T ( a i x i ) = a i T (x i ).

Size: px
Start display at page:

Download "T ( a i x i ) = a i T (x i )."

Transcription

1 Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b) T (cx) = ct (x). Fact 1. (p. 65) 1. If T is linear, then T (0) = 0. Note that the first 0 is in V and the second one is in W. 2. T is linear if and only if T (cx + y) = ct (x) + T (y) for all x, y V and c F. 3. If T is linear, then T (x y) = T (x) T (y) for all x, y V. 4. T is linear if and only if, for x 1, x 2,..., x n V and a 1, a 2,..., a n F, we have T ( a i x i = a i T (x i ). Proof.. 1. We know 0 x = 0 for all vectors x. Hence, 0 = 0 T (x) = T (0 x) = T (0) 2. Assume T is linear and c F and x, y V, then T (cx) = ct (x) and T (cx + y) = T (cx) + T (y) = ct (x) + T (y). Assume T (x + y) = T (x) + T (y) for all x, y V. Let a F and x, y V. Then T (ax) = T (ax + 0) = at (x) + T (0) = at (x) and T (x + y) = T (1 x + y) = 1 T (x) + T (y) = T (x) + T (y). 3. To start with, the definition of subtraction is: x y= x + ( y). We also wish to show: x V, 1 x = x. Given 0 x = 0 which we proved earlier, we have (1 + ( 1))x = 0 1 x + ( 1) x = 0 Since the additive inverse in unique, we conclude that ( 1) x = x. AssumeT is linear. Then T (x y) = T (x + 1 y) = T (x) + ( 1)T (y) = T (x) + ( T (y)) = T (x) T (y) for all x, y V. 4. ( ) Let n = 2, a 1 = c, and a 2 = 1. We have that T (cx 1 + x 2 ) = ct (x 1 ) + T (x 2 ). ( ) This is done by induction. Using the definition of linear transformation, we get the base case (n = 2). That is, T (a 1 x 1 + a 2 x 2 ) = T (a 1 x 1 ) + T (a 2 x 2 ) = a 1 T (x 1 ) + a 2 T (x 2 ). Now assume that n 2 and for all x 1, x 2,..., x n V and a 1, a 2,..., a n F, we have T ( a i x i ) = a i T (x i ). 1

2 2 Then for all x 1, x 2,..., x n, x n+1 V and a 1, a 2,..., a n a n+1 F, we have n+1 T ( a i x i ) = T ( a i x i + a n+1 x n+1 ) = T ( = = a i x i ) + T (a n+1 x n+1 ) a i T (x i ) + a n+1 T (x n+1 ) n+1 a i T (x i ). Defn 2. (p. 67) Let V and W be vector spaces, and let T : V W be linear. We define the null space (or kernel) N(T ) of T to be the set of all vectors x in V such that T (x) = 0; N(T ) = {x V : T (x) = 0}. We define the range (or image) R(T ) of T to be the subset W consisting of all images (under T ) of vectors in V ; that is, R(T ) = {T (x) : x V }. Theorem 2.1. Let V and W be vector spaces and T : V W be linear. Then N(T ) and R(T ) are subspaces of V and W, respectively. Proof. To prove that N(T ) is a subspace of V, we let x, y N(T ) and c F. We will show that 0 N(T ) and cx + y N(T ). We know that T (0) = 0. So, 0 N(T ). We have that T (x) = 0 and T (y) = 0 so T (cx + y) = c T (x) + T (y) = c = c 0 = 0. (The last equality is a fact that can be proved from the axioms of vector space. To prove that R(T ) is a subspace of W, assume T (x), T (y) R(T ), for some x, y V and c F. Then, ct (x)+t (y) = T (cx+y), where cx+y V, since T is a linear transformation and so, ct (x) + T (y) R(T ). Also, since 0 V and 0 = T (0), we know that 0 R(T ). Let A be a set of vectors in V. Then T (A) = {T (x) : x A}. Theorem 2.2. Let V and W be vector spaces, and let T : V W be linear. If β = {v 1, v 2,..., v n } is a basis for V, then R(T ) = span(t (β)). Proof. T (β) = {T (v 1 ), T (v 2 ),..., T (v n )}. We will show R(T ) = span(t (β)). We showed that R(T ) is a subspace of W. We know that T (β) R(T ). So, by Theorem 1.5, span(t (β)) R(T ). Let x R(T ). Then there is some x V such that T (x ) = x. β is a basis of V, so there exist scalars a 1, a 2,..., a n such that x = a 1 x 1 + a 2 x a n x n. which is in span(t (β)). Thus R(T ) span(t (β)). x = T (x ) = T (a 1 x 1 + a 2 x a n x n ) = a 1 T (x 1 ) + a 2 T (x 2 ) + + a n T (x n )

3 Defn 3. (p. 69) Let V and W be vector spaces, and let T : V W be linear. If N(T ) and R(T ) are finite-dimensional, then we define the nullity of T, denoted nullity(t ), and the rank of T, denoted rank(t ), to be the dimensions of N(T ) and R(T ), respectively. Theorem 2.3. (Dimension Theorem). Let V and W be vector spaces, and let T : V W be linear. If V is finite-dimensional, then nullity(t )+ rank(t ) = dim(v ). Proof. Suppose nullity(t ) = k and β = {n 1,..., n k } is a basis of N(T ). Since β is linearly independent in V, then β extends to a basis of V, β = {n 1,..., n k, x k+1,..., x n }, where, by Corollary 2c. to Theorem 1.10, i, x i N(T ). Notice that possibly β =. It suffices to show: β = {T (x k+1 ),..., T (x n )} is a basis for R(T ). By Theorem 2.2, T (β ) spans R(T ). But T (β ) = {0} β. So β spans R(T ). Suppose β is not linearly independent. Then there exist c 1, c 2,..., c n F, not all 0 such that 0 = c 1 T (x k+1 ) + + c n T (x n ). 3 Then and But then 0 = T (c 1 x k c n x n ) c 1 x k c n x n N(T ). c 1 x k c n x n = a 1 n 1 + a 2 n a k n k for some scalars a 1, a 2,..., a k, since β = {n 1,..., n k } is a basis of N(T ). Then 0 = a 1 n 1 + a 2 n a k n k c 1 x k+1 c n x n. The c is are not all zero, so this contradicts that β is a linearly independent set. Theorem 2.4. Let V and W be vector spaces, and let T : V W be linear. Then T is one-to-one if and only if N(T ) = {0}. Proof. Suppose T is one-to-one. Let x N(T ). Then T (x) = 0 also T (0) = 0. T being oneto-one implies that x = 0. Therefore, N(T ) {0}. It is clear that {0} N(T ). Therefore, N(T ) = {0}. Suppose N(T ) = {0}. Suppose for x, y V, T (x) = T (y). We have that T (x) T (y) = 0. T (x y) = 0. Then it must be that x y = 0. This implies that y is the additive inverse of x and x is the additive inverse of y. But also y is the additive inverse of y. By uniqueness of additive inverses we have that x = y. Thus, T is one-to-one. Theorem 2.5. Let V and W be vector spaces of equal (finite) dimension, and let T : V W be linear. Then the following are equivalent. (a) T is one-to-one. (b) T is onto. (c) rank(t ) = dim(v ).

4 4 Proof. Assume dim(v ) = dim(w ) = n. (a) (b) : To prove T is onto, we show that R(T ) = W. Since T is one-to-one, we know N(T ) = {0} and so nullity(t ) = 0. By Theorem 2.3, nullity(t ) + rank(t ) = dim(v ). So we have dim(w ) = n = rank(t ). By Theorem 1.11, R(T ) = W. (b) (c) : T is onto implies that R(T ) = W. So rank(t ) = dim(w ) = dim(v ). (c) (a) : If we assume rank(t ) = dim(v ), By Theorem 2.3 again, we have that nullity(t ) = 0. But then we know N(T ) = {0}. By Theorem 2.4, T is one-to-one. Theorem 2.6. Let V and W be vector spaces over F, and suppose that β = {v 1, v 2,..., v n } is a basis for V. For w 1, w 2,..., w n in W, there exists exactly one linear transformation T : V W such that T (v i ) = w i for i = 1, 2,..., n. Proof. Define a function T : V W by T (v i ) = w i for i = 1, 2,..., n and since β is a basis, we can express every vector in V as a linear combination of vectors in β. For x V, x = a 1 v 1 + a 2 v a n v n, we define T (x) = a 1 w 1 + a 2 w a 2 w n. We will show that T is linear. Let c F and x, y V. Assume x = a 1 v 1 +a 2 v 2 + +a n v n and y = b 1 v 1 + b 2 v b n v n. Then cx + y = (ca i + b i )v i (1) T (cx + y) = T ( (ca i + b i )v i ) = (ca i + b i )w i = c a i w i + b i w i = ct (x) + T (y) Thus, T is linear. To show it is unique, we need to show that if F : V W is a linear transformation such that F (v i ) = w i for all i [n], then for all x V, F (x) = T (x). Assume x = a 1 v 1 + a 2 v a n v n. Then T (x) = a 1 w 1 + a 2 w a n w n = a 1 F (v 1 ) + a 2 F (v 2 ) + + a n F (v n ) = F (x) Cor 1. Let V and W be vector spaces, and suppose that V has a finite basis {v 1, v 2,..., v n }. If U, T : V W are linear and U(v i ) = T (v i ) for i = 1, 2,..., n, then U = T. Defn 4. (p. 80) Given a finite dimensional vector space V, an ordered basis is a basis where the vectors are listed in a particular order, indicated by subscripts. For F n, we have {e 1, e 2,..., e n } where e i has a 1 in position i and zeros elsewhere. This is known as the standard ordered basis and e i is the i th characteristic vector. Let β = {u 1, u 2,..., u n } be an ordered basis for a finite-dimensional vector space V. For x V, let a 1, a 2,..., a n be the

5 unique scalars such that x = [x] β = a i u i We define the coordinate vector of x relative to β, denoted [x] β, by a 1 a 2 Defn 5. (p. 80) Let V and W be finite-dimensional vector spaces with ordered bases β = {v 1, v 2,..., v n } and γ = {w 1, w 2,..., w n }, respectively. Let T : V W be linear. Then for each j, 1 j n, there exists unique scalars a i,j F, a i m, such that m T (v j ) = t i,j w i 1 j n. So that [T (v j )] γ = We call the m n matrix A defined by A i,j = a i,j the matrix representation of T in the ordered bases β and γ and write A = [T ] γ β. If V = W and β = γ, then we write A = [T ] β.. a n. t 1,j t 2,j. t m,j. Fact 2. [a 1 x 1 + a 2 x a n x n ] B = a 1 [x 1 ] B + a 2 [x 2 ] B + + a n [x n ] B Proof. Let β = {v 1, v 2,..., v n }. Say x j = b j,1 v 1 + b j,2 v b j,n v n. The LHS: a 1 x 1 + a 2 x a n x n = a 1 (b 1,1 v 1 + b 1,2 v b 1,n v n ) +a 2 (b 2,1 v 1 + b 2,2 v b 2,n v n ) + +a n (b n,1 v 1 + b n,2 v b n,n v n ) = (a 1 b 1,1 + a 2 b 2,1 + + a n b n,1 )v 1 +(a 1 b 1,2 + a 2 b 2,2 + + a n b n,2 )v 2 + The i th position of the LHS is the coefficient c i of v i in: +(a 1 b 1,n + a 2 b 2,n + + a n b n,n )v n a 1 x 1 + a 2 x a n x n = c 1 v 1 + c 2 v c n v n And so, c i = a 1 b 1,i + a 2 b 2,i + + a n b n,i. The RHS: The i th position of the RHS is the sum of the i th position of each a j [x j ] β, which is the coefficient of v i in a j x j = a j (b j,1 v 1 + b j,2 v b j,n v n ) and thus, a j b j,i. We have the i th position of the RHS is a 1 b 1,i + a 2 b 2,i + + a n b n,i. 5

6 6 Fact 2. (a) Let V and W be finite dimensional vector spaces with bases, β and γ, respectively. [T ] γ β [x] β = [T (x)] γ. Proof. Let β = {v 1, v 2,..., v n }. Let x = a 1 v 1 + a 2 v a n v n. Then [T (x)] γ = [T (α 1 v 1 + α 2 v α n v n )] γ = [α 1 T (v 1 ) + α 2 T (v 2 ) + + α n T (v n ))] γ = α 1 [T (v 1 )] γ + α 2 [T (v 2 )] γ + + α n [T (v n )] γ by fact 2 t 1,1 t 1,n α 1... = t n,1 t n,n α n = [T ] γ β [x] γ Fact 3. Let V be a vector space of dimension n with basis β. {x 1, x 2,..., x k } is linearly independent in V if and only if {[x 1 ] β, [x 2 ] β,..., [x k ] β } is linearly independent in F n. Proof. {x 1, x 2,..., x k } is linearly dependent a 1, a 2,..., a k, not all zero, such that a 1 x 1 + a 2 x 2 + a k x k = 0 a 1, a 2,..., a k, not all zero, such that [a 1 x 1 + a 2 x 2 + a k x k ] β = [0] β = 0 since the only way to represent 0( V ) in any basis is 0( F n ) a 1, a 2,..., a k, not all zero, such that a 1 [x 1 ] β + a 2 [x 2 ] β + a k [x k ] β = 0 {[x 1 ] β, [x 2 ] β,..., [x k ] β }is a linearly dependent set Defn 6. (p. 99) Let V and W be vector spaces, and let T : V W be linear. A function U : W V is said to be an inverse of T if T U = I W and UT = I V. If T has an inverse, then T is said to be invertible. Fact 4. v and W are vector spaces with T : V W. If T is invertible, then the inverse of T is unique. Proof. Suppose U : W V is such that T U = I W and UT = I V and X : W V is such that T X = I W and XT = I V. To show U = X, we must show that w W, U(w) = X(w). We know I W (w) = w and I V (X(w)) = X(w). U(w) = U(I W (w)) = UT X(w) = I V X(w) = X(w). Defn 7. We denote the inverse of T by T 1. Theorem Let V and W be vector spaces, and let T : V W be linear and invertible. Then T 1 : W V is linear.

7 Proof. By the definition of invertible, we have: w W, T (T 1 (w)) = w. Let x, y W. Then, (2) (3) (4) (5) T 1 (cx + y) = T 1 (ct (T 1 (x)) + T (T 1 (y))) = T 1 (T (ct 1 (x) + T 1 y)) = T 1 T (ct 1 (x) + T 1 y) = T 1 (x) + T 1 y 7 Fact 5. If T is a linear transformation between vector spaces of equal (finite) dimension, then the conditions of being a.) invertible, b.) one-to-one, and c.) onto are all equivalent. Proof. We start with a) c). We have T T 1 = I V. To show onto, let v V then for x = T 1 (v), we have: T (x) = T (T 1 (v)) = I V (v) = v. Therefore, T is onto. By Theorem 2.5, we have b) c). We will show b) a). Let {v 1, v 2,..., v n } be a basis of V. Then {T (v 1 ), T (v 2 ),..., T (v n )} spans R(T ) by Theorem 2.2. One of the corollaries to the Replacement Theorem implies that {x 1 = T (v 1 ), x 2 = T (v 2 ),..., x n = T (v n )} is a basis for V. We define U : V V by, i, U(x i ) = v i. By Theorem 2.6, this is a well-defined linear transformation. Let x V, x = a 1 v 1 + a 2 v a n v n for some scalars a 1, a 2,..., a n. UT (x) = UT (a 1 v 1 + a 2 v a n v n ) = U(a 1 T (v 1 ) + a 2 T (v 2 ) + + a n T (v n ) = U(a 1 x 1 + a 2 x a n x n ) = a 1 U(x 1 ) + a 2 U(x 2 ) + + a n U(x n ) = a 1 v 1 + a 2 v a n v n = x Let x V, x = b 1 x 1 + b 2 x b n x n for some scalars b 1, b 2,..., b n. T U(x) = T U(b 1 x 1 + b 2 x b n x n ) = T (b 1 U(x 1 ) + b 2 T (x 2 ) + + b n T (x n ) = T (b 1 v 1 + b 2 v b n v n ) = b 1 T (v 1 ) + b 2 T (v 2 ) + + b n T (v n ) = b 1 x 1 + b 2 x b n x n = x Defn 8. (p. 100) Let A be an n n matrix. Then A is invertible if there exits an n n matrix B such that AB = BA = I. Fact 6. If A is invertible, then the inverse of A is unique. Proof. A M n (F ) and AB = BA = I n. Suppose AC = CA = I n. Then we have B = BI n = BAC = I n C = C.

8 8 Defn 9. We denote the inverse of A by A 1. Lemma 1. (p. 101) Let T be an invertible linear transformation from V to W. Then V is finite-dimensional if and only if W is finite-dimensional. In this case, dim(v ) = dim(w ). Proof. ( ) T : V W is invertible. Then T T 1 = I W and T 1 T = I V. Assume dim V = n and {v 1, v 2,..., v n } is a basis of V. We know T is onto since, if y W then for x = T 1 (y), we have T (x) = y. We know R(T ) = W since T is onto and {T (v 1 ), T (v 2 ),..., T (v n )} spans W, by Theorem 2.2. So W is finite dimensional and dim W n = dim V. ( ) Assume dim W = m. T 1 : W V is invertible. Applying the same argument as in the last case, we obtain that V is finite dimensional and dim V dim W. We see that when either of V or W is finite dimensional then so is the other and so dim W dim V and dim V dim W imply that dim V = dim W. Theorem Let V and W be finite-dimensional vector spaces with ordered bases β and γ, respectively. Let T : V W be linear. Then T is invertible if and only if [T ] γ β is invertible. Furthermore, [T 1 ] β γ = ([T ] γ β ) 1. Proof. Assume T is invertible. Let dim V = n and dim W = m. By the lemma, n = m. Let β = { 1, 2,..., n } and γ = {w 1, w 2,..., w n }. We have T 1 such that T T 1 = I W and T 1 T = I V. We will show that [T 1 ] β γ is the inverse of [T ] γ β. We will show the following 2 matrix equations: (6) (7) [T ] γ β [T 1 ] β γ = I n [T 1 ] β γ[t ] γ β = I n To prove (1) we will take the approach of showing that the i th column of [T ] γ β [T 1 ] β γ is e i, the i th characteristic vector. Notice that for any matrix A, Ae i is the i th column of A. Consider [T ] γ β [T 1 ] β γe i. By repeated use of Fact 2a, we have: [T ] γ β [T 1 ] β γe i = [T ] γ β [T 1 ] β γ[w i ] γ = [T ] γ β [T 1 (w i )] β = [T T 1 (w i )] γ = [w i ] γ = e i To prove (7) the proof is very similar. We will show that the i th column of [T 1 ] β γ[t ] γ β is e i, the i th.

9 9 Consider [T 1 ] β γ[t ] γ β e i. By repeated use of Fact 2a, we have: [T 1 ] β γ[t ] γ β e i = [T 1 ] β γ[t ] γ β [v i] β = [T 1 ] β γ[t (v i )] γ = [T 1 (T (v i ))] β = [v i ] β = e i Thus we have ( ) and the Furthermore part of the statement. Now we assume A = [T ] γ β is invertible. Call its inverse A 1. We know that it is square, thus n = m. Let β = { 1, 2,..., n } and γ = {w 1, w 2,..., w n }. Notice that the i th column of A is A i = (t 1,i, t 2,i,..., t n,i ) where T (v i ) = t 1,i w 1 + t 2,i w t n,i w n To show T is invertible, we will define a function U and prove that it is the inverse of T. Let the i th column of A 1 be C i = (c 1,i, c 2,i,..., c n,i ). We define U : W V by for all i [n], U(w i ) = c 1,i 1 +c 2,i c n,i n. Since we have defined U for the basis vectors γ, we know from Theorem 2.6 that U is a linear transformation. We wish to show that T U is the identity transformation in W and UT is the identity transformation in V. So, we show (1) T U(x) = x, x W and (2) UT (x) = x, x V. Starting with (1.). First lets see why, i [n], T (U(w i )) = w i. T (U(w i )) = T (c 1,i 1 +c 2,i c n,i n ) = c 1,i (t 1,1 w 1 + t 2,1 w t n,1 w n ) +c 2,i (t 1,2 w 1 + t 2,2 w t n,2 w n ) Gathering coefficients of w 1, w 2,..., w n, we have: + + c n,i (t 1,n w 1 + t 2,n w t n,n w n ) T (U(w i )) = (c 1,i t 1,1 + c 2,i t 1,2 + + c n,i t 1,n )w 1 +(c 1,i t 2,1 + c 2,i t 2,2 + + c n,i t 2,n )w (c 1,i t n,1 + c 2,i t n,2 + + c n,i t n,n )w n We see that the coefficient of w j in the above expression is Row j of A dot Column i of A 1, which is always equal to 1 if and only if i = j. Thus we have that T (U(w i )) = w i. Now we see that for x W then x = b 1 w 1 +b 2 w 2 + +b n w n for some scalars b 1, b 2,..., b n. T U(x) = T U(b 1 w 1 + b 2 w b n w n ) = T (b 1 U(w 1 ) + b 2 U(w 2 ) + + b n U(w n )) = b 1 T (U(w 1 )) + b 2 T (U(w 2 )) + + b n T (U(w n )) = b 1 w 1 + b 2 w b n w n = x

10 10 Similarly, UT (x) = x for all x in V. Cor 1. Let V be a finite-dimensional vector space with an ordered basis β, and let T : V V be linear. Then T is invertible if and only if [T ] β is invertible. Furthermore, [T 1 ] β = ([T ] β ) 1. Proof. Clear. Defn 10. Let A M m n (F ). Then the function L A : F n F m where for x F n, L A (x) = Ax and is called left-multiplication by A. Fact 6. (a) L A is a linear transformation and for β = {e 1, e 2,..., e n }, [L A ] β = A. Proof. We showed in class. Cor 2. Let A be an n n matrix. Furthermore, (L A ) 1 = L A 1. Then A is invertible if and only if L A is invertible. Proof. Let V = F n. Then L A : V V. Apply Corollary 1 with β = {e 1, e 2,..., e n } and [L A ] β = A, we have: L A is invertible if and only if A is invertible. The furthermore part of this corollary says that (L A ) 1 is left multiplication by A 1. We will show L A L A 1 = L A 1L A = I V. So we must show L A L A 1(x) = x, x V and L A 1L A (x) = x, x V. We have L A L A 1(x) = AA 1 x = x and L A 1L A (x) = A 1 Ax = x. Defn 11. Let V and W be vector spaces. We say that V is isomorphic to W if there exists a linear transformation T : V W that is invertible. Such a linear transformation is called an isomorphism from V onto W. Theorem Let V and W be finite-dimensional vector spaces (over the same field). Then V is isomorphic to W if and only if dim(v ) = dim(w ). Proof. ( ) Let T : V W be an isomorphism. Then T is invertible and dim V = dim W by the Lemma. ( ) Assume dim V = dim W. Let β = {v 1,..., v k } and γ = {w 1, w 2,..., w k } be bases for V and W, respectively. Define T : V W where v i w i for all i. Then [T ] γ β = I which is invertible and Theorem 2.18 implies that T is invertible and thus, an isomorphism. Fact 7. Let P M n (F ) be invertible. W is a subspace of F n implies L P (W ) is a subspace of F n and dim(l P (W )) = dim(w ). Proof. Let x, y L P (W ), a F, then there exist x and y such that P x = x and P y = y. So P (ax + y ) = ap x + P y = ax + y. So ax + y L P (W ). Also, we know 0 W and L P (0) = 0 since L P is linear, so we have that 0 L P (W ). Therefore, L P (W ) is a subspace. Let {x 1, x 2,..., x k } be a basis of W. a 1 P (x 1 ) + a 2 P (x 2 ) + a k P (x k ) = 0 P (a 1 x 1 + a 2 x 2 + a k x k ) = 0 a 1 x 1 + a 2 x 2 + a k x k = 0 a 1 = a 2 = = a k = 0 {P (x 1 ), P (x 2 ),..., P (x k )} is linearly independent

11 To show that {P (x 1 ), P (x 2 ),..., P (x k )} spans L P (W ), we let z L P (W ). Then there is some w W, such that L P (W ) = z. If w = a 1 x 1 + a 2 x a k x k, we have z = P w = P (a 1 x 1 + a 2 x a k x k ) = a 1 P (x 1 ) + a 2 P (x 2 ) + + a k P (x k ). And with have that {P (x 1 ), P (x 2 ),..., P (x k )} is a basis of L P (W ) and dim(w ) = dim(l P (W )). 11 So far, we did not define the rank of a matrix. We have: Defn 12. Let A M m n (F ). Then, Rank(A)= Rank(L A ). And the range of a matrix, R(A) is the same as R(L A ). Fact 8. Let S M n (F ). If S is invertible, then R(S) = F n. Proof. L S : F n F n. We know S is invertible implies L S is invertible. We already know that, since L S is onto, R(L S ) = F n. By the definition of R(S), we have R(S) = F n. Fact 9. S, T M n (F ), S invertible and T invertible imply ST is invertible and its inverse is T 1 S 1. Proof. This is the oldest proof in the book. Theorem Let V and W be finite-dimensional vector spaces over F of dimensions n and m, respectively, and let β and γ be ordered bases for V and W, respectively. Then the function Φ : L(V, W ) M m n (F ) defined by Φ(T ) = [T ] γ β for T L(V, W ), is an isomorphism. Proof. To show Φ is an isomorphism, we must show that it is invertible. Let β = {v 1, v 2,..., v n } and γ = {w 1, w 2,..., w n }. We define U : M m n (F ) L(V, W ) as follows. Let A M m n (F ) and have i th column: a 1,i a 2,i. a n,i So U maps matrices to transformations. U(A) is a transformation in L(V, W ). We describe the action of the linear transformation U(A) on v i and realize that this uniquely defines a linear transformation in L(V, W ). i [n], U(A)(v i ) = a 1,i w 1 + a 2,i w a n,i w n. Then A = [U(A)] γ β. Thus, ΦU(A) = A. To verify that U(Φ)(T ) = T, we see what the action is on v i. U(Φ(T ))(v i ) = U([T ] γ β )(v i) = t 1,i w 1 + t 2,i w t n,i w n = T (v i ) Cor 1. Let V and W be finite-dimensional vector spaces over F of dimensions n and m, respectively. Then L(V, W ) is finite-dimensional of dimension mn.

12 12 Proof. This by Theorem Theorem Let β and γ be two ordered bases for a finite-dimensional vector space V, and let Q = [I V ] γ β. Then (a) Q is invertible. (b) For any v V, [v] γ = Q[v] β. Proof. We see that Let β = {v 1,..., v n } and γ = {w 1,..., w n } We claim the inverse of Q is [I V ] β γ. We see that the i th column of [I V ] γ β [I V ] β γ is [I V ] γ β [I V ] β γe i. We have [I V ] γ β [I V ] β γe i = [I V ] γ β [I V ] β γ[w i ] γ = [I V ] γ β [I V (w i )] β = [I V (I V (w i ))] γ = [w i ] γ = e i and [I V ] β γ[i V ] γ β e i = [I V ] β γ[i V ] γ β [v i] β = [I V ] β γ[i V (v i )] γ = [I V (I V (v i ))] β = [v i ] β = e i We know, [v] γ = [I V (v)] γ = [I V ] γ β [v] β = Q[v] β. Defn 13. (p. 112) The matrix Q = [I V ] γ β defined in Theorem 2.22 is called a change of coordinate matrix. Because of part (b) of the theorem, we say that Q changes β- coordinates into γ-coordinates. Notice that Q 1 = [I V ] β γ. Defn 14. (p. 112) A linear transformation T : V V is called a linear operator. Theorem Let T be a linear operator on a finite-dimensional vector space V, and let β and γ be ordered bases for V. Suppose that Q is the change of coordinate matrix that changes β-coordinates into γ-coordinates. Then Proof. The statement is short for: [T ] β = Q 1 [T ] γ Q. [T ] β β = Q 1 [T ] γ γq.

13 13 Let β = {v 1, v 2,..., v n }. As usual, we look at the i th column of each side. We have The i th column of [T ] β β. Q 1 [T ] γ γqe i = [I V ] β γ[t ] γ γ[i V ] γ β [v i] β = [I V ] β γ[t ] γ γ[i V (v i )] γ = [I V ] β γ[t ] γ γ[v i ] γ = [I V ] β γ[t (v i )] γ = [I V (T (v i ))] β = [T (v i )] β = [T ] β β [v i] β = [T ] β β e i Cor 1. Let A M n n (F ), and let γ be an ordered basis for F n. Then [L A ] γ = Q 1 AQ, where Q is the n n matrix whose j th column is the j th vector of γ. Proof. Let β be the standard ordered basis for F n. Then A = [L A ] β. So by the theorem, [L A ] γ = Q 1 [L A ] β Q. Defn 15. (p. 115) Let A and B be in M n (F ). We say that B is similar to A if there exists an invertible matrix Q such that B = Q 1 AQ. Defn 16. (p. 119) For a vector space V over F, we define the dual space of V to be the vector space L(V, F ), denoted by V. Let β = {x 1, x 2,..., x n } be an ordered basis for V. For each i [n], we define f i (x) = a i where a i is the i th coordinate of [x] β. Then f i is in V called the i th coordinate function with respect to the basis β. Theorem Suppose that V is a finite-dimensional vector space with the ordered basis β = {x 1, x 2,..., x n }. Let f i (1 i n) be the ith coordinate function with respect to β and let β = {f 1, f 2,..., f n }. Then β is an ordered basis for V, and, for any f V, we have f = f(x i )f i. Proof. Let f V I. Since dim V = n, we need only show that f = f(x i )f i, from which it follows that β generates V, and hence is a basis by a Corollary to the Replacement Theorem. Let g = f(x i )f i. For 1 j n, we have ( ) g(x j ) = f(x i )f i (x j ) = f(x i )f i (x j ) = f(x i )δ i,j = f(x j ).

14 14 Therefore, f = g.

Math 333 - Practice Exam 2 with Some Solutions

Math 333 - Practice Exam 2 with Some Solutions Math 333 - Practice Exam 2 with Some Solutions (Note that the exam will NOT be this long) Definitions (0 points) Let T : V W be a transformation Let A be a square matrix (a) Define T is linear (b) Define

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

More information

Methods for Finding Bases

Methods for Finding Bases Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

More information

MA106 Linear Algebra lecture notes

MA106 Linear Algebra lecture notes MA106 Linear Algebra lecture notes Lecturers: Martin Bright and Daan Krammer Warwick, January 2011 Contents 1 Number systems and fields 3 1.1 Axioms for number systems......................... 3 2 Vector

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

MATH1231 Algebra, 2015 Chapter 7: Linear maps

MATH1231 Algebra, 2015 Chapter 7: Linear maps MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

Math 312 Homework 1 Solutions

Math 312 Homework 1 Solutions Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

More information

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION 4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6 Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function 17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Orthogonal Projections

Orthogonal Projections Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

More information

5. Linear algebra I: dimension

5. Linear algebra I: dimension 5. Linear algebra I: dimension 5.1 Some simple results 5.2 Bases and dimension 5.3 Homomorphisms and dimension 1. Some simple results Several observations should be made. Once stated explicitly, the proofs

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Linear Algebra Notes

Linear Algebra Notes Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

More information

Let H and J be as in the above lemma. The result of the lemma shows that the integral

Let H and J be as in the above lemma. The result of the lemma shows that the integral Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

MAT188H1S Lec0101 Burbulla

MAT188H1S Lec0101 Burbulla Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

More information

GROUP ALGEBRAS. ANDREI YAFAEV

GROUP ALGEBRAS. ANDREI YAFAEV GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite

More information

Notes on Symmetric Matrices

Notes on Symmetric Matrices CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.

More information

Lecture 2 Matrix Operations

Lecture 2 Matrix Operations Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

More information

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:

Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold: Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),

More information

LEARNING OBJECTIVES FOR THIS CHAPTER

LEARNING OBJECTIVES FOR THIS CHAPTER CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

More information

Section 4.4 Inner Product Spaces

Section 4.4 Inner Product Spaces Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation

Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7- In this section, we discuss linear transformations 89 9 CHAPTER

More information

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d. DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

More information

18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points.

18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points. 806 Problem Set 4 Solution Due Wednesday, March 2009 at 4 pm in 2-06 Total: 75 points Problem : A is an m n matrix of rank r Suppose there are right-hand-sides b for which A x = b has no solution (a) What

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

PROJECTIVE GEOMETRY. b3 course 2003. Nigel Hitchin

PROJECTIVE GEOMETRY. b3 course 2003. Nigel Hitchin PROJECTIVE GEOMETRY b3 course 2003 Nigel Hitchin hitchin@maths.ox.ac.uk 1 1 Introduction This is a course on projective geometry. Probably your idea of geometry in the past has been based on triangles

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Finite dimensional C -algebras

Finite dimensional C -algebras Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

Inner products on R n, and more

Inner products on R n, and more Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +

More information

Lecture Notes 2: Matrices as Systems of Linear Equations

Lecture Notes 2: Matrices as Systems of Linear Equations 2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

Matrix Differentiation

Matrix Differentiation 1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

3. Prime and maximal ideals. 3.1. Definitions and Examples.

3. Prime and maximal ideals. 3.1. Definitions and Examples. COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

Subspaces of R n LECTURE 7. 1. Subspaces

Subspaces of R n LECTURE 7. 1. Subspaces LECTURE 7 Subspaces of R n Subspaces Definition 7 A subset W of R n is said to be closed under vector addition if for all u, v W, u + v is also in W If rv is in W for all vectors v W and all scalars r

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA. September 23, 2010 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

16.3 Fredholm Operators

16.3 Fredholm Operators Lectures 16 and 17 16.3 Fredholm Operators A nice way to think about compact operators is to show that set of compact operators is the closure of the set of finite rank operator in operator norm. In this

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if

More information

Applied Linear Algebra I Review page 1

Applied Linear Algebra I Review page 1 Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

More information

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ] 1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

Notes on Linear Algebra. Peter J. Cameron

Notes on Linear Algebra. Peter J. Cameron Notes on Linear Algebra Peter J. Cameron ii Preface Linear algebra has two aspects. Abstractly, it is the study of vector spaces over fields, and their linear maps and bilinear forms. Concretely, it is

More information

Math 67: Modern Linear Algebra (UC Davis, Fall 2011) Summary of lectures Prof. Dan Romik

Math 67: Modern Linear Algebra (UC Davis, Fall 2011) Summary of lectures Prof. Dan Romik Math 67: Modern Linear Algebra (UC Davis, Fall 2011) Summary of lectures Prof. Dan Romik [Version of November 30, 2011 this document will be updated occasionally with new material] Lecture 1 (9/23/11)

More information

Linear Algebra: Vectors

Linear Algebra: Vectors A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector

More information

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that

More information

MATH 551 - APPLIED MATRIX THEORY

MATH 551 - APPLIED MATRIX THEORY MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

More information

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy. Blue vs. Orange. Review Jeopardy Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

Math 115A - Week 1 Textbook sections: 1.1-1.6 Topics covered: What is a vector? What is a vector space? Span, linear dependence, linear independence

Math 115A - Week 1 Textbook sections: 1.1-1.6 Topics covered: What is a vector? What is a vector space? Span, linear dependence, linear independence Math 115A - Week 1 Textbook sections: 1.1-1.6 Topics covered: What is Linear algebra? Overview of course What is a vector? What is a vector space? Examples of vector spaces Vector subspaces Span, linear

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information