# Solving Systems of Linear Equations

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how this matrix machinery can also be used to solve such systems However, before we embark on solving systems of equations via matrices, let me remind you of what such solutions should look like The Geometry of Linear Systems Consider a linear system of m equations and n unknowns: (5) What does the solution set look like? easily visualize the solution sets a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mn x n = b m Let s examine this question case by case, in a setting where we can equations in 3 unknowns This would correspond to a situation where you have 3 variables x, x, x 3 with no relations between them Being free to choose whatever value we want for each of the 3 variables, it s clear that the solutions set is just R 3, the 3-dimensional space of ordered sets of 3 real numbers equation in 3 unknowns In this case, use the equation to express one variable, say x n, in terms of the other variables; x = a n (b a x + a x + a,3 x 3 ) The remaining variables x, and x are then unrestricted Letting these variables range freely over R will then fill out a -dimensional plane in R Thus, in the case of equation in 3 unknowns we have a two dimensional plane as a solution space equations in 3 unknowns As in the preceding example, the solution set of each individual equation will be a -dimensional plane The solution set of the pair of equation will be the intersection of these two planes (For points common to both solution sets will be points corresponding to the solutions of both equations) Here there will be three possibilities: () The two planes do not intersect In other words, the two planes are parallel but distinct Since they share no common point, there is no simultaneous solutoin of both equations () The intersection of the two planes is a line This is the generic case (3) The two planes coincide In this case, the two equations must be somehow redundant Thus we have either no solution, a -dimensional solution space (ie a line) or a -dimensional solution space 3 equations and 3 unknowns In this case, the solution set will correspond to the intersection of the three planes corresponding to the 3 equations We will have four possiblities: () The three planes share no common point In this case there will be no solution () The three planes have one point in common This will be the generic situation

2 ELEMENTARY ROW OPERATIONS (3) The three planes share a single line (4) The three planes all coincide Thus, we either have no solution, a -dimensional solution (ie, a point), a -dimensional solution (ie a line) or a -dimensional solution We now summarize and generalize this discussion as follows Theorem 5 Consider a linear system of m equations and n unknowns: The solution set of such a system is either: a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mn x n = b m () The empty set {}; ie, there is no solution () A hyperplane of dimension greater than or equal to (n m) Elementary Row Operations In the preceding lecture we remarked that our new-fangled matrix algebra allowed us to represent linear systems such as (5) succintly as matrix equations: a a a n x b a a a n x (5) = b a m a m a mn x m b m For example the linear system (53) can be represented as (54) [ 3 x + 3x = 3 x + x = ] [ ] [ ] x 3 = x Now, when solving linear systems like (53) it is very common to create new but equivalent equations by, for example, mulitplying by a constant or adding one equation to another In fact, we have Theorem 5 Let S be a system of m linear equations in n unknowns and let S be another system of m equations in n unknowns obtained from S by applying some combination of the following operations: interchanging the order of two equations multiplying one equation by a non-zero constant replacing a equation with the sum of itself and a multiple of another equation in the system Then the solution sets of S ane S are identical In particular, the solution set of (53) is equivalent to the solution set of (55) x + 3x = 3 x x =

3 3 SOLVING LINEAR EQUATIONS 3 (where we have multiplied the second equation by -), as well as the solution set of (56) x + 3x = 3 x = (where we have replaced the second row in (55) by its sum with the first row), as well as the solution of (57) x = 3 x = (where we have replaced the first row in (56) by its sum with 3 times the second row) We can thus solve a linear system by means of the elementary operations described in the theorem above Now because there is a matrix equation corresponding to every system of linear equations, each of the operations described in the theorem above corresponds to a matrix operation To convert these operations in our matrix language, we first associate with a linear system an augmented matrix a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mn x n = b m a a a n a a a n a m a m a mn This is just the m (n + ) matrix that s obtained appending the column vector b to the columns of the m n matrix A We shall use the notation [A b] to denote the augmented matrix of A and b The augmented matrices corresponding to equations (55), (56), and (57) are thus, respectively [ 3 3 ], [ 3 3 ], and [ 3 ] From this example, we can see that the operations in Theorem 5 translate to the following operations on the corresponding augmented matrices: Row Interchange: the interchange of two rows of the augmented matrix Row Scaling: multiplication of a row by a non-zero scalar Row Addition: replacing a row by its sum with a multiple of another row Henceforth, we shall refer to these operations as Elementary Row Operations b b b m 3 Solving Linear Equations Let s now reverse directions and think about how to recognize when the system of equations corresponding to a given matrix is easily solved (To keep our discussion simple, in the examples given below we consider systems of n equations in n unknowns)

4 3 SOLVING LINEAR EQUATIONS 4 3 Diagonal Matrices A matrix equation Ax = b is trivial to solve if the matrix A is purely diagonal For then the augmented matrix has the form a b a b A = a n,n b n a nn b n the corresponding system of equations reduces to a x = b x = b a a x = b x = b a a nn x n = b n x n = b n a nn 3 Lower Triangular Matrices If the coefficient matrix A has the form a a a A = a n, a n, a n,n a n a n, a n,n a nn (with zeros everywhere above the diagonal from a to a nn ), then it is called lower triangular A matrix equation Ax = b in which A is lower triangular is also fairly easy to solve For it is equivalent to a system of equations of the form a x = b a x + a x = b a 3 x + a 3 x + a 33 x 3 = b 3 a n x + a n x + a n3 x a nn x n = b n To find the solution of such a system one solves the first equation for x and then substitutes its solution b /a for the variable x in the second equation ( ) b a + a x = b x = ( b a ) b a a a One can now substitute the numerical expressions for x, and x into the third equation and get a numerical expression for x 3 Continuing in this manner we can solve the system completely We call this method solution by forward substitution 33 Upper Triangular Matrices We can do a similar thing for systems of equations characterized by an upper triangular matrices A a a a,n a n a a,n a n A = a n,n a nn

5 3 SOLVING LINEAR EQUATIONS 5 (that is to say, a matrix with zero s everywhere below and to the left of the diagonal), then the corresponding system of equations will be a x + a x + + a n x n = b a x + + a n x n = b a n,n x n + a n,n x n = b n a nn x n = b n which can be solved by substituting the solution of the last equation into the preceding equation and solving for x n x n = a n,n x n = b n a nn ( ( )) bn b n a n,n a nn and then substituting this result into the third from last equation, etc by back-substitution This method is called solution 34 Solution via Row Reduction 34 Gaussian Reduction In the general case a matrix will be neither be upper triangular or lower triangular and so neither forward- or back-substituiton can be used to solve the corresponding system of equations However, using the elementary row operations discussed in the preceding section we can always convert the augmented matrix of a (self-consistent) system of linear equations into an equivalent matrix that is upper triangular; and having done that we can then use back-substitution to solve the corresponding set of equations We call this method Gaussian reduction Let me demonstate the Gaussian method with an example Example 53 Solve the following system of equations using Gaussian reduction x + x x 3 = x x + x 3 = x x x 3 = 3 First we write down the corresponding augmented matrix 3 We now use elementary row operations to convert this matrix into one that is upper triangular Adding - times the first row to the second row produces 3 Adding - times the first row to the third row produces 3 3

6 Adding 3 3 SOLVING LINEAR EQUATIONS 6 times the second row to the third row produces 6 The augmented matrix is now in upper triangular form It corresponds to the following system of equations which can easily be solved via back-substitution: x + x x 3 = x + x 3 = x 3 = 6 x 3 = 6 x 3 = 3 x + 6 = x = x + 3 = x = In summary, solution by Gaussian reduction consists of the following steps () Write down the augmented matrix corresponding to the system of linear equations to be solved () Use elementary row operations to convert the augmented matrix [A b] into one that is upper triangular This is acheived by systematically using the first row to eliminate the first entries in the rows below it, the second row to eliminate the second entries in the row below it, etc (3) Once the augmented matrix has been reduced to upper triangular form, write down the corresponding set of linear equations and use back-substitution to complete the solution Remark 54 The text refers to matrices that are upper triangular as being in row-echelon form Definition 55 A matrix is in row-echelon form if it satisfies two conditions: () All rows containing only zeros appear below rows with non-zero entries () The first non-zero entry in a row appears in a column to the right of the first non-zero entry of any preceding row For such a matrix the first non-zero entry in a row is called the pivot for that row 34 Gauss-Jordan Reduction In the Gauss Reduction method described above, one carries out row operations until the augmented matrix is upper triangular and then finishes the problem by converting the problem back into a linear system and using back-substitution to complete the solution Thus, row reduction is used to carry out about half the work involved in solving a linear system It is also possible to use only row operations to construct a solution of a linear system Ax = b technique is called Gauss-Jordan reduction The idea is this This () Write down the augmented matrix corresponding to the system of linear equations to be solved () Use elementary row operations to convert the augmented matrix [A b] into one that is upper triangular This is acheived by systematically using the first row to eliminate the first entries in the rows below it, the second row to eliminate the second entries in the row below it, etc a a a n b a a a n b a a a n b a a n b [A b] = row operations a n a n a nn b n a nn b n

7 3 SOLVING LINEAR EQUATIONS 7 (3) Continue to use row operations on the aumented matrix until all the entries above the diagonal of the first factor have been eliminated, and only s appear along the diagonal a a a n b a a b n b b row operations = [ I b ] a nn b n b n (4) The solution of the linear system corresponding to the augmented matrix [I b ] is trivial x = Ix = b Moreover, since [I b ] was obtained from [A b] by row operations, x = b must also be the solution of Ax = b Example 56 Solve the following system of equations using Gauss-Jordan reduction x + x x 3 = x x + x 3 = x x x 3 = 3 First we write down the corresponding augmented matrix 3 In the preceding example, I demonstated that this augmented matrix is equivalent to 6 We ll now continue to apply row operations until the first block has the form of a 3 3 identity matrix Multiplying the second and third rows by yields 3 Replacing the first row by its sum with times the second row yields 3 Replacing the second row by its sum with the third row yields 3 The system of equations corresponding to this augmented matrix is This is our solution x = x = x 3 = 3 To maintain contact with the definitions used in the text, we have Definition 57 A matrix is in reduced row-echelon form if it is in row-echelon form with all pivots equal to and with zeros in every column entry above and below the pivots

8 4 ELEMENTARY MATRICES 8 Theorem 58 Let Ax = b be a linear system and suppose [A b ] is row equivalent to [A b] with A a matrix in row-echelon form Then () The system Ax = b is inconsistent if and only if the augmented matrix [A b ] has a row with all entries to the left of the partition and a non-zero entry to the right of the partition () If Ax = b is consistent and every column of A contains a pivot, the system has a unique solution (3) If Ax = b is consistent and some column of A has no pivot, the system has infinitely many solutions, with as many free variables as there are pivot-free columns in A 4 Elementary Matrices I shall now show that all elementary row operations can be carried out by means of matrix multiplication Even though carrying out row operations by matrix multiplication will be grossly inefficient from a calculation point of view, this equivalence remains an important theoretical fact (As you ll see in some of the forthcoming proofs) Definition 59 An elementary matrix is a matrix that can be obtained from the identity matrix by means of a single row operation Theorem 5 Let A be an m n matrix, and let E be an m m elementary matrix Then multiplication of A on the left by E effects the same elementary row operation on A as that which was performed on the m m identity matrix to produce E Corollary 5 If A is a matrix that was obtained from A by a sequence of row operations then there exists a corresponding sequence of elementary matrices E, E,, E r such that A = E r E E A

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

### Systems of Linear Equations

Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11-]. Main points in this section: 1. Definition of Linear

### Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

### Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

### Solution of Linear Systems

Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

### 1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

### ( ) which must be a vector

MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

### Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

### Factorization Theorems

Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

### Elementary Matrices and The LU Factorization

lementary Matrices and The LU Factorization Definition: ny matrix obtained by performing a single elementary row operation (RO) on the identity (unit) matrix is called an elementary matrix. There are three

### Subspaces of R n LECTURE 7. 1. Subspaces

LECTURE 7 Subspaces of R n Subspaces Definition 7 A subset W of R n is said to be closed under vector addition if for all u, v W, u + v is also in W If rv is in W for all vectors v W and all scalars r

### Linear Codes. Chapter 3. 3.1 Basics

Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length

### 1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

### 6. Cholesky factorization

6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

### 7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix

7. LU factorization EE103 (Fall 2011-12) factor-solve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization algorithm effect of rounding error sparse

### Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

### Orthogonal Projections

Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

### LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

### Math 312 Homework 1 Solutions

Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

### Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

### 9 Multiplication of Vectors: The Scalar or Dot Product

Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Lecture 14: Section 3.3

Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

### Similar matrices and Jordan form

Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

### OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

### Math 215 HW #6 Solutions

Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### Lecture notes on linear algebra

Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra

### α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

### Some Lecture Notes and In-Class Examples for Pre-Calculus:

Some Lecture Notes and In-Class Examples for Pre-Calculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax

### Notes from February 11

Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

### Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

### Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

### LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

### The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### CS3220 Lecture Notes: QR factorization and orthogonal transformations

CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss

### The Characteristic Polynomial

Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

### Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

### Chapter 20. Vector Spaces and Bases

Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit

### Prerequisites: TSI Math Complete and high school Algebra II and geometry or MATH 0303.

Course Syllabus Math 1314 College Algebra Revision Date: 8-21-15 Catalog Description: In-depth study and applications of polynomial, rational, radical, exponential and logarithmic functions, and systems

### MAT188H1S Lec0101 Burbulla

Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

### RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

### 26. Determinants I. 1. Prehistory

26. Determinants I 26.1 Prehistory 26.2 Definitions 26.3 Uniqueness and other properties 26.4 Existence Both as a careful review of a more pedestrian viewpoint, and as a transition to a coordinate-independent

### 15.062 Data Mining: Algorithms and Applications Matrix Math Review

.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

### Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6

Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a

### Solving Linear Programs

Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,

### Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone

### Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### discuss how to describe points, lines and planes in 3 space.

Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position

### Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics A Semester Course in Finite Mathematics for Business and Economics Marcel B. Finan c All Rights Reserved August 10,

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### Eigenvalues and Eigenvectors

Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution

### Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

### 1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

### Lecture 2 Linear functions and examples

EE263 Autumn 2007-08 Stephen Boyd Lecture 2 Linear functions and examples linear equations and functions engineering examples interpretations 2 1 Linear equations consider system of linear equations y

### MATH1231 Algebra, 2015 Chapter 7: Linear maps

MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter

### Chapter 2: Systems of Linear Equations and Matrices:

At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

### Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

### GROUPS ACTING ON A SET

GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

### Lecture 2: August 29. Linear Programming (part I)

10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

### Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 Lecture 3: QR, least squares, linear regression Linear Algebra Methods for Data Mining, Spring 2007, University

### LINES AND PLANES CHRIS JOHNSON

LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance

### Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

### Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes

Jim Lambers MAT 169 Fall Semester 009-10 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### 3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R

### 1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

### Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products

Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products H. Geuvers Institute for Computing and Information Sciences Intelligent Systems Version: spring 2015 H. Geuvers Version:

### DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

### The Ideal Class Group

Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

### Classification of Cartan matrices

Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms

### 18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points.

806 Problem Set 4 Solution Due Wednesday, March 2009 at 4 pm in 2-06 Total: 75 points Problem : A is an m n matrix of rank r Suppose there are right-hand-sides b for which A x = b has no solution (a) What

### RINGS WITH A POLYNOMIAL IDENTITY

RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in

### Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation

Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7- In this section, we discuss linear transformations 89 9 CHAPTER

### CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

### Chapter Two: Matrix Algebra and its Applications 1 CHAPTER TWO. Matrix Algebra and its applications

Chapter Two: Matrix Algebra and its Applications 1 CHAPTER TWO Matrix Algebra and its applications Algebra - is a part of mathematics that deals with operations (+, -, x ). Matrix is A RECTANGULAR ARRAY

### 24. The Branch and Bound Method

24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### A Direct Numerical Method for Observability Analysis

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 15, NO 2, MAY 2000 625 A Direct Numerical Method for Observability Analysis Bei Gou and Ali Abur, Senior Member, IEEE Abstract This paper presents an algebraic method

### Vector Spaces. Chapter 2. 2.1 R 2 through R n

Chapter 2 Vector Spaces One of my favorite dictionaries (the one from Oxford) defines a vector as A quantity having direction as well as magnitude, denoted by a line drawn from its original to its final

### WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

### LU Factoring of Non-Invertible Matrices

ACM Communications in Computer Algebra, LU Factoring of Non-Invertible Matrices D. J. Jeffrey Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7 Revised

### FURTHER VECTORS (MEI)

Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

### Linear Algebra in Twenty Five Lectures

Linear Algebra in Twenty Five Lectures Tom Denton and Andrew Waldron March 27, 22 Edited by Katrina Glaeser, Rohit Thomas & Travis Scrimshaw Contents What is Linear Algebra? 2 2 Gaussian Elimination 9

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

### Summation Algebra. x i

2 Summation Algebra In the next 3 chapters, we deal with the very basic results in summation algebra, descriptive statistics, and matrix algebra that are prerequisites for the study of SEM theory. You

### Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties

Lecture 1 Convex Sets (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties 1.1.1 A convex set In the school geometry

### On the representability of the bi-uniform matroid

On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large

### Circuits 1 M H Miller

Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents

### Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a