The Cox-Ross-Rubinstein Option Pricing Model
|
|
|
- Noreen O’Neal’
- 10 years ago
- Views:
Transcription
1 Fnance 400 A. Penat - G. Pennacc Te Cox-Ross-Rubnsten Opton Prcng Model Te prevous notes sowed tat te absence o arbtrage restrcts te prce o an opton n terms o ts underlyng asset. However, te no-arbtrage assumpton alone cannot determne an exact opton prce as a uncton o te underlyng asset prce. To do so, one needs to make addtonal assumptons regardng te dstrbuton o returns earned by te underlyng asset. Certan dstrbutonal assumptons can mply a complete market or te underlyng asset s rsk tat allows us to determne a unque opton prce. Te model n tese notes makes te assumpton tat te underlyng asset, ereater reerred to as a stock, takes on one o only two possble values eac perod. Wle ts may seem unrealstc, te assumpton leads to a ormula tat can accurately prce optons. Ts bnomal opton prcng tecnque s oten appled by Wall Street practtoners to numercally compute te prces o complex optons. Here, we start by consderng te prcng o a smple European opton wrtten on a non-dvdend-payng stock. In addton to assumng te absence o arbtrage opportuntes, te bnomal model assumes tat te current stock prce, S, eter moves up, by a proporton u, or down, by a proporton d, eacperod. Teprobabltyoanupmovesq, so tat te probablty o a down move s 1 q. Ts can be llustrated as us wt probablty q S % & (1) ds wt probablty 1 q Denote as one plus te rsk-ree nterest rate or te perod. Ts rsk-ree return s assumed to be te constant over tme. To avod arbtrage between te stock and te rsk-ree nvestment, we must ave d< <u. Let C equal te value o a European call opton wrtten on te stock and avng a strke prce o X. Atexpry,C = max[0,s T X]. Tus: One perod pror to expry: 1
2 C u max [0,uS X] wt probablty q C % & (2) C d max [0,dS X] wt probablty 1 q Wat s C one perod beore expry? Consder a portolo contanng sares o stock and $B o bonds. It as current value equal to S + B. Ten te value o ts portolo evolves over te perod as us + B wt probablty q S + B % & (3) ds + B wt probablty 1 q Wt two securtes (te bond and stock) and two states o te world (up or down), and B can be cosen to replcate te payo o te call opton: us + B = C u ds + B = C d (4a) (4b) Solvng or and B tat satsy tese two equatons, we ave = C u C d (u d) S (5a) B = uc d dc u (u d) (5b) Hence, a portolo o sares o stock and $B o bonds produces te same caslow as te call opton. Ts s possble because te market s complete. Tradng n te stock and bond produces payos tat span te two states. Now snce te portolo s return replcates tat o te opton, te absence o arbtrage mples 2
3 Example: IS = $50, u =2,d =.5, =1.25, X =$50,ten C = S + B (6) us = $100, ds=$25,c u =$50,C d =$0. Tereore: = 50 0 (2.5) 50 = 2 3 B = 0 25 (2.5) 1.25 = 40 3 so tat C = S + B = 2 3 (50) 40 3 = 60 3 = $20 I C< S + B, ten an arbtrage s to sort sell sares o stock, nvest $ B n bonds, and buy te call opton. Conversely, C> S + B, ten an arbtrage s to wrte te call opton, buy sares o stock, and borrow $ B. Te resultng opton prcng ormula as an nterestng mplcaton. It can be re-wrtten as C = S + B = C u C d (u d) + uc d dc u (7) (u d) R d u d = max [0,uS X]+ u R u d max [0,dS X] wc does not depend on te probablty o an up or down move o te stock, q. Tus,gven S, nvestors wll agree on te no-arbtrage value o te call opton even tey do not agree on q. Snce q determnes te stock s expected rate o return, uq + d(1 q) 1, ts does not need to be known or estmated n order to solve or te no-arbtrage value o te opton, C. However, 3
4 we do need to know u and d, te sze o movements per perod, wc determne te stock s volatlty. Butnotetattecalloptonvalue, C, doesnotdrectly depend on nvestors atttudes toward rsk. It s a relatve (to te stock) prcng ormula. Note also tat we can re-wrte C as [pc u +(1 p) C d ] (8) were p d u d. Snce 0 < p < 1, p as te propertes o a probablty. In act, ts pseudo-probablty p would equal te true probablty q nvestors were rsk-neutral, snce ten te expected return on te stock would equal : [uq + d (1 q)] S = S (9) or q = d u d = p. (10) Perapstssnotsurprsng,snceteexpresson [pc u +(1 p) C d ] does not depend on rsk-preerences, and so t must be consstent wt all possble rsk preerences, ncludng rsk-neutralty. Next, consder te opton s value wt: Two perods pror to expraton: Testockprceprocesss 4
5 u 2 S us % & S % & dus (11) ds % & d 2 S so tat te opton prce process s C uu max 0,u 2 S X % C u & C % & C du max [0,duS X] (12) % C d & C dd max 0,d 2 S X Usng te results rom our analyss wen tere was only one perod to expry, we know tat C u = pc uu +(1 p) C du C d = pc du +(1 p) C dd (13a) (13b) Wt two perods to expry, te one perod to go caslows o C u and C d can be replcated once agan by te stock and bond portolo composed o = Cu C d (u d)s B = uc d dc u (u d) o bonds. No-arbtrage mples sares o stock and C = S + B = 1 [pc u +(1 p) C d ] (14) 5
6 Substtutng n or C u and C d,weave p 2 R 2 C uu +2p (1 p) C ud +(1 p) 2 C dd = 1 R 2 p 2 max 0,u 2 S X +2p (1 p)max[0,dus X]+(1 p) 2 max 0,d 2 S X Note tat C depends only current S, X, u, d,,andtetmeuntlmaturty,2perods. Repeatng ts analyss or tree, our, ve,..., n perods pror to expry, we always obtan (15) C = S + B = 1 [pc u +(1 p) C d ] By repeated substtuton or C u, C d, C uu, C ud, C dd, C uuu, etc., we obtan te ormula: n perods pror to expraton: R n µ j=0 X p j (1 p) n j max 0,u j d n j S (16) Ts ormula can be smpled by denng a as te mnmum number o upward jumps o S or t to exceed X. Tus a s te smallest non-negatve nteger suc tat u a d n a S>X. Takng te natural logartm o bot sdes, a s te mnmum nteger >ln(x/sd n )/ln(u/d). Tereore or all j<a(te opton expres out-o-te money), wle or all j>a(te opton expres n-te-money), max 0,u j d n j S X =0, (17a) Tus, te ormula or C can be re-wrtten: R n max 0,u j d n j S X = u j d n j S X (17b) µ j=a Breakngtsupntotwoterms,weave: p j (1 p) n j u j d n j S X (18) 6
7 µ " C = S p j (1 p) n j u j d n j # R n (19) j=a µ XR n p j (1 p) n j j=a Te terms n brackets are complementary bnomal dstrbuton unctons, so tat we can wrte ts as were p 0 C = Sφ[a; n, p 0 ] XR n φ[a; n, p] (20) ³ u R p and φ[a; n, p] = te probablty tat te sum o n random varables wc equal 1 wt probablty p and 0 wt probablty 1 p wll be a. Tese ormulas mply tat C s te dscounted expected value o te call s termnal payo tat would occur n a rsk-neutral world. I we dene τ astetmeuntlmaturtyotecalloptonandσ 2 astevaranceperunt tme o te stock s rate o return (wc depends on u and d), ten by takng te lmt as te number o perods n, but te lengt o eac perod τ n 0, te Cox-Ross-Rubnsten bnomal opton prcng ormula becomes te well-known Black-Scoles-Merton opton prcng ormula 1 were z ln µ S XR τ (σ τ) σ2 τ C = SN (z) XR τ N z σ τ (21) and N ( ) s tat standard normal dstrbuton uncton. 1 In te Black-Scoles-Merton ormula, s now te rsk-ree return per unt tme rater tan te rsk-ree return or eac perod. Te relatonsp between σ and u and d wll be dscussed sortly. 7
Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
Stock Profit Patterns
Stock Proft Patterns Suppose a share of Farsta Shppng stock n January 004 s prce n the market to 56. Assume that a September call opton at exercse prce 50 costs 8. A September put opton at exercse prce
The OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
Level Annuities with Payments Less Frequent than Each Interest Period
Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Symoblc approach
Using Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
The Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn [email protected]
THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
An Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
Addendum to: Importing Skill-Biased Technology
Addendum to: Importng Skll-Based Technology Arel Bursten UCLA and NBER Javer Cravno UCLA August 202 Jonathan Vogel Columba and NBER Abstract Ths Addendum derves the results dscussed n secton 3.3 of our
Lecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and
Joe Pimbley, unpublished, 2005. Yield Curve Calculations
Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward
Recurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
Hedging Interest-Rate Risk with Duration
FIXED-INCOME SECURITIES Chapter 5 Hedgng Interest-Rate Rsk wth Duraton Outlne Prcng and Hedgng Prcng certan cash-flows Interest rate rsk Hedgng prncples Duraton-Based Hedgng Technques Defnton of duraton
Interest Rate Futures
Interest Rate Futures Chapter 6 6.1 Day Count Conventons n the U.S. (Page 129) Treasury Bonds: Corporate Bonds: Money Market Instruments: Actual/Actual (n perod) 30/360 Actual/360 The day count conventon
NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
Section 5.4 Annuities, Present Value, and Amortization
Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today
Course outline. Financial Time Series Analysis. Overview. Data analysis. Predictive signal. Trading strategy
Fnancal Tme Seres Analyss Patrck McSharry [email protected] www.mcsharry.net Trnty Term 2014 Mathematcal Insttute Unversty of Oxford Course outlne 1. Data analyss, probablty, correlatons, vsualsaton
Implied (risk neutral) probabilities, betting odds and prediction markets
Impled (rsk neutral) probabltes, bettng odds and predcton markets Fabrzo Caccafesta (Unversty of Rome "Tor Vergata") ABSTRACT - We show that the well known euvalence between the "fundamental theorem of
World currency options market efficiency
Arful Hoque (Australa) World optons market effcency Abstract The World Currency Optons (WCO) maket began tradng n July 2007 on the Phladelpha Stock Exchange (PHLX) wth the new features. These optons are
7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading
The Choce of Drect Dealng or Electronc Brokerage n Foregn Exchange Tradng Mchael Melvn Arzona State Unversty & Ln Wen Unversty of Redlands MARKET PARTICIPANTS: Customers End-users Multnatonal frms Central
1. Math 210 Finite Mathematics
1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210
Chapter 15 Debt and Taxes
hapter 15 Debt and Taxes 15-1. Pelamed Pharmaceutcals has EBIT of $325 mllon n 2006. In addton, Pelamed has nterest expenses of $125 mllon and a corporate tax rate of 40%. a. What s Pelamed s 2006 net
Cautiousness and Measuring An Investor s Tendency to Buy Options
Cautousness and Measurng An Investor s Tendency to Buy Optons James Huang October 18, 2005 Abstract As s well known, Arrow-Pratt measure of rsk averson explans a ratonal nvestor s behavor n stock markets
Simple Interest Loans (Section 5.1) :
Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part
THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts
Power-of-wo Polces for Sngle- Warehouse Mult-Retaler Inventory Systems wth Order Frequency Dscounts José A. Ventura Pennsylvana State Unversty (USA) Yale. Herer echnon Israel Insttute of echnology (Israel)
EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR
EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR 8S CHAPTER 8 EXAMPLES EXAMPLE 8.4A THE INVESTMENT NEEDED TO REACH A PARTICULAR FUTURE VALUE What amount must you nvest now at 4% compoune monthly
10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest
1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual e ectve
Section 2.3 Present Value of an Annuity; Amortization
Secton 2.3 Present Value of an Annuty; Amortzaton Prncpal Intal Value PV s the present value or present sum of the payments. PMT s the perodc payments. Gven r = 6% semannually, n order to wthdraw $1,000.00
Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy
4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.
On the pricing of illiquid options with Black-Scholes formula
7 th InternatonalScentfcConferenceManagngandModellngofFnancalRsks Ostrava VŠB-TU Ostrava, Faculty of Economcs, Department of Fnance 8 th 9 th September2014 On the prcng of llqud optons wth Black-Scholes
Intra-year Cash Flow Patterns: A Simple Solution for an Unnecessary Appraisal Error
Intra-year Cash Flow Patterns: A Smple Soluton for an Unnecessary Apprasal Error By C. Donald Wggns (Professor of Accountng and Fnance, the Unversty of North Florda), B. Perry Woodsde (Assocate Professor
ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C White Emerson Process Management
ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C Whte Emerson Process Management Abstract Energy prces have exhbted sgnfcant volatlty n recent years. For example, natural gas prces
How To Calculate The Accountng Perod Of Nequalty
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
A Model of Private Equity Fund Compensation
A Model of Prvate Equty Fund Compensaton Wonho Wlson Cho Andrew Metrck Ayako Yasuda KAIST Yale School of Management Unversty of Calforna at Davs June 26, 2011 Abstract: Ths paper analyzes the economcs
Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall
SP 2005-02 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 14853-7801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent
Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money
Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important
Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio
Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of
Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.
Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook
OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL. Thomas S. Ferguson and C. Zachary Gilstein UCLA and Bell Communications May 1985, revised 2004
OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL Thomas S. Ferguson and C. Zachary Glsten UCLA and Bell Communcatons May 985, revsed 2004 Abstract. Optmal nvestment polces for maxmzng the expected
Pricing Multi-Asset Cross Currency Options
CIRJE-F-844 Prcng Mult-Asset Cross Currency Optons Kenchro Shraya Graduate School of Economcs, Unversty of Tokyo Akhko Takahash Unversty of Tokyo March 212; Revsed n September, October and November 212
Time Value of Money Module
Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the
0.02t if 0 t 3 δ t = 0.045 if 3 < t
1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual effectve
Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
The Stock Market Game and the Kelly-Nash Equilibrium
The Stock Market Game and the Kelly-Nash Equlbrum Carlos Alós-Ferrer, Ana B. Ana Department of Economcs, Unversty of Venna. Hohenstaufengasse 9, A-1010 Venna, Austra. July 2003 Abstract We formulate the
FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals
FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant
The impact of hard discount control mechanism on the discount volatility of UK closed-end funds
Investment Management and Fnancal Innovatons, Volume 10, Issue 3, 2013 Ahmed F. Salhn (Egypt) The mpact of hard dscount control mechansm on the dscount volatlty of UK closed-end funds Abstract The mpact
Optimal Consumption and Investment with Transaction Costs and Multiple Risky Assets
THE JOURNAL OF FINANCE VOL. LIX, NO. 1 FEBRUARY 2004 Optmal Consumpton and Investment wth Transacton Costs and Multple Rsky Assets HONG LIU ABSTRACT We consder the optmal ntertemporal consumpton and nvestment
Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
A) 3.1 B) 3.3 C) 3.5 D) 3.7 E) 3.9 Solution.
ACTS 408 Instructor: Natala A. Humphreys SOLUTION TO HOMEWOR 4 Secton 7: Annutes whose payments follow a geometrc progresson. Secton 8: Annutes whose payments follow an arthmetc progresson. Problem Suppose
What is Advanced Corporate Finance? What is finance? What is Corporate Finance? Deciding how to optimally manage a firm s assets and liabilities.
Wat is? Spring 2008 Note: Slides are on te web Wat is finance? Deciding ow to optimally manage a firm s assets and liabilities. Managing te costs and benefits associated wit te timing of cas in- and outflows
Calculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample
DB Global Short Maturity High Yield Bond Index
12 February 2015 DBIQ Index Gude DB Global Short Maturty Hgh Yeld Bond Index Summary The DB Global Short Maturty Hgh Yeld Bond Index ( Index ) tracks the performance of a selected basket of short term
BERNSTEIN POLYNOMIALS
On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
Section 5.3 Annuities, Future Value, and Sinking Funds
Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme
A Master Time Value of Money Formula. Floyd Vest
A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.
Journal of Corporate Finance
CORFIN-0047; No of Pages Journal of Corporate Fnance xxx (00) xxx xxx Contents lsts avalable at ScenceDrect Journal of Corporate Fnance journal omepage: www.elsever.com/locate/jcorpfn Insttutonal tradng,
Mathematics of Finance
Mathematcs of Fnance 5 C H A P T E R CHAPTER OUTLINE 5.1 Smple Interest and Dscount 5.2 Compound Interest 5.3 Annutes, Future Value, and Snkng Funds 5.4 Annutes, Present Value, and Amortzaton CASE STUDY
Pragmatic Insurance Option Pricing
Paper to be presented at the XXXVth ASTIN Colloquum, Bergen, 6 9th June 004 Pragmatc Insurance Opton Prcng by Jon Holtan If P&C Insurance Company Ltd Oslo, Norway Emal: [email protected] Telephone: +47960065
INTRODUCTION TO MERGERS AND ACQUISITIONS: FIRM DIVERSIFICATION
XV. INTODUCTION TO MEGES AND ACQUISITIONS: FIM DIVESIFICATION In the ntroducton to Secton VII, t was noted that frs can acqure assets by ether undertakng nternally-generated new projects or by acqurng
Beating the Odds: Arbitrage and Wining Strategies in the Football Betting Market
Beatng the Odds: Arbtrage and Wnng Strateges n the Football Bettng Market NIKOLAOS VLASTAKIS, GEORGE DOTSIS and RAPHAEL N. MARKELLOS* ABSTRACT We examne the potental for generatng postve returns from wagerng
The VIX Volatility Index
U.U.D.M. Project Report :7 he VIX Volatlty Index Mao Xn Examensarbete matematk, 3 hp Handledare och examnator: Macej lmek Maj Department of Mathematcs Uppsala Unversty Abstract. VIX plays a very mportant
THE EFFECT OF PREPAYMENT PENALTIES ON THE PRICING OF SUBPRIME MORTGAGES
THE EFFECT OF PREPAYMENT PENALTIES ON THE PRICING OF SUBPRIME MORTGAGES Gregory Ellehausen, Fnancal Servces Research Program George Washngton Unversty Mchael E. Staten, Fnancal Servces Research Program
THE IMPLIED VOLATILITY OF ETF AND INDEX OPTIONS
The Internatonal Journal of Busness and Fnance Research Volume 5 Number 4 2011 THE IMPLIED VOLATILITY OF ETF AND INDEX OPTIONS Stoyu I. Ivanov, San Jose State Unversty Jeff Whtworth, Unversty of Houston-Clear
Portfolio Performance Manipulation and Manipulation-Proof Performance Measures
Portfolo Performance Manpulaton and Manpulaton-Proof Performance Measures Wllam Goetzmann, Jonathan Ingersoll, Matthew Spegel, Ivo Welch March 5, 006 Yale School of Management, PO Box 0800, New Haven,
Stress test for measuring insurance risks in non-life insurance
PROMEMORIA Datum June 01 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq and Erk Elvers Stress test for measurng nsurance rsks n non-lfe nsurance Summary Ths memo descrbes stress testng of nsurance
DEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount in the account, the balance, is
Payout annutes: Start wth P dollars, e.g., P = 100, 000. Over a 30 year perod you receve equal payments of A dollars at the end of each month. The amount of money left n the account, the balance, earns
Chapter 15: Debt and Taxes
Chapter 15: Debt and Taxes-1 Chapter 15: Debt and Taxes I. Basc Ideas 1. Corporate Taxes => nterest expense s tax deductble => as debt ncreases, corporate taxes fall => ncentve to fund the frm wth debt
Construction Rules for Morningstar Canada Target Dividend Index SM
Constructon Rules for Mornngstar Canada Target Dvdend Index SM Mornngstar Methodology Paper October 2014 Verson 1.2 2014 Mornngstar, Inc. All rghts reserved. The nformaton n ths document s the property
Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining
Rsk Model of Long-Term Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,
SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW.
SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (Span) Phone: 976-76-10-00
+ + + - - This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
1 Example 1: Axis-aligned rectangles
COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton
ADVA FINAN QUAN ADVANCED FINANCE AND QUANTITATIVE INTERVIEWS VAULT GUIDE TO. Customized for: Jason ([email protected]) 2002 Vault Inc.
ADVA FINAN QUAN 00 Vault Inc. VAULT GUIDE TO ADVANCED FINANCE AND QUANTITATIVE INTERVIEWS Copyrght 00 by Vault Inc. All rghts reserved. All nformaton n ths book s subject to change wthout notce. Vault
10.2 Future Value and Present Value of an Ordinary Simple Annuity
348 Chapter 10 Annutes 10.2 Future Value and Present Value of an Ordnary Smple Annuty In compound nterest, 'n' s the number of compoundng perods durng the term. In an ordnary smple annuty, payments are
Figure 1. Inventory Level vs. Time - EOQ Problem
IEOR 54 Sprng, 009 rof Leahman otes on Eonom Lot Shedulng and Eonom Rotaton Cyles he Eonom Order Quantty (EOQ) Consder an nventory tem n solaton wth demand rate, holdng ost h per unt per unt tme, and replenshment
Buy a number of shares,, and invest B in bonds. Outlay for portfolio today is S + B. Tree shows possible values one period later.
Replicating portfolios Buy a number of shares,, and invest B in bonds. Outlay for portfolio today is S + B. Tree shows possible values one period later. S + B p 1 p us + e r B ds + e r B Choose, B so that
Financial Mathemetics
Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,
JPMorgan Commodity Target Volatility Index Series
JPMorgan Commodty Target Volatlty Index Seres Index Rules November 2010 All Rghts Reserved 1. Ths Part A: General Rules 1.1 Introducton PART A General Rules Ths Part A: General Rules sets out a general
3. Present value of Annuity Problems
Mathematcs of Fnance The formulae 1. A = P(1 +.n) smple nterest 2. A = P(1 + ) n compound nterest formula 3. A = P(1-.n) deprecaton straght lne 4. A = P(1 ) n compound decrease dmshng balance 5. P = -
