Exam 2 Practice Problems Part 2 Solutions

Size: px
Start display at page:

Download "Exam 2 Practice Problems Part 2 Solutions"

Transcription

1 Problem 1: Short Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Exam Practice Problems Part Solutions (a) Can a constant magnetic field set into motion an electron, which is initially at rest? Explain your answer. Solution: No. Changing the velocity of a particle requires an accelerating force. The magnetic force is proportional to the speed of the particle. If the particle is not moving, there can be no magnetic force on it. (b) Is it possible for a constant magnetic field to alter the speed of a charged particle? What is the role of a magnetic field in a cyclotron? Solution: No, it is not possible. Because F B = q( v B), the acceleration produced by a magnetic field on a particle of mass m is a B = q( v B) / m. For the acceleration to change the speed, a component of the acceleration must be in the direction of the velocity. The cross product tells us that the acceleration must be perpendicular to the velocity, and thus can only change the direction of the velocity. The magnetic field in a cyclotron essentially keeps the charged particle in the electric field for a longer period of time, and thus experiencing a larger change in speed from the electric field, by forcing it in a spiral path. Without the magnetic field, the particle would have to move in a straight line through an electric field over a distance that is very large compared to the size of the cyclotron. (c) How can a current loop be used to determine the presence of a magnetic field in a given region of space? Solution: If the current loop feels a torque, it must be caused by a magnetic field. If the current loop feels no torque, try a different orientation the torque is zero if the field is along the axis of the loop. (d) If a charged particle is moving in a straight line through some region of space, can you conclude that the magnetic field in that region is zero? Why or why not? Solution: Not necessarily. If the magnetic field is parallel or anti-parallel to the velocity of the charged particle, then the particle will experience no magnetic force. There may also be an electric force acting on the particle such that F q = q( E + v q B) =.

2 (e) List some similarities and differences between electric and magnetic forces. Solution: Similarities: 1. Both can accelerate a charged particle moving through the field.. Both exert forces directly proportional to the charge of the particle feeling the force. Differences: 1. The direction of the electric force is parallel or anti-parallel to the direction of the electric field, but the direction of the magnetic force is perpendicular to the magnetic field and to the velocity of the charged particle.. Electric forces can accelerate a charged particle from rest or stop a moving particle, but magnetic forces cannot.

3 Problem : Particle Trajectory A particle of charge e is moving with an initial velocity v when it enters midway between two plates where there exists a uniform magnetic field pointing into the page, as shown in the figure below. You may ignore effects of the gravitational force. (a) Is the trajectory of the particle deflected upward or downward? (b) What is the magnitude of the velocity of the particle if it just strikes the end of the plate? Solution: Choose unit vectors as shown in the figure. The force on the particle is given by F = e(v î " Bĵ) = evb ˆk. (1) The direction of the force is downward. Remember that when a charged particle moves through a uniform magnetic field, the magnetic force on the charged particle only changes the direction of the velocity hence leaves the speed unchanged so the particle undergoes circular motion. Therefore we can use Newton s second law in the form v evb = m. () R.

4 The speed of the particle is then ebr v =. (3) m In order to determine the radius of the orbit we note that the particle just hits the end of the plate. From the figure above, by the Pythagorean theorem, we have that Expanding Eq. (4) yields R = ( R d / ) + l. (4) R = R Rd + d / 4 + l. (5) Solve Eq. (5) for the radius of the circular orbit: d l R = +. (6) 4 d We can now substitute the Eq. (6) into Eq. (3) and find the speed necessary for the particle to just hit the end of the plate: " eb d l v = # + $. (7) m % 4 d &

5 Problem 3: Particle Orbits in a Uniform Magnetic Field The entire x-y plane to the right of the origin O is filled with a uniform magnetic field of magnitude B pointing out of the page, as shown. Two charged particles travel along the negative x axis in the positive x direction, each with velocity v, and enter the magnetic field at the origin O. The two particles have the same mass m, but have different charges, q 1 and q. When in the magnetic field, their trajectories both curve in the same direction (see sketch), but describe semi-circles with different radii. The radius of the semi-circle traced out by particle is exactly twice as big as the radius of the semi-circle traced out by particle 1. (a) Are the charges of these particles positive or negative? Explain your reasoning. Solution: Because FB = qv B, the charges of these particles are POSITIVE. (b) What is the ratio q / q 1? Solution: We first find an expression for the radius R of the semi-circle traced out by a particle with charge q in terms of q, v v, B, and m. The magnitude of the force on the charged particle is qvb and the magnitude of the acceleration for the circular orbit is v / R. Therefore applying Newton s Second Law yields mv qvb =. R We can solve this for the radius of the circular orbit mv R = qb Therefore the charged ratio q mv " mv " R1 = # $ # $ =. q1 % RB & % R1 B & R

6 Problem 4 Mass Spectrometer Shown below are the essentials of a commercial mass spectrometer. This device is used to measure the composition of gas samples, by measuring the abundance of species of different masses. An ion of mass m and charge q = +e is produced in source S, a chamber in which a gas discharge is taking place. The initially stationary ion leaves S, is accelerated by a potential difference V >, and then enters a selector chamber, S 1, in which there is an adjustable magnetic field B 1, pointing out of the page and a deflecting electric field E, pointing from positive to negative plate. Only particles of a uniform velocity v leave the selector. The emerging particles at S, enter a second magnetic field B, also pointing out of the page. The particle then moves in a semicircle, striking an electronic sensor at a distance x from the entry slit. Express your answers to the questions below in terms of E E, e, x, m, B B, and V. a) What magnetic field B 1 in the selector chamber is needed to insure that the particle travels straight through? Solution: We first find an expression for the speed of the particle after it is accelerated by the potential difference V, in terms of m, e, and V. The change in kinetic energy is K = (1/ ) mv. The change in potential energy is U = " e V From conservation of energy, K = " U, we have that (1/ )mv = e V. So the speed is v = e V m Inside the selector the force on the charge is given by F E v B e = e( + 1).

7 If the particle travels straight through the selector then force on the charge is zero, therefore E = v" B. Because the velocity is to the right in the figure above (define this as the +i ˆ direction), the electric field points up (define this as the +j ˆ direction) from the positive plate to the negative plate, and the magnetic field is pointing out of the page (define this as the +k ˆ direction). Then Eˆj = vˆi " B ˆ ˆ 1k = vb1 j. So B E ˆ m E ˆ 1 = k = k v e V b) Find an expression for the mass of the particle after it has hit the electronic sensor at a distance x from the entry slit Solution: The force on the charge when it enters the magnetic field B F ˆ ˆ ˆ e = evi Bk = " evb j. 1 is given by This force points downward and forces the charge to start circular motion. You can verify this because the magnetic field only changes the direction of the velocity of the particle and not its magnitude which is the condition for circular motion. When in circular motion the acceleration is towards the center. In particular when the particle just enters the field B, the acceleration is downward Newton s Second Law becomes v a = ˆj. x / v evbˆ j = m ˆ j. x / Thus the particle hits the electronic sensor at a distance mv x = e Vm eb = eb from the entry slit. The mass of the particle is then eb x m =. 8 V

8 Problem 5: Magnetic Field of a Ring of Current A circular ring of radius R lying in the xy plane carries a steady current I, as shown in the figure below. What is the magnetic field at a point P on the axis of the loop, at a distance z from the center? Solution: (a) We shall use the Biot-Savart law to find the magnetic field on the symmetry axis. (1) Source point: In Cartesian coordinates, the differential current element located at r ' = R (cos ' ˆi + sin ' ˆj ) can be written as Ids = I( dr '/ d ') d ' = IRd '(" sin ' ˆi + cos ' ˆj ). () Field point: Since the field point P is on the axis of the loop at a distance z from the center, its position vector is given by r = z ˆk. (3) Relative position vector r r ' :

9 The vector form the current element ot the field point is given by and its magnitude r = r r ' = r r ' = Rcos" 'î Rsin" ' ĵ + z ˆk, (1) (Rcos" ') + (Rsin" ') + z = R + z () is the distance between the differential current element and P. Thus, the corresponding unit vector from Id s to P can be written as (4) Simplifying the cross product: ˆr = r r ' r r '. The cross product d s ( r " r ') can be simplified as d s ( r " r') = R d# '("sin# 'î + cos# 'ĵ) ("Rcos# 'î " Rsin# 'ĵ+ z ˆk) = R d# '(zcos# 'î + zsin# 'ĵ+ R ˆk). (3) (5) Writing down db : Using the Biot-Savart law, the contribution of the current element to the magnetic field at P is d B = µ I d s " ˆr = µ I d s " ( r # r ') 4 r 4 r # r ' 3 (6) Carrying out the integration: = µ IR 4 z cos$ 'î + z sin$ ' ĵ + R ˆk (R + z ) 3/ d$ ' Using the result obtained above, the magnetic field at P is B = µ IR 4. (4) z cos" 'î + z sin" ' ĵ + R ˆk) # ( d" '. (5) (R + z ) 3/ The x and the y components of B can be readily shown to be zero: B x IRz IRz " d" " 3/ 3/ µ µ = cos ' ' = sin ' = 4 ( R + z ) #. (6) 4 ( R + z )

10 B y IRz IRz " d" " 3/ 3/ µ µ = sin ' ' = # cos ' = 4 ( R + z ) $. (7) 4 ( R + z ) On the other hand, the z component is B z µ IR µ IR µ IR = d" ' = = 3/ 3/ 3/ 4 ( R + z ) #. (8) 4 ( R + z ) ( R + z ) Thus, we see that along the symmetric axis, B z is the only non-vanishing component of the magnetic field. The conclusion can also be reached by using the symmetry arguments. The behavior of Bz / B where B = µ I / R is the magnetic field strength at z =, as a function of z / R is shown in the figure below.

11 Problem 6: Magnetic Fields Find the magnetic field at point P due to the following current distribution. Solution: The fields due to the straight wire segments are zero at P because d s r and ˆr are parallel or anti-parallel. For the field due to the arc segment, the magnitude of the magnetic field due to a differential current carrying element is given in this case by Therefore, d B = µ I 4 d s " ˆr = $ µ 4 IRd#(sin# î $ cos# ĵ) " ($cos# î $ sin# ĵ) 4 = µ R I(sin # + cos #)d# ˆk = $ µ R 4 R Id# R ˆk. " / µ B = I $ 4" R d# ˆk = µ I % " ( 4" R & ' ) * ˆk % = µ I ( & ' 8R ) * ˆk (into the plane of the figure).

12 Problem 7: Gyromagnetic Ratio A thin uniform ring of radius R and mass M carrying a charge +Q rotates about its axis with constant angular speed as shown in the figure below. Find the ratio of the magnitudes of its magnetic dipole moment to its angular momentum. (This is called the gyromagnetic ratio.) Solution: The current in the ring is I = Q T = Q ". The magnetic moment is The angular momentum is µ = AI ˆk Q" Q" = R R ˆk = L = I momnet ˆk = MR ˆk. ˆk. So the gyromagnetic ratio is µ L = Q R / MR = Q M

13 Problem 8: Torque on Circular Current Loop A wire ring lying in the xy-plane with its center at the origin carries a counterclockwise current I. There is a uniform magnetic field B = Bˆi in the +x-direction. The magnetic moment vector µ is perpendicular to the plane of the loop and has magnitude µ = IA and the direction is given by right-hand-rule with respect to the direction of the current. What is the torque on the loop? Solution: The torque on a current loop in a uniform field is given by = µ " B, where µ = IA and the vector ì is perpendicular to the plane of the loop and right-handed with respect to the direction of current flow. The magnetic dipole moment is given by µ = I A = I(R ˆk) = IR ˆk. Therefore, = µ " B = (#IR ˆk) " (Bî) = #IR Bĵ. Instead of using the above formula, we can calculate the torque directly as follows. Choose a small section of the loop of length ds = Rd. Then the vector describing the current-carrying element is given by Ids = IRd (" sin ˆi + cos ˆj ) The force df that acts on this current element is df = Ids " B = I Rd (# sin ˆi + cos ˆj )"( Bˆi ) = # IRB cos d kˆ The force acting on the loop can be found by integrating the above expression. F = $ " d F = ("IRBcos#)d# ˆk $ = "IRB %& sin# ' ( ˆk = We expect this because the magnetic field is uniform and the force ona current loop in a uniform magnetic field is zero. Therefore we can choose any point to calculate the torque

14 about. Let r be the vector from the center of the loop to the element Ids. That is, r = R(cosî + sinĵ). The torque d = r " d F acting on the current element is then d = r " d F ( ) " ( $IRBd# cos# ˆk ) = R cos# î + sin# ĵ = $IR Bd# cos# (sin# î $ cos# ĵ) Integrate dô over the loop to find the total torque ô. = d " " % ( ) = #IR B d$ cos$ sin$ î # cos$ ĵ % = #IR B " (sin$ cos$ î # cos $ ĵ )d$ = % IR B ĵ This agrees with our result above.

15 Problem 9: Challenge Zeeman Effect Let us treat the motion of an electron (charge e, mass m ) in a hydrogen atom classically. Suppose that an electron follows a circular orbit of radius r around a proton. What is the angular frequency of the orbital motion? Suppose now that a small magnetic field B perpendicular to the plane of the orbit is switched on. Assuming that the radius of the orbit does not change, calculate the shift in the angular frequency " = " f # " of the orbital motion in terms of the magnitude B of the magnetic field, charge e, mass m, and radius r. This is known as the Zeeman effect. Solution: We first apply Newton s Second Law to find the angular frequency of the orbital motion. Coulomb s Law describes the force acting on the electron due to the electric interaction between the proton and the electron F elec = ke ˆr r where ˆr is a unit vector in the plane of the circular orbit pointing radiallly outward. Because we are assuming the motion is circular and the acceleration is Newton s Second Law is then a = r" ˆr. ke ˆr = mr" r ˆr (1) We can now solve for the angular frequency = ke mr 3. () When a small magnetic field B perpendicular to the plane of the orbit is switched on there is magnetic force acting on the electron F mag = e v " B. Let s first assume that the magnetic force points radially inward and that the radius of the orbit does not change. This will cause the electron to speed up hence increasing the angular frequency to f. Choose coordinates as shown in the figure below.

16 Assume that the magnetic field points in the positive z-direction. In order to have a radially inward force, we require that the velocity of the electron is v = r f ˆ". Then the magnetic force is given by Therefore Newton s Second Law is now F mag = e v " B = er# f ˆ$ " Bˆk = er# f B ˆr. ke r ˆr er" f Bˆr = mr" f ˆr. Using Eq. (1) we can rewrite this as or mr" ˆr er" f Bˆr = mr" f ˆr = f " e B f m ". We can solve this quadratic equation for f f = eb m ± e B 4m +. We choose the positive square root to keep f >. We now substitute Eq. () into the above equation yielding Then the change in angular frequency is f = eb m + e B 4m + ke mr 3. (3) " = " f # " = eb m + e B 4m + ke mr 3 # ke mr 3. (4)

17 Suppose we reverse the direction of the magnetic field as in the figure below. Then the magnetic force points outward, F mag = e v " B = er# f ˆ$ " Bˆk = +er# f B ˆr, resulting in a smaller angular frequency f. Repeating the analysis we just finished we have that or mr" ˆr + er" f Bˆr = mr" f ˆr = f + e B f m ". We can solve this quadratic equation for f choosing the positive square root to keep f > : The change in angular frequency is now f = " eb m ± e B 4m +. " = " f # " = # eb m + e B 4m + ke mr 3 # ke mr 3.

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends

Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends A. on the direction of the magnetic field at that point only. B. on the magnetic field

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

Magnetic Field and Magnetic Forces

Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

More information

Introduction to Magnetic Fields

Introduction to Magnetic Fields Chapter 8 Introduction to Magnetic Fields 8.1 Introduction...8-2 8.2 The Definition of a Magnetic Field...8-3 8.3 Magnetic Force on a Current-Carrying Wire...8-4 Example 8.1: Magnetic Force on a Semi-Circular

More information

Exam 1 Practice Problems Solutions

Exam 1 Practice Problems Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8 Spring 13 Exam 1 Practice Problems Solutions Part I: Short Questions and Concept Questions Problem 1: Spark Plug Pictured at right is a typical

More information

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5 Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

More information

Chapter 8. Magnetic Field

Chapter 8. Magnetic Field 8 8 8-0 Chapter 8 Magnetic Field 8 8... 8-0 8.1 Introduction... 8-3 8.2 The Definition of a Magnetic Field... 8-4 8.3 Magnetic Force on a Current-Carrying Wire... 8-6 8.3.1 Magnetic Force as the Sum of

More information

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign Name: Period: Due Date: Lab Partners: CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign Purpose: Use the CP program from Vernier to simulate the motion of charged particles in Magnetic and Electric Fields

More information

Chapter 6 Circular Motion

Chapter 6 Circular Motion Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path. A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

More information

Chapter 22 Magnetism

Chapter 22 Magnetism 22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field

More information

Problem Set 5 Work and Kinetic Energy Solutions

Problem Set 5 Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb: Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.

More information

Physics 2B. Lecture 29B

Physics 2B. Lecture 29B Physics 2B Lecture 29B "There is a magnet in your heart that will attract true friends. That magnet is unselfishness, thinking of others first. When you learn to live for others, they will live for you."

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

More information

Chapter 19 Magnetic Forces and Fields

Chapter 19 Magnetic Forces and Fields Chapter 19 Magnetic Forces and Fields Student: 3. The magnetism of the Earth acts approximately as if it originates from a huge bar magnet within the Earth. Which of the following statements are true?

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

More information

Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments

Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments OBJECTIVES 1. To start with the magnetic force on a moving charge q and derive

More information

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

More information

Review Questions PHYS 2426 Exam 2

Review Questions PHYS 2426 Exam 2 Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.

More information

Charged Particle in a Magnetic Field

Charged Particle in a Magnetic Field Charged Particle in a Magnetic Field Consider a particle moving in an external magnetic field with its velocity perpendicular to the field The force is always directed toward the center of the circular

More information

MFF 2a: Charged Particle and a Uniform Magnetic Field... 2

MFF 2a: Charged Particle and a Uniform Magnetic Field... 2 MFF 2a: Charged Particle and a Uniform Magnetic Field... 2 MFF2a RT1: Charged Particle and a Uniform Magnetic Field... 3 MFF2a RT2: Charged Particle and a Uniform Magnetic Field... 4 MFF2a RT3: Charged

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Problem Set V Solutions

Problem Set V Solutions Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

2 Session Two - Complex Numbers and Vectors

2 Session Two - Complex Numbers and Vectors PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

More information

Review A: Vector Analysis

Review A: Vector Analysis MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors

More information

Magnetic Fields and Forces. AP Physics B

Magnetic Fields and Forces. AP Physics B Magnetic ields and orces AP Physics acts about Magnetism Magnets have 2 poles (north and south) Like poles repel Unlike poles attract Magnets create a MAGNETIC IELD around them Magnetic ield A bar magnet

More information

Chapter 19: Magnetic Forces and Fields

Chapter 19: Magnetic Forces and Fields Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle in a Magnetic Field Crossed E and B fields Magnetic Forces on Current Carrying Wires

More information

Chapter 9 Circular Motion Dynamics

Chapter 9 Circular Motion Dynamics Chapter 9 Circular Motion Dynamics 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon... 9.. Universal Law of Gravitation... 3

More information

Chapter 33. The Magnetic Field

Chapter 33. The Magnetic Field Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These

More information

Solution. Problem. Solution. Problem. Solution

Solution. Problem. Solution. Problem. Solution 4. A 2-g ping-pong ball rubbed against a wool jacket acquires a net positive charge of 1 µc. Estimate the fraction of the ball s electrons that have been removed. If half the ball s mass is protons, their

More information

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 12 Electricity and Magnetism Magnetism Magnetic fields and force Application of magnetic forces http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 19 1 Department

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

More information

Modern Physics Laboratory e/m with Teltron Deflection Tube

Modern Physics Laboratory e/m with Teltron Deflection Tube Modern Physics Laboratory e/m with Teltron Deflection Tube Josh Diamond & John Cummings Fall 2010 Abstract The deflection of an electron beam by electric and magnetic fields is observed, and the charge

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius? CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 3-3, with

More information

Problem 1 (25 points)

Problem 1 (25 points) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2012 Exam Three Solutions Problem 1 (25 points) Question 1 (5 points) Consider two circular rings of radius R, each perpendicular

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011

( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011 Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force

More information

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

More information

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2010

Candidate Number. General Certificate of Education Advanced Level Examination June 2010 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18

More information

Experiment 7: Forces and Torques on Magnetic Dipoles

Experiment 7: Forces and Torques on Magnetic Dipoles MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

Lab 4: Magnetic Force on Electrons

Lab 4: Magnetic Force on Electrons Lab 4: Magnetic Force on Electrons Introduction: Forces on particles are not limited to gravity and electricity. Magnetic forces also exist. This magnetic force is known as the Lorentz force and it is

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

Quiz: Work and Energy

Quiz: Work and Energy Quiz: Work and Energy A charged particle enters a uniform magnetic field. What happens to the kinetic energy of the particle? (1) it increases (2) it decreases (3) it stays the same (4) it changes with

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 802 Spring 2013 Conflict Exam Two Solutions Problem 1 (25 points): answers without work shown will not be given any credit A uniformly charged

More information

Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

More information

Chapter 10. Faraday s Law of Induction

Chapter 10. Faraday s Law of Induction 10 10 10-0 Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction... 10-3 10.1.1 Magnetic Flux... 10-5 10.2 Motional EMF... 10-5 10.3 Faraday s Law (see also Faraday s Law Simulation in

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

Precession of spin and Precession of a top

Precession of spin and Precession of a top 6. Classical Precession of the Angular Momentum Vector A classical bar magnet (Figure 11) may lie motionless at a certain orientation in a magnetic field. However, if the bar magnet possesses angular momentum,

More information

D Alembert s principle and applications

D Alembert s principle and applications Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in

More information

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to

More information

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. 6/016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply,

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

The DC Motor. Physics 1051 Laboratory #5 The DC Motor

The DC Motor. Physics 1051 Laboratory #5 The DC Motor The DC Motor Physics 1051 Laboratory #5 The DC Motor Contents Part I: Objective Part II: Introduction Magnetic Force Right Hand Rule Force on a Loop Magnetic Dipole Moment Torque Part II: Predictions Force

More information

Faraday s Law of Induction

Faraday s Law of Induction Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...10-10.1.1 Magnetic Flux...10-3 10.1. Lenz s Law...10-5 10. Motional EMF...10-7 10.3 Induced Electric Field...10-10 10.4 Generators...10-1

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

Review B: Coordinate Systems

Review B: Coordinate Systems MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of hysics 8.02 Review B: Coordinate Systems B.1 Cartesian Coordinates... B-2 B.1.1 Infinitesimal Line Element... B-4 B.1.2 Infinitesimal Area Element...

More information

Magnetic fields of charged particles in motion

Magnetic fields of charged particles in motion C H A P T E R 8 Magnetic fields of charged particles in motion CONCEPTS 8.1 Source of the magnetic field 8. Current loops and spin magnetism 8.3 Magnetic moment and torque 8.4 Ampèrian paths QUANTTATVE

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

CHAPTER 24 GAUSS S LAW

CHAPTER 24 GAUSS S LAW CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 4-40 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 4-40 4. From the direction of the lines of force (away from positive and toward

More information

PY106 Class13. Permanent Magnets. Magnetic Fields and Forces on Moving Charges. Interactions between magnetic north and south poles.

PY106 Class13. Permanent Magnets. Magnetic Fields and Forces on Moving Charges. Interactions between magnetic north and south poles. Permanent Magnets Magnetic ields and orces on Moing Charges 1 We encounter magnetic fields frequently in daily life from those due to a permanent magnet. Each permanent magnet has a north pole and a south

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Exam in: FYS 310 Classical Mechanics and Electrodynamics Day of exam: Tuesday June 4, 013 Exam hours: 4 hours, beginning at 14:30 This examination

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

Magnetic Fields and Their Effects

Magnetic Fields and Their Effects Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

More information

How To Understand The Physics Of A Charge Charge

How To Understand The Physics Of A Charge Charge MFF 3a: Charged Particle and a Straight Current-Carrying Wire... 2 MFF3a RT1: Charged Particle and a Straight Current-Carrying Wire... 3 MFF3a RT2: Charged Particle and a Straight Current-Carrying Wire...

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. W03D1-2 Group Problem: Tension in a Suspended Rope Solution

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. W03D1-2 Group Problem: Tension in a Suspended Rope Solution MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 W03D1-2 Group Problem: Tension in a Suspended Rope Solution Suppose a uniform rope of mass M and length L is suspended from a ceiling. The

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Isaac Newton s (1642-1727) Laws of Motion

Isaac Newton s (1642-1727) Laws of Motion Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation

Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation Examples of magnetic field calculations and applications Lecture 12 1 Example of a magnetic moment calculation We consider the vector potential and magnetic field due to the magnetic moment created by

More information

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad. Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com

Copyright 2011 Casa Software Ltd. www.casaxps.com Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Let s first see how precession works in quantitative detail. The system is illustrated below: ... lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

More information

Electromagnetism Extra Study Questions Short Answer

Electromagnetism Extra Study Questions Short Answer Electromagnetism Extra Study Questions Short Answer 1. The electrostatic force between two small charged objects is 5.0 10 5 N. What effect would each of the following changes have on the magnitude of

More information