University of Lille I PC first year list of exercises n 7. Review


 Joleen Evans
 5 years ago
 Views:
Transcription
1 University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients of the system, by Cramer s formulas) : { x + y = 3x + 7y = Choose the method that seems the quickest to you and solve, according to the values of a, the following systems : { ax + y = (a + )x + ay = Solution of Exercise : { (a + )x + (a )y = (a )x + (a + )y = (a) By substitution { { { x + y = x + y = 4 3x + 7y = x = 7 3 y 3 y + y = x = 7 3 y { y = 3 x = 7 (b) By the Gauss method { { x + y = x + y = 3x + 7y = y = 3 L L 3L { x = y y = 3 { (c) The inverse of the matrix of coefficients of the system is ( 3 7 ) = ( 7 3 y = 3 x = 7 ) Hence the solution of the system is ( ) x y = ( 7 3 ) ( ) = ( 7 3 ) (d) By Cramer s formulas x = = 7 y = = 3
2 The determinant of the first system is a (a + ) a = a (a) If a / {, }, one can use Cramer s formulas to obtain : a x = { ax + y = (a + )x + ay = y = a (a + ) a a (a + ) a (a + ) a = 4a a = a + a a (b) If a =, the system becomes { { x + y = x + y = x + y = = L L L which is impossible (c) If a =, the system becomes { { x + y = x + y = x y = = 5 L L + L which is also impossible The determinant of the second system is (a + ) (a ) (a ) (a + ) = 4a (a) If a, one can use Cramer s formulas to obtain : { (a + )x + (a )y = (a )x + (a + )y = x = y = (a ) (a + ) 4a (a + ) (a ) (b) If a =, the system becomes { { x y = x y = x + y = = L L + L which is impossible Exercise Solve the following system of 5 equations with 6 unknowns : x + y + z u + 3v w = 3x + y + z 3u + 5v 3w = 4 x + y + z u + 4v 4w = 6 x + y + z u + v w = 3 3x 3u + 3v + 3w = 6 4a = a = a
3 Solution of Exercise : By the Gauss method x + y + z u + 3v w = 3x + y + z 3u + 5v 3w = 4 x + y + z u + 4v 4w = 6 x + y + z u + v w = 3 3x 3u + 3v + 3w = 6 x + y + z u + v w = 3 L L 4 3x + y + z 3u + 5v 3w = 4 x + y + z u + 4v 4w = 6 x + y + z u + 3v w = 3x 3u + 3v + 3w = 6 x + y + z u + v w = 3 y z v + 3w = 5 L L 3L = L 3 L 3 L y z v + 3w = 5 L 4 L 4 L 3y 3z 3v + 9w = 5 L 5 L 5 3L { x + y + z u + v w = 3 y z v + 3w = 5 It follows that the set of solutions is a 4space in R 6 Let us parametrize the set of solutions by a = z R, b = u R, c = v R, d = w R One obtains x y z u v w = x = y a + b c + d + 3 = b c d y = a c + 3d + 5 z = a u = b v = c w = d 5 + a + b Exercise 3 For each pair (A i, b i ), i 5 of matrices below + c give the nature of the set of solutions of the system A i X = b i ; give a parametric representation of the set of solutions of A i X = b i ; 3 give a basis of the range and a basis of the kernel of A i + d 3 3
4 a) A = c) A 3 = e) A 5 = b = Solution of Exercise 3 : b 3 = b 5 = ; b) A = ; d) A 4 = ; 3 3 b = b 4 = a) Since deta =, the matrix A is invertible hence defines an isomorphism of R 4 The system A X = b has therefore a unique solution given by X = A b = (,,, ) T by a standard computation The range of A is R 4, hence the canonical basis of R 4 is a basis of Im A The kernel of A is { }, hence a basis of kera is b) The rank of A is 4, hence the dimension of the kernel of A is Therefore the set of solutions of A X = b is an affine line in R 5 parallel to kera Denote by (x, y, z, t, u) the coordinates in R 5 Let us parametrize the set of solutions by a = u R The system is equivalent to x + y + t = 3a y + z + t = a z + t = 3a t = a x = 3a + a = a y = a + + a + ( a) = z = 3a + a = a t = a x = 3a y t y = a z t z = 3a t t = a x y z t u = + a ; ;, a R Since A is surjective, the canonical basis of R 4 is a basis of ImA The previous resolution implies that a basis of kera is given by the single vector c) Since the last equation of the system is impossible, the system A 3 X = b 3 admits no solution The rank of A 3 is 4, therefore by the Rank theorem, the dimension of kera 3 is A basis of ImA 3 is given by the 4 columns of A 3 A basis of kera 3 is given by the empty set d) The last equation of A 4 X = b 4 is impossible, hence this system admits no solution The rank of A 4 is 4, hence by the Rank theorem, the dimension of the kernel of A 4 is A basis of ImA 4 is given by the first 4 columns of A 4 A basis of kera 4 is a nontrivial vector X R 5 solution of A 4 X = One finds that generates kera 4 4
5 e) For the basis of ImA 5 and kera 5 see d) The vector b 5 belongs to ImA 5 since the last equation (compatibility condition) is satisfied The kernel of A 5 being a line, the set of solutions of A 5 X = b 5 is an affine line in R 5 parallel to kera 5 Since the vector is a particular solution of the system, one obtains that the set of solutions is parametrized by x y z t = + a, a R u Exercise 4 Compute a basis of the image and a basis of the kernel of the linear application What is the rank of f? f : R 3 R 5 (x, y, z) (x + y, x + y + z, x + y + z, x + y + z, y + z) Solution of Exercise 4 : The matrix of the linear application f is Let us compute a basis of Imf and a basis of kerf One has : Consequently the kernel of f is trivial, and a basis of Imf is given by v = v 3 = The rank of f is the dimension of Imf, that is, 3 Exercise 5 Let A be the matrix 3, v = and 5
6 Consider the matrices B = the matrix A be invertible? and C = Show that AB = AC Can Determine all matrices F of size (3, 3) such that AF = (where denotes the matrix all of whose entries are zero) Solution of Exercise 5 : One has AB = AC = Suppose that the matrix A is invertible Multiply both members of the equation AB = AC on the left by A to get B = C But the matrices B and C are not equal This is a contradiction Hence the matrix A is not invertible Let F be any real matrix (3, 3) F = a b c d e f g h i The equation AF = gives rise to the following system a = b = c = d + g = e + h = f + i = 3a + d + g = 3b + e + h = 3c + f + i = Consequently the set of matrices F such that AF = is the set of matrices of the form F = d e f, d R, e R, f R d e f Exercise 6 For which values of a is the matrix invertible? Compute in this case its inverse A = 4 3 a Solution of Exercise 6 : One has det A = 4 3 a = 4 3 a 3 a + 4 = a (a 3) + = a 7 Hence A is invertible if and only if a 7 In this case, the standard algorithm yields A = a 3 a 4 a a 3 a 7 6
7 Exercise 7 Let a and b be two real numbers, and A be the matrix a b A = Show that rk(a) (where rk denotes the rank) For which values of a and b is the rank of A equal to? Solution of Exercise 7 : Recall that the rank of A is the greatest number of columns of A that are linearly independent Since the second and third columns C, C 3 of A are not proportional, they are linearly independent Therefore the rank of A is at least For the rank of A to be exactly, one has to impose that the first and last columns of A are each a linear combination of C and C 3 (which are fixed) The only linear combination of C and C 3 that has the form (a, 3, 5) T is 3C 3 + C = (, 3, 5) T, hence a = The only linear combination of C and C 3 that has the form (b, 4, ) T is 4C 3 C = (3, 4, ) T, hence b = 3 Consequently the rank of A is if and only if a = and b = 3 Exercise 8 Compute the inverse of the following matrix Solution of Exercise 8 : One obtains A = A = Exercise 9 Let us denote by {e, e,, e n } the canonical basis of R n To a permutation σ S n, one associates the following endomorphism u σ of R n : u σ : R n R n x x n Let τ = (ij) be a transposition Write the matrix of u τ in the canonical basis Show that det(u τ ) = Show that σ, σ S n, u σ u σ = u σ σ Caution! There was a typo in the French original x σ() x σ(n) 3 Show that σ S n, det u σ = ε(σ) where ε denotes the signature Solution of Exercise 9 : 7
8 Let τ be the transposition which exchanges i and j The matrix of u τ in the canonical basis of R n is i j By exchanging the columns i and j of the matrix of u τ one obtains the identity matrix Therefore det u τ = det I =, where I denotes the identity matrix For any σ, σ S n, one has u σ u σ x x n = u σ x σ () x σ (n) = Since the previous equality is satisfied for every x σ (σ()) x σ (σ(n)) x x n = x σ σ() x σ σ(n) = u σ σ x x n in R n, it implies that u σ u σ = u σ σ An alternative proof is to check that u σ sends each e i to e σ (i) (the basis vector whose only nonzero coordinate is the σ (i)th) : hence, u σ u σ (e i ) = u σ (e σ (i) ) = e σ (σ (i)) = e (σ σ) (i) = u σ σ(i) 3 By, the map which associates u σ to a permutation σ is a group homomorphism from S n into the group of invertible matrices of size (n, n), because u σ u σ = u σ σ = u (σ σ ) Consequently, the map which assigns to a permutation σ the number det u σ is a group homomorphism from S n into {±} Since the transpositions generate the group of permutations S n, two group homomorphisms from S n to {±} which coincide on the set of transpositions coincide on S n By, the group homomorphism from S n into {±} which maps σ onto det u σ coincides with the signature on the set of transpositions, because a transposition is its own inverse Hence σ S n, det u σ = ε(σ) Exercise Compute the eigenvalues and eigenvectors of the following matrix A = 3 4 Compute A n for all n N Solution of Exercise : 8
9 One has det (A λi) = λ λ 3 4 λ = λ λ 3 4 λ 3 4 λ + λ = λ 3 + 3λ λ = λ (λ ) (λ ) Therefore the eigenvalues of A are λ =, λ = and λ 3 = A nontrivial vector in the kernel of A is given by v = Let us find a vector generating the eigenspace associated to λ = One has A λ I I = 3 3 It follows that the vector v = has Consequently the vector v 3 = C C + C C 3 C 3 C C 3 C 3 + C is a basis of the eigenspace associated to λ = Now one A I = 3 3 generates the eigenspace associated to λ 3 = Denote by f the linear application whose matrix in the canonical basis of R 3 is A The vectors v, v and v 3 form a basis of R 3 In this new basis, the matrix of f is D = The relation between A and D is D = P AP where P = P = The inverse of P is Therefore, for n >, we have A n = (P DP )(P DP ) (P DP ) : cancelling all occurrences of P P = I one gets n n n A n = P D n P = n = n + n n n+ + n+ 9
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationMAT 242 Test 2 SOLUTIONS, FORM T
MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these
More information4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION
4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:
More informationAu = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More informationMath 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More informationLinear Algebra Notes
Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note
More informationNOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
More informationChapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More informationMATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationMATH 551  APPLIED MATRIX THEORY
MATH 55  APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationName: Section Registered In:
Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationSolutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
More informationRecall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the ndimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
More informationDATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
More information160 CHAPTER 4. VECTOR SPACES
160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results
More informationMAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =
MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the
More information8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
More informationOrthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
More informationLinear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus ndimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationThe Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
More information[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
More informationInner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
More information( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
More informationLinear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)
MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 6. Eigenvalues and Singular Values In this section, we collect together the basic facts about eigenvalues and eigenvectors. From a geometrical viewpoint,
More informationI. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More information6. Cholesky factorization
6. Cholesky factorization EE103 (Fall 201112) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationExamination paper for TMA4115 Matematikk 3
Department of Mathematical Sciences Examination paper for TMA45 Matematikk 3 Academic contact during examination: Antoine Julien a, Alexander Schmeding b, Gereon Quick c Phone: a 73 59 77 82, b 40 53 99
More informationT ( a i x i ) = a i T (x i ).
Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)
More informationMatrix Representations of Linear Transformations and Changes of Coordinates
Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under
More informationSolving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
More informationVector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a nonempty
More informationSection 6.1  Inner Products and Norms
Section 6.1  Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
More informationLS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
More informationLectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n realvalued matrix A is said to be an orthogonal
More informationThe Matrix Elements of a 3 3 Orthogonal Matrix Revisited
Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, ThreeDimensional Proper and Improper Rotation Matrices, I provided a derivation
More informationNotes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
More informationFactorization Theorems
Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization
More information1 Determinants and the Solvability of Linear Systems
1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely sidestepped
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More information13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in threespace, we write a vector in terms
More informationDirect Methods for Solving Linear Systems. Matrix Factorization
Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011
More informationTHE SIGN OF A PERMUTATION
THE SIGN OF A PERMUTATION KEITH CONRAD 1. Introduction Throughout this discussion, n 2. Any cycle in S n is a product of transpositions: the identity (1) is (12)(12), and a kcycle with k 2 can be written
More informationNotes on Symmetric Matrices
CPSC 536N: Randomized Algorithms 201112 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.
More informationSolving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
More informationLecture 4: Partitioned Matrices and Determinants
Lecture 4: Partitioned Matrices and Determinants 1 Elementary row operations Recall the elementary operations on the rows of a matrix, equivalent to premultiplying by an elementary matrix E: (1) multiplying
More informationLeastSquares Intersection of Lines
LeastSquares Intersection of Lines Johannes Traa  UIUC 2013 This writeup derives the leastsquares solution for the intersection of lines. In the general case, a set of lines will not intersect at a
More informationGENERATING SETS KEITH CONRAD
GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors
More informationQuestion 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
More information1.5 SOLUTION SETS OF LINEAR SYSTEMS
12 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as
More informationLecture 1: Systems of Linear Equations
MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables
More informationISOMETRIES OF R n KEITH CONRAD
ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x
More information1.2 Solving a System of Linear Equations
1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems  Basic De nitions As noticed above, the general form of a linear system of m equations in n variables
More informationLinear Algebra I. Ronald van Luijk, 2012
Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.
More informationChapter 20. Vector Spaces and Bases
Chapter 20. Vector Spaces and Bases In this course, we have proceeded stepbystep through lowdimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit
More information4.5 Linear Dependence and Linear Independence
4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then
More informationOperation Count; Numerical Linear Algebra
10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floatingpoint
More informationis in plane V. However, it may be more convenient to introduce a plane coordinate system in V.
.4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a twodimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More informationSolution of Linear Systems
Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start
More information15.062 Data Mining: Algorithms and Applications Matrix Math Review
.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop
More informationLinear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
More informationLecture 5 Principal Minors and the Hessian
Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More information1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0
Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are
More informationChapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6
Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a
More informationLecture Notes 2: Matrices as Systems of Linear Equations
2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably
More informationSection 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj
Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that
More information1 Symmetries of regular polyhedra
1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an
More informationCOMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS
COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V. EROVENKO AND B. SURY ABSTRACT. We compute commutativity degrees of wreath products A B of finite abelian groups A and B. When B
More informationSolution to Homework 2
Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if
More informationIntroduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra  1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
More informationLinear Algebra: Determinants, Inverses, Rank
D Linear Algebra: Determinants, Inverses, Rank D 1 Appendix D: LINEAR ALGEBRA: DETERMINANTS, INVERSES, RANK TABLE OF CONTENTS Page D.1. Introduction D 3 D.2. Determinants D 3 D.2.1. Some Properties of
More informationChapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors
Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col
More information4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
More informationLinear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
More informationCITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
More informationABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS
ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair
More informationLecture 2: Homogeneous Coordinates, Lines and Conics
Lecture 2: Homogeneous Coordinates, Lines and Conics 1 Homogeneous Coordinates In Lecture 1 we derived the camera equations λx = P X, (1) where x = (x 1, x 2, 1), X = (X 1, X 2, X 3, 1) and P is a 3 4
More informationMA106 Linear Algebra lecture notes
MA106 Linear Algebra lecture notes Lecturers: Martin Bright and Daan Krammer Warwick, January 2011 Contents 1 Number systems and fields 3 1.1 Axioms for number systems......................... 3 2 Vector
More informationNotes from February 11
Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The
More informationMethods for Finding Bases
Methods for Finding Bases Bases for the subspaces of a matrix Rowreduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,
More informationMatrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.
Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that
More informationModélisation et résolutions numérique et symbolique
Modélisation et résolutions numérique et symbolique via les logiciels Maple et Matlab Jeremy Berthomieu Mohab Safey El Din Stef Graillat Mohab.Safey@lip6.fr Outline Previous course: partial review of what
More informationLinear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development
MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!
More informationOctober 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix
Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,
More informationEigenvalues, Eigenvectors, Matrix Factoring, and Principal Components
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they
More information