The Surface Energy Budget
|
|
|
- Thomasina Fox
- 10 years ago
- Views:
Transcription
1 The Surface Energy Budget
2 The radiation (R) budget Shortwave (solar) Radiation Longwave Radiation R SW R SW α α = surface albedo R LW εσt 4 ε = emissivity σ = Stefan-Boltzman constant T = temperature Subsurface Column (variously soil, rock, ice, water) R NET = R SW (1- α ) + R LW + εσt 4 Fluxes are positive when directed toward the surface
3 The non-radiative terms Sensible Heat (S) Latent Heat (L) Melt (M) Conduction (C) Subsurface Column (variously soil, rock, ice, water) R NET = S + L + M + C Non radiative terms positive when directed away from the surface
4 Components of the budget
5 Spectral irradiance for a black body at 5900K, Incoming solar radiation at sea level assuming no absorbtion, and observed solar radiation at the earth s surface. Note the various atmospheric absorbtion bands due primarily to ozone, diatomic oxygen, water vapor and carbon dioxide.
6 Mean monthly downwelling solar radiation at the surface (R SW, Wm -2 ) for March through October, based on ISCCP-D satellite data [courtesy of J. Key, NOAA, Madison, WI]. The surface flux depends on TOA solar flux, clear-sky absorbtion and scattering, and absorbtion and scattering by clouds.
7 These two MODIS composites serve to emphasize two points: (1) The Arctic is typically cloudy, meaning that much of the TOA solar flux is scattered back to space (clouds have a high albedo); 2) surface albedo, while typically quite high in the Arctic, is also highly variable both spatially and temporally MODIS mosiac, April 30,2010 MODIS mosiac, July 17,
8 From Serreze and Barry, 2005
9 Albedo of snow Direct beam spectral reflectance for a semi-infinite snowpack as a function of wavelength for grain radii from 50 to 1000 µm and for a solar zenith angle of 60 [from Wiscombe and Warren, 1980, by permission of AMS]. The key points are that the spectral reflectance of a snowpack is higher for short wavelengths (visible band) and small grain sizes. Albedo is the integrated spectral reflectance over the solar spectrum.
10 Effect of solar zenith angle The albedo of snow tends to increase with an increasing solar zenith angle (the angle between zenith an the sun). This is understood from the forward-scattering nature of snow particles. For a large zenith angle (sun near the horizon) there is a high likelihood that a photon will be scattered upwards and out of the snowpack. For a small zenith angle (sun close to overhead) there will be more interactions between a photon and snow grains, and a greater likelihood of absorbtion. mate/temperateclimate.htm
11 Cloud cover tends to increase the albedo of snow relative to clear skies 1) Clouds preferentially absorb longer wavelengths, so that the incoming radiation at the surface is relatively enriched in the short wavelengths for which the snow albedo is highest. This is augmented by stronger multiple scattering between the surface and cloud base. 2) Clouds increase the ratio of diffuse (scattered) to direct-beam radiation. The effective solar zenith angle under overcast skies is 50. Hence: --- if the true solar zenith angle is >50 o, the effect of cloud is to decrease the effective solar zenith angle and reduce the albedo --- if the true solar zenith angle is <50 o, the effect of cloud is to increase the effective solar zenith angle and increase the albedo However, enrichment of the incident flux in she shorter wavelengths normally outweighs the effect of cloud cover on the effective solar zenith angle, such that cloud cover has an overall effect of increasing the albedo
12 Effect of sastrugi aligned snow drifts Albedo can be several percent lower when the solar zenith angle is normal to sastrugi in the snow cover (causing shadows) compared to when it is parallel to sastrugi.
13 Albedo of snow: summary High Albedo Shorter wavelengths High zenith angle Small grain size Fresh snow Uniform layer Cloudy skies Low Albedo Longer wavelengths Low zenith angle Large grain size Old snow (grain size and pollution particles) Drift patterns Clear skies
14 Sea ice albedo quite variable, both temporally (snow cover aging, meltpond formation, fresh snowfall events), and spatially (regional differences in temperature, snow depth, snow characteristics and sea ice concentration) Courtesy D. Perovich, USA CRREL
15 Seasonal cycle of surface albedo over the central Arctic Ocean based on SHEBA data for The coloring, from left to right, breaks to time series into, respectively, pre-melt, initial melt, rapid melt, summer, and autumn freezeup (courtesy D. Perovich, USA CRREL).
16 Mean monthly surface albedo across the Arctic for April through September, based on APP-x satellite data [courtesy of J. Key, NOAA/NESDIS, Madison, WI]. Spring values over snow covered sea ice can exceed Values over open water are less than The albedo of the cold, snow covered central Greenland ice sheet stays high year round
17 Mean monthly downwelling longwave radiation at the surface (R LW, Wm -2 ) for the four mid-season months based on ISCCP-D data [courtesy of J. Key, NOAA, Madison, WI]. The flux depends on temperature, water vapor content and cloud cover, the latter two which affect the atmospheric emissivity. Clouds radiate approximately as blackbodies.
18 Mean monthly net longwave radiation at the surface (Wm -2 ) for the four mid-season months based on ISCCP-D data [courtesy of J. Key, NOAA, Madison, WI]. Note that the fluxes are all negative (emitted longwave radiation exceeds to downward longwave flux). The net longwave flux depends strongly on cloud cover.
19 Mean monthly net allwave radiation at the surface (Wm-2) for the four mid-season months based on ISCCP-D data [courtesy of J. Key, NOAA, Madison, WI].
20 Cloud radiative forcing (CRF) The radiative impact of clouds at the surface or top of the atmosphere CRF = (SW average - SW clear ) + (LW average - LW clear ) Shortwave Forcing Longwave Forcing (-30 W/m 2 in Arctic) (+55 W/m 2 in Arctic) CRF > 0 : Clouds are a warming mechanism CRF < 0 : Clouds are a cooling mechanism
21 Modeled annual cycle of (a) the surface and (b) top of atmosphere cloud radiative forcing (net shortwave, net longwave and net allwave) at 80 N [from Curry and Ebert, 1992, by permission of AMS]. The competing effects of cloud shortwave forcing (clouds reduce the downward solar flux) and cloud longwave forcing (clouds increase the downward longwave flux) are most pronounced at the surface. Averaged over the year, surface net allwave (longwave plus shortwave) cloud radiative forcing is positive (cloud cover increases the net allwave flux, i.e., it warms the surface). Net allwave surface forcing is negative (clouds cool the surface) only for a short time during summer. The shortwave cloud forcing at the surface is very sensitive to surface albedo. The negative net allwave forcing at the top of the atmosphere in summer is primarily due to the high albedo of clouds.
22 Mean monthly total (allwave) cloud radiative forcing at the surface (Wm -2 ) for the four mid-season months based on ISCCP-D data [courtesy of J. Key, NOAA, Madison, WI]. Only the July field shows negative values.
23 Observed surface cloud radiative forcing: Barrow, AK x axis = month, y axis = cloud fraction (f) Courtesy J. Walsh, Univ. IL Urbana Champaign
24 Monthly radiation balance components (W m -2 ) for the central Arctic Ocean from the SHEBA (Surface Heat Budget of the Arctic Ocean) experiment. Shown are (a) net radiation (heavy lines) and albedo (thin lines); (b) incoming shortwave radiation; (c) incoming longwave radiation. In each panel, results from the SHEBA experiment are shown along with those from other studies [adapted from Persson et al., 2002, by permission of AGU].
25 Monthly non-radiative energy balance components (W m -2 ) for the Central Arctic Ocean from the SHEBA effort. Shown are (a) sensible heat flux; (b) latent heat flux; (c) conductive heat flux. In each panel, results from the SHEBA experiment are shown along with those from other studies [adapted from Persson et al., 2002, by permission of AGU]. Note the smallness of these terms compared to the radiative fluxes (previous slide).
26 Arctic temperature inversions
27 Mean temperature profiles for February 1987 from 6 stations located around the periphery of the Arctic Ocean: 1) Krenkel (81 N, 58 E), 2) Chelyuskin (78 N,104 E), 3) Kotelny (76 N, 138 E), 4) Barrow (71 N, 86 W), 5) Mould Bay (76 N, 119 W) and Eureka (80 N, 86 W) [from Overland et al., 1997, by permission of AMS]. The surface-based temperature inversion at each site, to a first order, can be viewed in terms of longwave radiative equilibrium.
28 Longwave radiative equilibrium The atmosphere has a lower emissivity than the surface. If the system is in longwave equilibrium, the atmopshere must be radiating at a higher physical temperature than the surface. Atmosphere (ε a < 1) ε s σt s 4 = ε a σt a 4 but ε s σt s 4 ε a σt a 4 ε s > ε a hence T a > T s Surface (ε s = 1) Key assumptions: 1) System is determined only by longwave radiation exchanges 2) System is completely closed (which violates the second law of thermodynamics)
29 A more complete view (albeit still oversimplified) Net longwave loss to space Atmosphere (ε a < 1) ε s σt 4 s > ε a σt 4 a ε s > ε a and T a > T s ε s σt 4 s + ε a σt 4 a + F A = 0 ε s σt s 4 ε a σt a 4 F A Surface (ε s = 1) Surface turbulent fluxes and the shortwave radiation flux are small. Leakage of longwave radiation to space is balanced by horizontal heat flux convergence.
30 Monthly median inversion top (top of bars), base (bottom of bars) and temperature difference (solid lines) from a) drifting station data from the central Arctic Ocean; b) station Zhigansk over the Siberian tundra [from Serreze et al., 1992b, by permission of AMS]. Inversions are still common in summer but tend be elevated above the surface. Shallow surface-based melting inversions are also common in summer over sea ice..
31 Climate feedbacks involving the surface energy budget
32 Schematic of the ice- albedo feedback mechanism using the framework of Kellogg [1973]. The direction of the arrow indicates the direction of the interaction. A + indicates a positive interaction (an increase in the first quantity leads to an increase in the second). A - indicates a negative interaction (an increase in the first quantity leads to a decrease in the second quantity). A +/- indicates that the sign of the interaction is uncertain or that the sign changes over the annual cycle [from Curry et al., 1996, by permission of AMS].
33 The cloud-radiation feedback mechanism [from Curry et al., 1996, by permission of AMS].
Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth
Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)
Energy Pathways in Earth s Atmosphere
BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet
ATM S 111, Global Warming: Understanding the Forecast
ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
AOSC 621 Lesson 15 Radiative Heating/Cooling
AOSC 621 Lesson 15 Radiative Heating/Cooling Effect of radiation on clouds: fog 2 Clear-sky cooling/heating rate: longwave CO2 O3 H2O 3 Clear-sky heating rate: shortwave Standard atmosphere Heating due
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.
J.D. McAlpine ATMS 611 HMWK #8 a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. These sides of the slopes will tend to have less average solar
Chapter 2: Solar Radiation and Seasons
Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add
Cloud Radiation and the Law of Attraction
Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature
Sensitivity of Surface Cloud Radiative Forcing to Arctic Cloud Properties
Sensitivity of Surface Cloud Radiative Forcing to Arctic Cloud Properties J. M. Intrieri National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado M. D. Shupe
Corso di Fisica Te T cnica Ambientale Solar Radiation
Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He
Radiation Transfer in Environmental Science
Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most
Radiative effects of clouds, ice sheet and sea ice in the Antarctic
Snow and fee Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of Yokohama Symposia J2 and J5, July 1993). IAHS Publ. no. 223, 1994. 29 Radiative effects of clouds, ice sheet and sea
Chapter 2. The global energy balance. 2.1 Planetary emission temperature
Chapter 2 The global energy balance We consider now the general problem of the radiative equilibrium temperature of the Earth. The Earth is bathed in solar radiation and absorbs much of that incident upon
1. Theoretical background
1. Theoretical background We consider the energy budget at the soil surface (equation 1). Energy flux components absorbed or emitted by the soil surface are: net radiation, latent heat flux, sensible heat
Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation
Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics
CHAPTER 2 Energy and Earth
CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect
Orbital-Scale Climate Change
Orbital-Scale Climate Change Climate Needed for Ice Age Warm winter and non-frozen oceans so lots of evaporation and snowfall Cool summer so that ice does not melt Ice Age Model When ice growing ocean
RADIATION (SOLAR) Introduction. Solar Spectrum and Solar Constant. Distribution of Solar Insolation at the Top of the Atmosphere
RADIATION (SOLAR) 1859 Workshop Proceedings, Joint Research Centre, Ispra, Italy, pp. 45 53. Ulaby FT (1981)Microwave response of vegetation. In Kahle AB, Weill G, Carter WD (eds) Advances in Space Research,
2 Absorbing Solar Energy
2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could
Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing
LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What
Total radiative heating/cooling rates.
Lecture. Total radiative heating/cooling rates. Objectives:. Solar heating rates.. Total radiative heating/cooling rates in a cloudy atmosphere.. Total radiative heating/cooling rates in different aerosol-laden
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE by Peter J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma
How does snow melt? Principles of snow melt. Energy balance. GEO4430 snow hydrology 21.03.2006. Energy flux onto a unit surface:
Principles of snow melt How does snow melt? We need energy to melt snow/ ice. GEO443 snow hydrology 21.3.26 E = m L h we s K = ρ h = w w we f E ρ L L f f Thomas V. Schuler [email protected] E energy
CHAPTER 3 Heat and energy in the atmosphere
CHAPTER 3 Heat and energy in the atmosphere In Chapter 2 we examined the nature of energy and its interactions with Earth. Here we concentrate initially on the way in which energy interacts with the atmosphere
Solar Heating Basics. 2007 Page 1. a lot on the shape, colour, and texture of the surrounding
2007 Page 1 Solar Heating Basics Reflected radiation is solar energy received by collectorsfrom adjacent surfaces of the building or ground. It depends a lot on the shape, colour, and texture of the surrounding
GCOS science conference, 2 Mar. 2016, Amsterdam. Japan Meteorological Agency (JMA)
GCOS science conference, 2 Mar. 2016, Amsterdam Status of Surface Radiation Budget Observation for Climate Nozomu Ohkawara Japan Meteorological Agency (JMA) Contents 1. Background 2. Status t of surface
ESCI-61 Introduction to Photovoltaic Technology. Solar Radiation. Ridha Hamidi, Ph.D.
1 ESCI-61 Introduction to Photovoltaic Technology Solar Radiation Ridha Hamidi, Ph.D. 2 The Sun The Sun is a perpetual source of energy It has produced energy for about 4.6 billions of years, and it is
ARM SWS to study cloud drop size within the clear-cloud transition zone
ARM SWS to study cloud drop size within the clear-cloud transition zone (GSFC) Yuri Knyazikhin Boston University Christine Chiu University of Reading Warren Wiscombe GSFC Thanks to Peter Pilewskie (UC)
Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction
Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France
The Balance of Power in the Earth-Sun System
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Balance of Power in the Earth-Sun System The Sun is the major source of energy for Earth s oceans, atmosphere, land, and biosphere.
Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity
Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure
Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing
Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,
T.A. Tarasova, and C.A.Nobre
SEASONAL VARIATIONS OF SURFACE SOLAR IRRADIANCES UNDER CLEAR-SKIES AND CLOUD COVER OBTAINED FROM LONG-TERM SOLAR RADIATION MEASUREMENTS IN THE RONDONIA REGION OF BRAZIL T.A. Tarasova, and C.A.Nobre Centro
Data Sets of Climate Science
The 5 Most Important Data Sets of Climate Science Photo: S. Rahmstorf This presentation was prepared on the occasion of the Arctic Expedition for Climate Action, July 2008. Author: Stefan Rahmstorf, Professor
The Sun. Solar radiation (Sun Earth-Relationships) The Sun. The Sun. Our Sun
The Sun Solar Factoids (I) The sun, a medium-size star in the milky way galaxy, consisting of about 300 billion stars. (Sun Earth-Relationships) A gaseous sphere of radius about 695 500 km (about 109 times
CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles
CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles I. Air Temperature: Five important factors influence air temperature: A. Insolation B. Latitude C. Surface types D. Coastal vs. interior
Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption
Take away concepts Solar Radiation Emission and Absorption 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wein s Law). Radiation vs. distance
Electromagnetic Radiation (EMR) and Remote Sensing
Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through
BY NASIF NAHLE SABAG* Submitted to Review on 10 May 2007. Published on 12 May 2007.
EARTH S ANNUAL ENERGY BUDGET (ECOLOGY) BY NASIF NAHLE SABAG* Submitted to Review on 10 May 2007. Published on 12 May 2007. The author is grateful to TS for his kind assistance with the text. To quote this
MCQ - ENERGY and CLIMATE
1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated
Sunlight and its Properties. EE 495/695 Y. Baghzouz
Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to
The Earth s Atmosphere
THE SUN-EARTH SYSTEM III The Earth s Atmosphere Composition and Distribution of the Atmosphere The composition of the atmosphere and the way its gases interact with electromagnetic radiation determine
GRAND MINIMUM OF THE TOTAL SOLAR IRRADIANCE LEADS TO THE LITTLE ICE AGE. by Habibullo Abdussamatov
GRAND MINIMUM OF THE TOTAL SOLAR IRRADIANCE LEADS TO THE LITTLE ICE AGE by Habibullo Abdussamatov SPPI ORIGINAL PAPER November 25, 2013 GRAND MINIMUM OF THE TOTAL SOLAR IRRADIANCE LEADS TO THE LITTLE ICE
Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.
Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:
Fundamentals of Climate Change (PCC 587): Water Vapor
Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor
Copyrighted Material. 1 Basics of Climate. The climate s delicate, the air most sweet. William Shakespeare, A Winter s Tale
1 Basics of Climate The climate s delicate, the air most sweet. William Shakespeare, A Winter s Tale To appreciate the role of the ocean in climate, we need to have a basic understanding of how the climate
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University
TOPIC 5 (cont.) RADIATION LAWS - Part 2
TOPIC 5 (cont.) RADIATION LAWS - Part 2 Quick review ELECTROMAGNETIC SPECTRUM Our focus in this class is on: UV VIS lr = micrometers (aka microns) = nanometers (also commonly used) Q1. The first thing
Cloud detection and clearing for the MOPITT instrument
Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of
Chapter 7 Stability and Cloud Development. Atmospheric Stability
Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered
A new positive cloud feedback?
A new positive cloud feedback? Bjorn Stevens Max-Planck-Institut für Meteorologie KlimaCampus, Hamburg (Based on joint work with Louise Nuijens and Malte Rieck) Slide 1/31 Prehistory [W]ater vapor, confessedly
Teaching Time: One-to-two 50-minute periods
Lesson Summary Students create a planet using a computer game and change features of the planet to increase or decrease the planet s temperature. Students will explore some of the same principles scientists
Cloud Climatology for New Zealand and Implications for Radiation Fields
Cloud Climatology for New Zealand and Implications for Radiation Fields G. Pfister, R.L. McKenzie, J.B. Liley, A. Thomas National Institute of Water and Atmospheric Research, Lauder, New Zealand M.J. Uddstrom
CALIPSO, CloudSat, CERES, and MODIS Merged Data Product
CALIPSO, CloudSat, CERES, and MODIS Merged Data Product Seiji Kato 1, Sunny Sun-Mack 2, Walter F. Miller 2, Fred G. Rose 2, and Victor E. Sothcott 2 1 NASA Langley Research Center 2 Science and Systems
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
Radiation models for the evaluation of the UV radiation at the ground
Radiation models for the evaluation of the UV radiation at the ground Peter Koepke UV-Group Meteorological Institute Munich Ludwig-Maximilians-University [email protected] www. jostjahn. de Natural UV
Solar Irradiance Variability
Solar Radiative Output and its Variability Claus Frölich and Judith Lean Preethi Ganapathy November 22, 2005 Solar Irradiance Variability Historical Investigations Contemporary Investigations Limitations
The Importance of Understanding Clouds
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Importance of Understanding Clouds One of the most interesting features of Earth, as seen from space, is the ever-changing distribution
GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE
DESCRIPTION This lesson plan gives students first-hand experience in analyzing the link between atmospheric temperatures and carbon dioxide ( ) s by looking at ice core data spanning hundreds of thousands
Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS
Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS Joel Norris (SIO/UCSD) Cloud Assessment Workshop April 5, 2005 Outline brief satellite data description upper-level
Climate Change and Renewable Energy A Perspective from a Measurements Viewpoint
Climate Change and Renewable Energy A Perspective from a Measurements Viewpoint Regional Workshop on Metrology and Technology Challenges of Climate Change and Renewable Energy Guatemala City, Guatemala
Denis Botambekov 1, Andrew Heidinger 2, Andi Walther 1, and Nick Bearson 1
Denis Botambekov 1, Andrew Heidinger 2, Andi Walther 1, and Nick Bearson 1 1 - CIMSS / SSEC / University of Wisconsin Madison, WI, USA 2 NOAA / NESDIS / STAR @ University of Wisconsin Madison, WI, USA
Data processing (3) Cloud and Aerosol Imager (CAI)
Data processing (3) Cloud and Aerosol Imager (CAI) 1) Nobuyuki Kikuchi, 2) Haruma Ishida, 2) Takashi Nakajima, 3) Satoru Fukuda, 3) Nick Schutgens, 3) Teruyuki Nakajima 1) National Institute for Environmental
CHAPTER 3 ABSORPTION, EMISSION, REFLECTION, AND SCATTERING
CHAPTER 3 ABSORPTION, EMISSION, REFLECTION, AND SCATTERING 3.1 Absorption and Emission As noted earlier, blackbody radiation represents the upper limit to the amount of radiation that a real substance
The Centre for Australian Weather and Climate Research. A partnership between CSIRO and the Bureau of Meteorology
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Testing and diagnosing the ability of the Bureau of Meteorology s Numerical Weather Prediction
ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING
ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING 5-1 Introduction Weather is the state of the atmosphere at a particular place for a short period of time. The condition of the atmosphere
Jessica Blunden, Ph.D., Scientist, ERT Inc., Climate Monitoring Branch, NOAA s National Climatic Data Center
Kathryn Sullivan, Ph.D, Acting Under Secretary of Commerce for Oceans and Atmosphere and NOAA Administrator Thomas R. Karl, L.H.D., Director,, and Chair of the Subcommittee on Global Change Research Jessica
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z.
Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated aircraft measurements
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D2, PAGES 2059 2066, JANUARY 27, 1999 Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated aircraft measurements
California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping
California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,
Passive Remote Sensing of Clouds from Airborne Platforms
Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties
Let s consider a homogeneous medium characterized by the extinction coefficient β ext, single scattering albedo ω 0 and phase function P(µ, µ').
Lecture 22. Methods for solving the radiative transfer equation with multiple scattering. Part 4: Monte Carlo method. Radiative transfer methods for inhomogeneous ouds. Objectives: 1. Monte Carlo method.
I ν = λ 2 I λ. λ<0.35 µm F λ =0 0.70 µm <λ<1.00 µm F λ =0.2 Wm 2 µm 1. λ>1.00 µm F λ =0. F λi 4λ i. i 1
Chapter 4 4.12 Remote sensing in the microwave part of the spectrum relies on radiation emitted by oxygen molecules at frequencies near 55 ghz. Calculate the wavelength and wavenumber of this radiation.
Integrating the Solar Spectrum
Integrating the Solar Spectrum PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo January 24, 203 Pop Quiz Note: quiz does not count toward grade
Ecosystem-land-surface-BL-cloud coupling as climate changes
Ecosystem-land-surface-BL-cloud coupling as climate changes Alan K. Betts Atmospheric Research, [email protected] CMMAP August 19, 2009 Outline of Talk Land-surface climate: - surface, BL & cloud coupling
For further information, and additional background on the American Meteorological Society s Education Program, please contact:
Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents
1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K
1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 2. How does the amount of heat energy reflected by a smooth, dark-colored concrete
INSPIRE GK12 Lesson Plan. The Chemistry of Climate Change Length of Lesson
Lesson Title The Chemistry of Climate Change Length of Lesson 180 min Created By David Wilson Subject Physical Science / Chemistry / Organic Chemistry Grade Level 8-12 State Standards 2c, 4d / 2a, 4d /
STUDY GUIDE: Earth Sun Moon
The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all
6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.
Select the be answer on the answer sheet. Please do not make any marks on this te. 1. Weather is be defined as the A. changes that occur in cloud formations from day to day. B. amount of rain or snow that
The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
Seasonal Temperature Variations
Seasonal and Daily Temperatures Fig. 3-CO, p. 54 Seasonal Temperature Variations What causes the seasons What governs the seasons is the amount of solar radiation reaching the ground What two primary factors
Department of Engineering Enzo Ferrari University of Modena and Reggio Emilia
Department of Engineering Enzo Ferrari University of Modena and Reggio Emilia Object: Measurement of solar reflectance, thermal emittance and Solar Reflectance Index Report Reference person: Alberto Muscio
