing x and y as our leading variables and z as the free variable the equation of the line may be written in vector form x 3 2 y = 5 + z 2 z 3 Example.24. Q: Let p =, q = 2, u = and v =. Determine whether the lines x = p + tu and x = q + sv intersect, and if so, where. ]

10 MATH 23: SYSTEMS OF LINEAR EQUATIONS A: If these lines intersect, there should be a solution x = x y that satisfies both z equations at once. i.e., p+tu = x = q+sv and so p+tu = q+sv or tu sv = q p. Using the parametric form for these lines, we find t 3s =, s + t = 2, s + t = 2 the solution is easily checked to be t = 5 4 and s = 3 4. Supposing x = p + tu we find that x =. Homogeneous Systems. So far we have argued that every system of linear equations has either no solution, a unique solution or infinitely many solutions. There is a special type of system that always has at least one solution. Definition.25. A system of linear equations is called homogeneous if the constant term in each equation is zero. Symbolically, this means the augmented matrix is of the form [A ]; every linear system has an associated homogeneous linear system produced by replacing the b vector with the zero vector. These systems will never be inconsistent and so it must have either infinitely many solutions or a unique one. In the first case we have a helpful theorem to determine when a solution has infinitely many solutions, Theorem.26. If [A ] is a homogeneous system of m linear equations with n variables, where m < n, then the system has infinitely many solutions. Proof. At the very least x = will be a solution, it will be consistent. By the Rank theorem we know that the rank(a) m, as these may be seen as the number of nontrivial linear equations recorded as rows in the matrix it must be less than the number of linear equations in the system. Furthermore we see that the number of free variables will equal n rank(a) n m >, there will be at least one free variable (as m and n are integers) hence there will be infinitely many solutions. Linear Systems over Z p. We have only considered linear systems with real valued coefficients, which lead to vector solutions in R n. Returning to the idea of a code vector, we ask what the solutions of linear equations with coefficients in Z p. When p is a prime number Z p behaves like R in many ways - one can add, subtract, multiply and divide numbers in a way that is reversible as well. This is the important part, because it allows us to solve systems of linear equations when the variables and coefficients belong to Z p for some prime p, this is called solving the system over Z p. Consider the example x + x 2 + x 3 = with coefficients in Z 2, it will have four solutions due to the finite nature of the field Z 2 : x x 2 x 3 =,,,

11 MATH 23: SYSTEMS OF LINEAR EQUATIONS In Z 3 we will have quite a few more, by considering the ways we may add a triplet with values in Z 2 to sum to 3: 3 : + + = mod3 3 : = mod3 3 : = mod3 thus there will be nine possible solutions in Z 3. We will not need to do such combinatoric guess-work, as in R n, Gauss-Jordan elimination will work here as well. Example.27. Q:Solve the following linear system of linear equations over Z 3, x + 2x 2 + x 3 = x + x 3 = 2 x 2 + 2x 3 = A: In Z 2, = 2 mod3, and so subtraction will not be needed, similarly division is unnecessary as 2 2 = mod3. The augmented matrix is To begin row reduction, apply R R, following this with R + R 2 and R 3 + 2R 2 we find This matrix is now in row echelon form, to simplify to reduced row echelon form apply the row operations R + R 2 and 2R 3, 2 Example.28. Q: Solve the system of linear equations over Z 2, x + x 2 + x 3 + x 4 = x + x 2 = x 2 + x 3 = x 3 + x 4 = x + x 4 =

12 2 MATH 23: SYSTEMS OF LINEAR EQUATIONS A: To start we write the augmented matrix As the leading entry of the first column is a, we may use this as a pivot, and so to remove the remaining non-zero components in this column we apply the row operations R 2 + R and R 5 + R as these are the only rows containing non-zero entries As the third row has a non-zero entry in the second column, we swap this with the second row (R 3 R 2 ) and use it as the next pivot. Applying R + R 2 and R 5 + R 2 to eliminate the remaining non-zero entries in this column: Here the third pivot appears in the third row, to put this into reduced row echelon form apply the row operations R 2 + R 3 and R 4 + R 3 : Writing down the associated linear system, this becomes x + x 4 =, x 2 + x 4 = and x 3 + x 4 =, the leading variables are x, x 2 and x 3 and x 4 is a free variable. In vector form this becomes x x 2 x 3 x 4 = + x 4 as x 4 =, we see the only vectors that are solutions will be s t = {[,,, ], [,,, ]}. References [] D. Poole, Linear Algebra: A modern introduction - 3rd Edition, Brooks/Cole (22).

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3 MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Linear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development

Linear Equations ! 25 30 35$ &  350 150% &  11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!

More information

Methods for Finding Bases

Methods for Finding Bases Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

More information

Lecture Notes 2: Matrices as Systems of Linear Equations

Lecture Notes 2: Matrices as Systems of Linear Equations 2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Lecture 1: Systems of Linear Equations

Lecture 1: Systems of Linear Equations MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above: Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

More information

1.5 SOLUTION SETS OF LINEAR SYSTEMS

1.5 SOLUTION SETS OF LINEAR SYSTEMS 1-2 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination)

Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination) Section 8. Solving a System of Equations Using Matrices (Guassian Elimination) x + y + z = x y + 4z = x 4y + z = System of Equations x 4 y = 4 z A System in matrix form x A x = b b 4 4 Augmented Matrix

More information

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

5.5. Solving linear systems by the elimination method

5.5. Solving linear systems by the elimination method 55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

5 Homogeneous systems

5 Homogeneous systems 5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m

More information

4.3-4.4 Systems of Equations

4.3-4.4 Systems of Equations 4.3-4.4 Systems of Equations A linear equation in 2 variables is an equation of the form ax + by = c. A linear equation in 3 variables is an equation of the form ax + by + cz = d. To solve a system of

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

Solution of Linear Systems

Solution of Linear Systems Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

More information

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication). MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix

More information

Systems of Linear Equations

Systems of Linear Equations Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11-]. Main points in this section: 1. Definition of Linear

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

Using row reduction to calculate the inverse and the determinant of a square matrix

Using row reduction to calculate the inverse and the determinant of a square matrix Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

More information

Question 2: How do you solve a matrix equation using the matrix inverse?

Question 2: How do you solve a matrix equation using the matrix inverse? Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS HOMOGENEOUS LINEAR SYSTEMS A system of linear equations is said to be homogeneous if it can be written in the form A 0, where A

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which

Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which Homogeneous systems of algebraic equations A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x + + a n x n = a

More information

Math 215 HW #6 Solutions

Math 215 HW #6 Solutions Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

More information

II. Linear Systems of Equations

II. Linear Systems of Equations II. Linear Systems of Equations II. The Definition We are shortly going to develop a systematic procedure which is guaranteed to find every solution to every system of linear equations. The fact that such

More information

Linear Algebra Notes

Linear Algebra Notes Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

More information

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

More information

Vector Spaces 4.4 Spanning and Independence

Vector Spaces 4.4 Spanning and Independence Vector Spaces 4.4 and Independence October 18 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set

More information

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are Solving Sstems of Linear Equations in Matri Form with rref Learning Goals Determine the solution of a sstem of equations from the augmented matri Determine the reduced row echelon form of the augmented

More information

THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

More information

7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization 7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

More information

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA. September 23, 2010 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra May, 25 :46 l57-ch Sheet number Page number cyan magenta yellow black Linear Equations in Linear Algebra WEB INTRODUCTORY EXAMPLE Linear Models in Economics and Engineering It was late summer in 949. Harvard

More information

The last three chapters introduced three major proof techniques: direct,

The last three chapters introduced three major proof techniques: direct, CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Lecture notes on linear algebra

Lecture notes on linear algebra Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra

More information

9 Multiplication of Vectors: The Scalar or Dot Product

9 Multiplication of Vectors: The Scalar or Dot Product Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

More information

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

Linearly Independent Sets and Linearly Dependent Sets

Linearly Independent Sets and Linearly Dependent Sets These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

MAT 242 Test 2 SOLUTIONS, FORM T

MAT 242 Test 2 SOLUTIONS, FORM T MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these

More information

Solving simultaneous equations using the inverse matrix

Solving simultaneous equations using the inverse matrix Solving simultaneous equations using the inverse matrix 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Elementary Matrices and The LU Factorization

Elementary Matrices and The LU Factorization lementary Matrices and The LU Factorization Definition: ny matrix obtained by performing a single elementary row operation (RO) on the identity (unit) matrix is called an elementary matrix. There are three

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

Chapter 20. Vector Spaces and Bases

Chapter 20. Vector Spaces and Bases Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit

More information

K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013

K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Hill Cipher Project K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Directions: Answer all numbered questions completely. Show non-trivial work in the space provided. Non-computational

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

10.2 Systems of Linear Equations: Matrices

10.2 Systems of Linear Equations: Matrices SECTION 0.2 Systems of Linear Equations: Matrices 7 0.2 Systems of Linear Equations: Matrices OBJECTIVES Write the Augmente Matrix of a System of Linear Equations 2 Write the System from the Augmente Matrix

More information

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix 7. LU factorization EE103 (Fall 2011-12) factor-solve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization algorithm effect of rounding error sparse

More information

Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC

AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC W. T. TUTTE. Introduction. In a recent series of papers [l-4] on graphs and matroids I used definitions equivalent to the following.

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d. DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

More information

Lecture 2: Homogeneous Coordinates, Lines and Conics

Lecture 2: Homogeneous Coordinates, Lines and Conics Lecture 2: Homogeneous Coordinates, Lines and Conics 1 Homogeneous Coordinates In Lecture 1 we derived the camera equations λx = P X, (1) where x = (x 1, x 2, 1), X = (X 1, X 2, X 3, 1) and P is a 3 4

More information

Linear Equations in One Variable

Linear Equations in One Variable Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve

More information