Lecture 2: Absorbing states in Markov chains. Mean time to absorption. Wright-Fisher Model. Moran Model.
|
|
|
- Lee Williamson
- 9 years ago
- Views:
Transcription
1 Lecture 2: Absorbng states n Markov chans. Mean tme to absorpton. Wrght-Fsher Model. Moran Model. Antonna Mtrofanova, NYU, department of Computer Scence December 8, 2007 Hgher Order Transton Probabltes Very often we are nterested n a probablty of gong from state to state n n steps, whch we denote as p (n). For example, the probablty of gong from the state to state n two steps s: p (2) k p k p k where k s the set of all possble states. In other words t conssts of probabltes of gong from state to any other possble state (n one step) and then gong from that step to. Interestngly, the probablty p (2) corresponds to (, ) th entry n the matrx P 2 P P Smlarly, gong from to n n steps s defned as p (n) k p k p (n ) k k p (n ) k p k and correspond to the (, ) th entry n P n matrx (therefore we can compute transton probabltes by takng matrx powers). We defne the n-step transton probabltes for the Markov Chan by then Snce we know that P [X n X 0 ] P [X n+ k,... X n+m k m X n ] P [X k,..., X m k m X 0 ] P [X n X 0 ] p[x n+m X m ] In other words, the probablty that a path started at and ended at does not depend on the tme at whch t s ntated. Therefore p (n) P [X n X 0 ] We can also wrte p (n+m) p (n) k p(m) k k whch s also called Chapman-Kolmogorov equaton. It follows that we can compute a uncondtonal probablty (of X n takng a value of )as P [X n ] p (n) p p (n) Frequently we are nterested n the tme the system goes from some ntal state to some termnal crtcal state, called absorbng state.
2 2 Absorpton Probabltes The state s called absorbng f p. In other words, once the system hts state, t stays there forever not beng able to escape. The most nterestng absorbng states whch arse n populaton genetcs are at 0 and at M. Let us assume the populaton of haplods, each havng ether allele A or allele A 2. In ths case M. And let X be a random varable whch descrbes the frequency of allele A n a gven populaton. In populaton genetcs, t s of nterest to fnd out how fast the allele wll go to ether absorpton state ( 0 or ) gven that the populaton started wth alleles A. Many functonals (ncludng absorpton probabltes) on Markov Chan are evaluated by a technque called frst step analyss. Ths method proceeds by the analyzng the possbltes that can arse at the end of the frst transton. Let us now fx k as absorbng state. The probablty of absorpton n ths state depends on the ntal state X 0. Let us defne U k as the probablty of eventually reachng state k gven that we started n state. Frst possblty would be to go from state X 0 to X k mmedately, whch s descrbed by p k. However, f the state k s not entered at X, then we must go to some other state k. Once we enter state, the probablty of ultmate absorpton n k s U k by defnton. Weghtng all the possbltes gves U k p k + M 0& k p U k snce U kk. If we wrte u as the probablty of absorpton (say, n ), then we wrte 3 Mean tme untl absorpton u M p U k (.) 0 M p u (.2) 0 It s more dffcult to assess the propertes of the (random) tme untl absorpton. However, t s common to evaluate the mean tme untl X reaches 0 or startng from (t s called mean absorpton tme). We wsh to make a calculaton of a mean tme untl absorpton for a general startng pont. We now ntroduce a concept, whch s central n calculatng the mean absorpton tme: Let us observe that startng from the system wll vst state some number of tmes before absorpton. Ths fact t true for all (except 0 and ). Therefore, f we know the number of tmes the system vsts state (for all ) before absorpton, then we can obtan an average tme untl absorpton by summng up over average tmes the system s n a specfc state, for each state. Let us now formally defne mean number of tmes that X takes the value before absorbton n 0 or (gven that t started n ) as { t }. Then the mean tme to absorpton gven that we started at state s the sum: t We wll proceed by a frst step analyss: f the system starts at and then proceeds to k at ts next step, then the mean number of vsts to state pror to absorpton startng from state k now s { t k } by defnton. However, observe that n ths case, we mss the case when. Therefore, there s a need to defne an addtonal varable δ f, and 0 otherwse. As a result, weghtng by the probablty of gong to a state k at the frst step, we obtan t t M p k t k + δ, t 0 t M 0 By summng up the meant tmes the system s n state for all, we obtan 2
3 t By defnton t t so that t M p k t k + δ M p k t k +, t 0 t M 0 Observe that snce δ wll equal to only once (when ), then δ n the above equaton. Now, we wll dscuss two most mportant models n populaton genetcs, whch descrbe the evoluton of allele frequences: Wrght-Fsher model and Moran model. 4 Wrght-Fsher Model Let us assume a smple haplod model of the populaton of genes (or alternatvely N dplod organsms) of random reproducton, wth each haplod possessng ether allele A or allele A 2. Let us, for start, dsregard mutaton pressures and selectve forces. At every tme-step, each gene (allele) gves brth to some number of offsprngs (whch are the exact copes of hmself) and des mmedately after that, thus lvng only one generaton. Ths process descrbes how the genes get transmtted from one generaton to the next. However, the processed of brth and death wll have to reman unseen behnd the curtan for a moment. Instead, we wll only observe how the frequency of alleles wll change from generaton to generaton. We wll fx our attenton at frequency of allele A n the populaton of haplods. Let us thnk of ths process of gong from one generaton to the other as a Markov Chan, where the state X of the chan corresponds to the number of haplods (genes) of type A. Clearly, n any generaton X takes one of the values 0,,...,, whch consttutes a state space. We wll denote the value taken by X n generaton t as X t. The model assumes that genes for the generaton t + are derved by samplng wth replacement from the genes of generaton t. Thus, the make up of the next generaton s determned by ndependent Bernoull trals so that X t s a bnomal random varable. Let the ntal generaton consst of genes of type A and genes of type A 2. Then we defne a probablty of success (resultng n allele A ) p and a probablty of falure q (resultng n allele A 2 ) for each Bernoull tral as p q We generate a Markov Chan {X n }, where X n s the number of A genes n the n th generaton, among a constant populaton sze of ndvduals. Bascally, X t+ s a bnomal random varable wth ndex and parameter (probablty of success) X t /. Observe that the transton probabltes from X t to X t+ for ths Markov Chan are computed accordng to the bnomal dstrbuton as P (X t+ X t ) p ( ) p q ( ) (/) { (/)} Observe now that states 0 and are completely absorbng. In other words, no matter what the value of X 0 s, eventually X t wll take the value 0 or. And once ths happens, X wll stay n that state forever. In the case of X t 0, the populaton wll consst only of A 2 genes, whle n the case of X t the populaton wll be purely A -gene populaton. In ths model, the allele frequency of the next generaton s manpulated manly by a genetc drft (a Genetc drft can be defned as a force that reduces heterozygosty by the random loss of alleles). 3
4 4. Absorpton probablty n Wrght-Fsher model Let us dscuss absorpton probabltes n Wrght-Fsher model. In fact, the populaton can attan fxaton and be composed of only A -genes (X t ) or A 2 -genes (X t 0). It can be shown that wth probablty one, ether of the absorbng states (ether 0 or ) s eventually entered (and ths s true for both Wrght-Fsher and Moran models). And therefore lm t P (X t ) 0. We wll dscuss two cases of absorpton: at 0 and at. 4.. Absorpton at zero: We wrte the probablty of extncton (absorpton at 0) of a gene gven that t started wth copes as lm n P (X n 0 X 0 ) Let us fnd the probablty of absorbng n state 0 by usng E(X n ). We express E(X n ) by usng the expectaton of a condtonal expectaton E(X n ) E[E(X n X n )] E(X n ) E(X n 2 ) E(X 0 ) Ths property s called the constancy of expectaton (and s also true for Moran model). Further we can wrte E(X n ) as E(X n ) 0 u,0 + ( u,0 ) Now, snce lm n E(X n ), 0 u,0 + ( u,0 ) and therefore u,0 Observe that we gnore P (X t ) snce they are equal to zero as n goes to nfnty Absorpton at : We want to calculate probablty that A eventually becomes fxed n the populaton (absorpton at )and follow a smlar argument: 0 ( u, ) + u, so that u, A dfferent argument (whch s more relevant to a genetcal pont of vew) s that eventually every gene n the populaton s descended from the unque gene n generaton zero. The probablty that such a gene (allele) s A s smply the ntal fracton of A alleles, namely /, and ths also must be a fxaton probablty of allele A Absorpton startng wth one A allele Suppose that n a populaton of pure A 2 alleles a sngle new mutant A allele (gene) arses. There are no more new mutatons and therefore we can assume that we start wth a populaton wth one A allele and A 2 alleles. Accordng to the prevous result, the probablty of fxaton for ths allele s u,. On the other hand, the probablty that the allele s lost s /. 4
5 4.2 Mean tme untl absorpton n Wrght-Fsher model The calculaton of the mean tme untl absorpton for the Wrght-Fsher model s very computatonally expensve. Therefore, t s useful to approxmate ths quantty, whch wll be descrbed n the next secton. However, t s relatvely smple to derve the mean tme untl absorpton startng wth one allele of type A (before the mutant s lost or before the mutant s fxed). For ths calculaton we use the same analyss as before. We wll use the expected number of vsts to a state along the path to absorpton, startng from state X 0. We denote the mean number of generatons to absorpton n 0 or, gven that we started wth one allele A, as t. We need to sum up the expected number of such vsts for all, avodng states 0 and : t where t, s the mean number of tmes when the number of A alleles takes the value of (system s n state ) before reachng ether 0 or. Both Fsher and Wrght found that t, t, 2 startng at. Snce N log(n) + γ where γ s a Euler s constant ( ), we derve t t, 2 2 2(log( ) + γ) 4.3 Approxmatng Mean Tme untl Absorpton Even though n prncple we can fnd solutons of the mean tme to absorpton for a general, n practce these solutons seem extremely dffcult, and smple expressons for these mean tmes have not yet been found. Let us now present a smple approxmaton for t. We agan apply the frst step analyss, where we start from state and n the frst step attend some ntermedate step k. We defne M, /M x, k/m x + δx, and t t(x). Then we can rewrte the equaton as M t p k t k + t(x) P {x x + δx} t(x + δx) + () E{ t(x + δx)} + (2) Now assumng that t(x) s a twce dfferentable functon of a contnuous varable x, we can use Taylor seres to approxmate the above quantty. The Taylor seres states that f(y) n0 f(a) 0! f (n) (a) (y a) n (4) n! (y a) 0 + {f(a)}! (3) (y a) + {f(a)} (y a) (5) 2! f(a) + {f(a)} (y a) + 2 {f(a)} (y a) , (6) 5
6 We re-wrte t(x) by applyng Taylor s seres (showng three leadng terms): t(x) E{ t(x + δx)} + (7) t(x) + E(δx){ t(x)} + 2 E(δx)2 { t(x)} +, (8) All expectatons are condtonal on x. Usng the fact that the expectaton of the bnomal random varable s E(Y ) np, we can rewrte then E(x + δx) E(/M) E() M M M M M, where p M. We can as well use the fact establshed before that E(X n X n ). At the same tme x M and E(x) x; therefore E(δx) 0. As a result the term E(δx){ t(x)} 0. Let us calculate E(δx) 2. In our case, the E(δx) 2 V ar(δx) snce V ar(δx) E(δx) 2 [E(δx)] 2 and [E(δx)] 2 0, as shown from the prevous result. The varance of the bnomal random varable (9). The above gves V ar(x + δx) V ar(/) V ar() 4N 2 ) ( 4N 2 x( x) t(x) t(x) + x( x) { t(x)} + 2 x( x) { t(x)} 2 4N x( x){ t(x)} The soluton to ths equaton, subect to the boundary condtons t(0) t() 0 s t(x) 4N (0) x( x) 4N () x( x) ( 4N x + ) (2) x ( ) 4N x + (3) x 4N (ln(x) + ln( x)) (4) { } 4N ln(x) + ln( x) (5) 4N {(xln(x) x) + (( x)ln( x) ( x))} (6) 4N{xlogx + ( x)log( x)} (7) where x, the ntal frequency of allele A. Ths s also s called dffuson approxmaton to the mean absorpton tme. When we ntally start wth one A allele x, then the mean tme to absorpton s 6
7 ( ) t 4N{ ( ) log + ( ( )log ) } (8) 2 + 2log (9) (20) At the same tme, when x 2, then t( 2 ) 2.8N Observe that for equal ntal frequences (x 2 ), the mean tme s relatvely long. 5 Moran model In each generaton of the Moran model, one gene s chosen at random to gve 2 offsprngs and one gene s chosen to de (all other genes survve to the next generaton). As opposed to Wrght-Fsher model, Moran model has overlappng generatons. Ths model s also known as a brth-and-death model. We stll consder a constant populaton sze of haplods, each of whch has ether allele A or allele A 2. Let us (for now) gnore mutaton or selecton pressures. Agan, we defne X to be a random varable, whch represents the number of alleles of type A n the populaton. It s of nterest to calculate transton probabltes for the mpled Markov chan. Suppose that n populaton t (whch corresponds to state X t n underlyng Markov chan) the number of alleles A s. Then n populaton t +, the number of alleles A can be ether ( ), ( + ), or. The system can go from to f A 2 ndvdual s chosen to gve 2 offsprngs and A ndvdual s chosen to de: ( ) ( ) p, To go from to +, the opposte should be true: A 2 s chosen to de and A s chosen to reproduce: ( ) ( ) p,+ and for gong from to, t takes ether A to reproduce and de or A 2 to reproduce and de: ( p, ) ( + ) 2 + ( ) 2 () 2 Observe that p 0 for all other values of snce t s mpossble to make other transtons. 5. Propertes of a Contnuant matrx n Moran model. In the case of Moran model, the transton probablty matrx s Contnuant, whch means that p 0 ff >. Now we can apply the standard Contnuant matrx theory to our model so that the probablty of fxaton and mean tme to absorpton can be found explctly. In partcular, we can use a brth-and-death process concepts to calculate the desred quanttes. The brthdeath process s a specal case of Contnuous-tme Markov process where the states represent the current sze of a populaton and where the transtons are lmted to brths and deaths. When a brth occurs, the state goes to state +, defned by the brth rate p,+ λ. When the death occurs, the process goes from state to state, defned by the death rate p, µ. For now, we wll ust use facts from the theory of brth-death processes, wthout provng them; however, we would lke to return to formal defntons and proofs n one of the future lectures. We defne ρ µ µ 2... µ λ λ 2... λ 7
8 and ρ 0. If 0 and M are both absorbng states, then the probablty of absorpton n ether of them becomes u / Proceedng further wth the above argument, we can calculate the mean number of tmes the system s n state gven that t started n state as from ths we can derve t t t ( u ) ρ µ, (,..., ) t u t k, ( +,..., M ) ρ λ 5.2 Probablty of fxaton n Moran model Let us now observe that n the Moran model so that ( u ) ρ k + ρ µ + λ µ ( )/() 2 ρ µ λ µ 2 λ 2... µ λ u k ρ λ for 0,,...,. It can be shown that, smlarly to Wrght-Fsher model, E(X t ). Followng all of the above, the probablty of fxaton (gven that we started wth coped of A ) s gven that M. u 5.3 Expected absorpton tme Usng the fact that ρ, we can derve the followng for,..., and for +,..., M t ( u ) ρ µ (2) ( ) ( ) ( ) ( ) (22) (23) (24) 8
9 t u k (25) ρ λ k Now we can calculate the expected tme to absorpton as t ( ) ( ) (26) (27) (28) (29) t (30) ( u ) ρ k + ρ µ + ( ) ( ) + + u k (3) ρ λ + + It s possble to condton on the fact that, say A eventually fxes. In ths case, t s not dffcult to derve smpler expressons for mean absorpton tmes. Such dervatons wll be dscussed n the future lectures. (32) (33) References [] Warren Ewens, mathematcal Populaton Genetcs, Second edton, 2004, pp 20-23, 86-9, 92-99, [2] Howard Taylor and Samuel Karln, An Introducton to Stochastc Modelng, Thrd edton, 998, pp [3] Sdney Resnck, Adventures n Stochastc Processes, 992, pp
Recurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
Calculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
The OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
What is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)
6.3 / -- Communcaton Networks II (Görg) SS20 -- www.comnets.un-bremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes
Lecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and
Luby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12
14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
1 Example 1: Axis-aligned rectangles
COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton
THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
HÜCKEL MOLECULAR ORBITAL THEORY
1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ
Extending Probabilistic Dynamic Epistemic Logic
Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set
PERRON FROBENIUS THEOREM
PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()
The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis
The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna [email protected] Abstract.
How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence
1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh
Implementation of Deutsch's Algorithm Using Mathcad
Implementaton of Deutsch's Algorthm Usng Mathcad Frank Roux The followng s a Mathcad mplementaton of Davd Deutsch's quantum computer prototype as presented on pages - n "Machnes, Logc and Quantum Physcs"
An Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
+ + + - - This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
Section 5.4 Annuities, Present Value, and Amortization
Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today
How To Calculate The Accountng Perod Of Nequalty
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.
Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook
Stochastic epidemic models revisited: Analysis of some continuous performance measures
Stochastc epdemc models revsted: Analyss of some contnuous performance measures J.R. Artalejo Faculty of Mathematcs, Complutense Unversty of Madrd, 28040 Madrd, Span A. Economou Department of Mathematcs,
Ring structure of splines on triangulations
www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon
Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
The Cox-Ross-Rubinstein Option Pricing Model
Fnance 400 A. Penat - G. Pennacc Te Cox-Ross-Rubnsten Opton Prcng Model Te prevous notes sowed tat te absence o arbtrage restrcts te prce o an opton n terms o ts underlyng asset. However, te no-arbtrage
BERNSTEIN POLYNOMIALS
On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
Joe Pimbley, unpublished, 2005. Yield Curve Calculations
Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward
Hedging Interest-Rate Risk with Duration
FIXED-INCOME SECURITIES Chapter 5 Hedgng Interest-Rate Rsk wth Duraton Outlne Prcng and Hedgng Prcng certan cash-flows Interest rate rsk Hedgng prncples Duraton-Based Hedgng Technques Defnton of duraton
Level Annuities with Payments Less Frequent than Each Interest Period
Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Symoblc approach
Implied (risk neutral) probabilities, betting odds and prediction markets
Impled (rsk neutral) probabltes, bettng odds and predcton markets Fabrzo Caccafesta (Unversty of Rome "Tor Vergata") ABSTRACT - We show that the well known euvalence between the "fundamental theorem of
Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
12 Evolutionary Dynamics
12 Evolutonary Dynamcs Through the anmal and vegetable kngdoms, nature has scattered the seeds of lfe abroad wth the most profuse and lberal hand; but has been comparatvely sparng n the room and nourshment
RELIABILITY, RISK AND AVAILABILITY ANLYSIS OF A CONTAINER GANTRY CRANE ABSTRACT
Kolowrock Krzysztof Joanna oszynska MODELLING ENVIRONMENT AND INFRATRUCTURE INFLUENCE ON RELIABILITY AND OPERATION RT&A # () (Vol.) March RELIABILITY RIK AND AVAILABILITY ANLYI OF A CONTAINER GANTRY CRANE
Finite Math Chapter 10: Study Guide and Solution to Problems
Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount
Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008
Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
An Interest-Oriented Network Evolution Mechanism for Online Communities
An Interest-Orented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne
SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW.
SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (Span) Phone: 976-76-10-00
How To Understand The Results Of The German Meris Cloud And Water Vapour Product
Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller
Support Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada [email protected] Abstract Ths s a note to explan support vector machnes.
DEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
v a 1 b 1 i, a 2 b 2 i,..., a n b n i.
SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are
In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount in the account, the balance, is
Payout annutes: Start wth P dollars, e.g., P = 100, 000. Over a 30 year perod you receve equal payments of A dollars at the end of each month. The amount of money left n the account, the balance, earns
A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm
Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(7):1884-1889 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 A hybrd global optmzaton algorthm based on parallel
Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
A Lyapunov Optimization Approach to Repeated Stochastic Games
PROC. ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, OCT. 2013 1 A Lyapunov Optmzaton Approach to Repeated Stochastc Games Mchael J. Neely Unversty of Southern Calforna http://www-bcf.usc.edu/
The Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn [email protected]
Sketching Sampled Data Streams
Sketchng Sampled Data Streams Florn Rusu, Aln Dobra CISE Department Unversty of Florda Ganesvlle, FL, USA [email protected] [email protected] Abstract Samplng s used as a unversal method to reduce the
CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements
Lecture 3 Densty estmaton Mlos Hauskrecht [email protected] 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there
SCHEDULING OF CONSTRUCTION PROJECTS BY MEANS OF EVOLUTIONARY ALGORITHMS
SCHEDULING OF CONSTRUCTION PROJECTS BY MEANS OF EVOLUTIONARY ALGORITHMS Magdalena Rogalska 1, Wocech Bożeko 2,Zdzsław Heduck 3, 1 Lubln Unversty of Technology, 2- Lubln, Nadbystrzycka 4., Poland. E-mal:[email protected]
A Performance Analysis of View Maintenance Techniques for Data Warehouses
A Performance Analyss of Vew Mantenance Technques for Data Warehouses Xng Wang Dell Computer Corporaton Round Roc, Texas Le Gruenwald The nversty of Olahoma School of Computer Scence orman, OK 739 Guangtao
NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582
NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!
Methods for Calculating Life Insurance Rates
World Appled Scences Journal 5 (4): 653-663, 03 ISSN 88-495 IDOSI Pulcatons, 03 DOI: 0.589/dos.wasj.03.5.04.338 Methods for Calculatng Lfe Insurance Rates Madna Movsarovna Magomadova Chechen State Unversty,
Texas Instruments 30X IIS Calculator
Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the
Analysis of Energy-Conserving Access Protocols for Wireless Identification Networks
From the Proceedngs of Internatonal Conference on Telecommuncaton Systems (ITC-97), March 2-23, 1997. 1 Analyss of Energy-Conservng Access Protocols for Wreless Identfcaton etworks Imrch Chlamtac a, Chara
Addendum to: Importing Skill-Biased Technology
Addendum to: Importng Skll-Based Technology Arel Bursten UCLA and NBER Javer Cravno UCLA August 202 Jonathan Vogel Columba and NBER Abstract Ths Addendum derves the results dscussed n secton 3.3 of our
Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT
Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the
Testing and Debugging Resource Allocation for Fault Detection and Removal Process
Internatonal Journal of New Computer Archtectures and ther Applcatons (IJNCAA) 4(4): 93-00 The Socety of Dgtal Informaton and Wreless Communcatons, 04 (ISSN: 0-9085) Testng and Debuggng Resource Allocaton
Fisher Markets and Convex Programs
Fsher Markets and Convex Programs Nkhl R. Devanur 1 Introducton Convex programmng dualty s usually stated n ts most general form, wth convex objectve functons and convex constrants. (The book by Boyd and
CALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS
CALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS Novella Bartoln 1, Imrch Chlamtac 2 1 Dpartmento d Informatca, Unverstà d Roma La Sapenza, Roma, Italy [email protected] 2 Center for Advanced
Financial Mathemetics
Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,
Rate Monotonic (RM) Disadvantages of cyclic. TDDB47 Real Time Systems. Lecture 2: RM & EDF. Priority-based scheduling. States of a process
Dsadvantages of cyclc TDDB47 Real Tme Systems Manual scheduler constructon Cannot deal wth any runtme changes What happens f we add a task to the set? Real-Tme Systems Laboratory Department of Computer
"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *
Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789-794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC
Optimal outpatient appointment scheduling
Health Care Manage Sc (27) 1:217 229 DOI 1.17/s1729-7-915- Optmal outpatent appontment schedulng Gudo C. Kaandorp Ger Koole Receved: 15 March 26 / Accepted: 28 February 27 / Publshed onlne: 23 May 27 Sprnger
SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:
SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and
Section 2 Introduction to Statistical Mechanics
Secton 2 Introducton to Statstcal Mechancs 2.1 Introducng entropy 2.1.1 Boltzmann s formula A very mportant thermodynamc concept s that of entropy S. Entropy s a functon of state, lke the nternal energy.
1 De nitions and Censoring
De ntons and Censorng. Survval Analyss We begn by consderng smple analyses but we wll lead up to and take a look at regresson on explanatory factors., as n lnear regresson part A. The mportant d erence
Lecture 2: Single Layer Perceptrons Kevin Swingler
Lecture 2: Sngle Layer Perceptrons Kevn Sngler [email protected] Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses
Software project management with GAs
Informaton Scences 177 (27) 238 241 www.elsever.com/locate/ns Software project management wth GAs Enrque Alba *, J. Francsco Chcano Unversty of Málaga, Grupo GISUM, Departamento de Lenguajes y Cencas de
Portfolio Loss Distribution
Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets hold-to-maturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment
CHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
Using Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
Number of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000
Problem Set 5 Solutons 1 MIT s consderng buldng a new car park near Kendall Square. o unversty funds are avalable (overhead rates are under pressure and the new faclty would have to pay for tself from
A Probabilistic Theory of Coherence
A Probablstc Theory of Coherence BRANDEN FITELSON. The Coherence Measure C Let E be a set of n propostons E,..., E n. We seek a probablstc measure C(E) of the degree of coherence of E. Intutvely, we want
FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals
FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant
substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as
Mxtures and Solutons Partal Molar Quanttes Partal molar volume he total volume of a mxture of substances s a functon of the amounts of both V V n,n substances (among other varables as well). hus the change
Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
where the coordinates are related to those in the old frame as follows.
Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product
Simple Interest Loans (Section 5.1) :
Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part
7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
Faraday's Law of Induction
Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy
Mean Molecular Weight
Mean Molecular Weght The thermodynamc relatons between P, ρ, and T, as well as the calculaton of stellar opacty requres knowledge of the system s mean molecular weght defned as the mass per unt mole of
Efficient Project Portfolio as a tool for Enterprise Risk Management
Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse
Project Networks With Mixed-Time Constraints
Project Networs Wth Mxed-Tme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa
8 Algorithm for Binary Searching in Trees
8 Algorthm for Bnary Searchng n Trees In ths secton we present our algorthm for bnary searchng n trees. A crucal observaton employed by the algorthm s that ths problem can be effcently solved when the
A Model of Private Equity Fund Compensation
A Model of Prvate Equty Fund Compensaton Wonho Wlson Cho Andrew Metrck Ayako Yasuda KAIST Yale School of Management Unversty of Calforna at Davs June 26, 2011 Abstract: Ths paper analyzes the economcs
A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION. Michael E. Kuhl Radhamés A. Tolentino-Peña
Proceedngs of the 2008 Wnter Smulaton Conference S. J. Mason, R. R. Hll, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION
