Orbits of the Lennard-Jones Potential
|
|
|
- Elinor Potter
- 9 years ago
- Views:
Transcription
1 Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials proportional to 1, the Lennardr Jones potential contains a point of static equilibrium. It is ( (rm ) 12 ( rm ) ) 6 U L J = ε 2 (1) r r where ε is the magnitude of the maximum depth of the potential well and r m is the distance from the origin at which static equilibrium occurs. Static equilibrium can occur in the Lennard-Jones potential because close to the origin of the potential, overlapping electron orbitals cause the neutral particles to repel each other, while farther away, Van der Waals forces cause the neutral particles to attract each other. 1 Because the Lennard-Jones potential is meant to describe the interactions between individual atoms and molecules, any in-depth analysis of its consequences frequently invokes quantum mechanics. Hence, it has not thus far been analyzed as a classical central force problem. Here, the points of dynamical equilibrium of the Lennard-Jones potential as well as the conditions for closed orbits will be analyzed by considering a one-body problem of a point mass particle in said effective potential. 2 Dynamics As has been shown before with gravity, the dynamics of a point mass in a central potential change markedly when angular momentum is considered. The advantage of considering a central potential is that after applying the Euler-Lagrange equation for the angle ϕ, the angular momentum vector M of the body can be found to be constant. 1 https: //en.wikipedia.org/wiki/lennard-jones potential 1
2 Because neither the Lennard-Jones potential nor the kinetic energies depend explicitly on time, the system Lagrangian does not explicitly depend on time. Performing a Legendre transformation of the time-independent Lagrangian with respect to the momenta and velocities yields the energy, which is conserved: E = K + U = 1 ( (rm ) 12 ( 2 m(ṙ2 + r 2 θ2 + r 2 sin 2 (θ) ϕ 2 rm ) ) 6 ) + ε 2. (2) r r However, from the conservation of M, ϕ is proportional to M, where M is the magnitude of M. After substituting M into the equation for the energy, the term now involving M rather than ϕ (called the kinetic potential) can be grouped with the Lennard-Jones potential to yield the effective potential: U eff = U K + U L J = M ( 2 (rm ) 12 ( 2mr + ε rm ) ) 6 2. (3) 2 r r 3 Dynamical Equilibria The Lennard-Jones potential is constructed such that r m is the value of r that minimizes the potential. However, adding the kinetic potential to the Lennard-Jones potential complicates the situation. Finding the new dynamical equilibria means setting the partial derivative of U eff with respect to r equal to 0; performing this yields the quintic equation M 2 Figure 1: U eff : case of 2 equilibria m r10 12εrmr εrm 12 = 0. (4) Because this is a quintic equation with arbitrary coefficients, by the Abel- Ruffini theorem this cannot be analytically factored into a solution involving complex radicals. However, by definition quintic equations have 5 complex roots. Furthermore, because m and ε are by definition positive, the number of real roots becomes restricted between 0 and 2. If there are 0 real roots, the effective potential has no points of equilibrium, so it monotonically decreases to zero with increasing r. This means that there are no closed orbits; all trajectories lead away from the origin. 2
3 If there is 1 real root, the effective potential decreases monotonically except for one saddle point. At this point, a circular orbit is possible, but if any perturbation occurs, the particle will move away from the origin unbounded. If there are 2 real roots, as in figure (1), the effective potential decreases, increases, and then decreases again. There is thus one stable and one unstable equilibrium, with the latter occurring at a larger value of r than the former. Closed orbits are possible if the energy is at most equal to the effective potential at the unstable equilibrium and if the particle starts at a value of r less than that of the unstable equilibrium. 4 An Example Lennard-Jones Potential: ε = 2 and r m = 1 These three cases for the effective potential can be achieved by changing either the Lennard-Jones parameters, being the well position or the well depth, or the angular momentum. The Lennard-Jones parameters are set by the properties of the interaction between the two particles, so the only true modifiable parameter is the angular momentum. Let us consider a case where, in some unit system, ε = 2 and r m = 1. This implies that the Lennard-Jones potential is ( 1 U L J = 2 r 2 ) 12 r 6 (5) in this case. Furthermore, let us use units where m = 1. This implies that U eff = M ( 2 1 2r r 2 ) (6) 12 r 6 for this system. In general, rewriting the energy to make use of the conservation of angular momentum yields E = 1 2 mṙ2 + M ( 2 (rm ) 12 ( 2mr + ε rm ) ) 6 2 (7) 2 r r and in this case the energy would be E = 1 2ṙ2 + M 2 2r ( 1 r 2 ). (8) 12 r 6
4 Energy is conserved in a central potential, and this is no exception, so applying a total time derivative to the energy equation and bearing in mind that the angular momentum M is conserved yields the equations of motion m r = M ( ) 2 r 12 mr + 12ε m 3 r r6 m (9) 13 r 7 θ = M mr 2 (10) the latter equation coming from our definition of angular momentum. In our particular case, these become r = M ( 2 1 r r 1 ) (11) 13 r 7 θ = M r 2. (12) Do note that in the last two sets of equations, θ has been redefined from being the vertical angle to being the azimuthal angle, as is conventional when all polar motion takes place on a plane. The angular momentum M can be changed to yield zero, one, or two dynamical equilibria. A low value of M will yield two, a high value will yield zero, and a precise value somewhere in between will yield exactly one. As with any central potential, the orbit is fully specified by the values of E and M. However, this orbit cannot be computed analytically, so numerical simulations must be done, and those require the specification of the initial values of r, ṙ, and θ due to the number and orders of the differential equations of motion. 5 M = 2: Two Equilibria For the case of low M, let us take M = 2. This implies an effective potential given by U eff = 2 ( 1 r r 2 ) (13) 12 r 6 4 Figure 2: U eff : M = 2
5 and equations of motion given by r = 4 ( 1 r r 1 ) 13 r 7 (14) θ = 2 r 2. (15) This effective potential has a global minimum at r with U eff at that point. This is very close to the minimum of the standard Lennard-Jones potential which occurs by definition at r m = 1, so this shows how the centrifugal/kinetic potential does not affect the form of the Lennard-Jones potential that much. At that minimizing r, orbits are perfectly circular. For E 0, all orbits are bounded. In this neighborhood, the effective potential has an approximately parabolic shape, so r visibly behaves almost like a trigonometric function as θ increases. That said, r is not a conic function of θ as it would be in a standard gravitational potential. In fact, r is multivalued with respect to θ, and this is generally true for stable noncircular orbits in a Lennard-Jones potential, implying that said orbits never fully close upon themselves in a finite amount of time. For 0 < E , the upper bound being the value of the effective potential at its single local maximum, orbits are bounded for r The shape of the potential in this region diverges further from being a parabolic function of r, so while r still varies periodically over time, it is no longer as close to varying like a trigonometric function. At r , the effective potential achieves its local maximum, so a circular orbit is achieved. This orbit, while closed, is unstable, because for r > , the effective potential monotonically decreases to zero, and for those values of r, the orbit curves slightly in the beginning but quickly approaches rectilinear inertial motion with r steadily and ceaselessly increasing (though true rectilinear motion is never fully achieved in finite time). For E > , the orbit has enough energy to overcome the local maximum in the effective potential, so any r (0, ) is a valid initial condition. If the orbit starts at r < , the orbit will curve quite a bit as it climbs up the effective potential energy barrier, but after crossing that barrier it will once again approach a rectilinear inertial path. 5
6 6 M = 10: No Equilibria Now let us consider the case of high M; for this, let us take M = 10. This implies an effective potential given by U eff = 50 r ( 1 r 12 2 r 6 ) (16) and equations of motion given by r = 100 ( 1 r r 1 ) (17) 13 r 7 Figure 3: U eff : M = 10 θ = 10 r. (18) 2 In this case, any E 0 is allowed, and because the effective potential here has no global minimum or local maximum at finite r, stable orbits are not allowed and neither are circular orbits (stable or unstable). All orbits are unstable and start with a little curvature followed by a quick approach to rectilinear inertial motion; only the details of the curvature vary depending on the initial value of r, which is allowed to be anything more than zero. 7 M = 6 ( 2 5)5 6 : One Equilibrium Finally, let us consider the case where M is such that the effective potential has a saddle point. This implies that our equation of dynamical equilibrium, which after plugging in our choices for parameters reads M 2 r 10 24r = 0 (19) must not only be true in itself, but because there should only be one equilibrium r for the chosen M, the condition on the derivative of this equation with respect to r 10M 2 r 9 144r 5 = 0 (20) must also be true. This is a system of two equations with two unknowns (M and r) and can be solved analytically. The result is that M = 6( 2) 5 6 produces 5 an effective potential that monotonically decreases with r save for one saddle point. 6
7 This implies an effective potential given by U eff = 36 ( ) 2 2 ( r 2 r 2 ) 12 r 6 (21) and equations of motion given by r = 72 ( ) 2 2 ( r 3 r 1 ) 13 r 7 (22) Figure 4: U eff : M = 6( 2 5 ) 5 6 θ = 6( 2 5 ) 5 6 r 2. (23) The saddle point occurs at r = ( 5 2 ) 1 6. That point represents a circular orbit, but that orbit is unstable because of the shape of the effective potential. There are no stable orbits and there are no other closed orbits, and the energy is allowed to be any positive value. All other orbits are unstable and their qualitative properties are similar to those of the case of a higher M, and if the initial r < ( 5 2 ) 1 6, there will again be some initial noticeable curvature in the orbit, though the amount curvature will qualitatively lie between the cases of high and low M. 8 Orbit Plots The following plots have given values of M and r(t = 0) = r 0. They all have ṙ(t = 0) = 0 and θ(t = 0) = 0, implying that x(t = 0) = r 0 and y(t = 0) = 0. Figure 5: M = 2, r 0 =
8 Figure 6: M = 2, r 0 = 0.94 Figure 7: M = 2, r 0 = Figure 8: M = 2, r 0 =
9 Figure 9: M = 2, r 0 = 1.00 Figure 10: M = 2, r 0 = 1.03 Figure 11: M = 2, r 0 =
10 Figure 12: M = 2, r 0 = 2.00 Figure 13: M = 10, r 0 = 0.50 Figure 14: M = 10, r 0 =
11 Figure 15: M = 10, r 0 = 1.50 Figure 16: M = 10, r 0 = 2.00 Figure 17: M = 6( 2 5 ) 5 6, r 0 =
12 Figure 18: M = 6( 2 5 ) 5 6, r 0 = 1.16 Figure 19: M = 6( 2 5 ) 5 6, r 0 = 1.18 Figure 20: M = 6( 2 5 ) 5 6, r 0 =
Mechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
Nonlinear Systems of Ordinary Differential Equations
Differential Equations Massoud Malek Nonlinear Systems of Ordinary Differential Equations Dynamical System. A dynamical system has a state determined by a collection of real numbers, or more generally
Let s first see how precession works in quantitative detail. The system is illustrated below: ...
lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,
3. Reaction Diffusion Equations Consider the following ODE model for population growth
3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving
Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes
Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to
APPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
Name Partners Date. Energy Diagrams I
Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy
The Two-Body Problem
The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic
Orbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
LECTURE 6: Fluid Sheets
LECTURE 6: Fluid Sheets The dynamics of high-speed fluid sheets was first considered by Savart after his early work on electromagnetism with Biot, and was subsequently examined in a series of papers by
Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER
1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.
Chapter 18 Static Equilibrium
Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example
Lecture L5 - Other Coordinate Systems
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates
State of Stress at Point
State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
The aerodynamic center
The aerodynamic center In this chapter, we re going to focus on the aerodynamic center, and its effect on the moment coefficient C m. 1 Force and moment coefficients 1.1 Aerodynamic forces Let s investigate
How Gravitational Forces arise from Curvature
How Gravitational Forces arise from Curvature 1. Introduction: Extremal ging and the Equivalence Principle These notes supplement Chapter 3 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
Physics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium
Awell-known lecture demonstration1
Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; [email protected] Awell-known lecture demonstration consists of pulling a spool by the free end
88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
Figure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
Copyright 2011 Casa Software Ltd. www.casaxps.com
Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations
Math 1302, Week 3 Polar coordinates and orbital motion
Math 130, Week 3 Polar coordinates and orbital motion 1 Motion under a central force We start by considering the motion of the earth E around the (fixed) sun (figure 1). The key point here is that the
Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes
J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes 3D Rigid Body Dynamics: Euler Equations in Euler Angles In lecture 29, we introduced
Chapter 9. particle is increased.
Chapter 9 9. Figure 9-36 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass
8.2 Elastic Strain Energy
Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for
Spacecraft Dynamics and Control. An Introduction
Brochure More information from http://www.researchandmarkets.com/reports/2328050/ Spacecraft Dynamics and Control. An Introduction Description: Provides the basics of spacecraft orbital dynamics plus attitude
DYNAMICS OF GALAXIES
DYNAMICS OF GALAXIES 2. and stellar orbits Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands Winter 2008/9 and stellar orbits Contents Range of timescales Two-body
Centripetal force, rotary motion, angular velocity, apparent force.
Related Topics Centripetal force, rotary motion, angular velocity, apparent force. Principle and Task A body with variable mass moves on a circular path with ad-justable radius and variable angular velocity.
Rotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
Problem Set #8 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection
3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy
3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy 3.1. Vibrational coarse structure of electronic spectra. The Born Oppenheimer Approximation introduced in the last chapter can be extended
DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION
1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: [email protected] Abstract: There are many longstanding
1 Lecture 3: Operators in Quantum Mechanics
1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators
2. Spin Chemistry and the Vector Model
2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing
Potential Energy and Equilibrium in 1D
Potential Energy and Equilibrium in 1D Figures 6-27, 6-28 and 6-29 of Tipler-Mosca. du = F x dx A particle is in equilibrium if the net force acting on it is zero: F x = du dx = 0. In stable equilibrium
AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
Lecture L17 - Orbit Transfers and Interplanetary Trajectories
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
Columbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D
Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be
Chapter 15 Collision Theory
Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional
Review D: Potential Energy and the Conservation of Mechanical Energy
MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...
CHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
Solutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.
Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel
Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
Equations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
Chapter 6. Work and Energy
Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy
PCV Project: Excitons in Molecular Spectroscopy
PCV Project: Excitons in Molecular Spectroscopy Introduction The concept of excitons was first introduced by Frenkel (1) in 1931 as a general excitation delocalization mechanism to account for the ability
Isaac Newton s (1642-1727) Laws of Motion
Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First
Astromechanics Two-Body Problem (Cont)
5. Orbit Characteristics Astromechanics Two-Body Problem (Cont) We have shown that the in the two-body problem, the orbit of the satellite about the primary (or vice-versa) is a conic section, with the
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
Solution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
Understanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
Newton s Laws of Motion
Chapter 1. Newton s Laws of Motion Notes: Most of the material in this chapter is taken from Young and Freedman, Chapters 4 and 5 1.1 Forces and Interactions It was Isaac Newton who first introduced the
Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7
Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid April 21, 2002 Chapter 7 Problem 7.2 Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle
Determination of Acceleration due to Gravity
Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two
Exam 2 Practice Problems Part 2 Solutions
Problem 1: Short Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Exam Practice Problems Part Solutions (a) Can a constant magnetic field set into motion an electron, which is initially
Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.
Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.
Chapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani
Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length
PEDAGOGY: THE BUBBLE ANALOGY AND THE DIFFERENCE BETWEEN GRAVITATIONAL FORCES AND ROCKET THRUST IN SPATIAL FLOW THEORIES OF GRAVITY *
PEDAGOGY: THE BUBBLE ANALOGY AND THE DIFFERENCE BETWEEN GRAVITATIONAL FORCES AND ROCKET THRUST IN SPATIAL FLOW THEORIES OF GRAVITY * Tom Martin Gravity Research Institute Boulder, Colorado 80306-1258 [email protected]
D Alembert s principle and applications
Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in
A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
Torque Analyses of a Sliding Ladder
Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while
Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE
Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question
Mechanics lecture 7 Moment of a force, torque, equilibrium of a body
G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and
PLANE TRUSSES. Definitions
Definitions PLANE TRUSSES A truss is one of the major types of engineering structures which provides a practical and economical solution for many engineering constructions, especially in the design of
Classical Angular Momentum. The Physics of Rotational Motion.
3. Angular Momentum States. We now employ the vector model to enumerate the possible number of spin angular momentum states for several commonly encountered situations in photochemistry. We shall give
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)
Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following
Basic Nuclear Concepts
Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section
Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations
Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.
Force on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005
Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital
Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7
Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal
11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
Chapter 28 Fluid Dynamics
Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example
How To Understand General Relativity
Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional
WORK DONE BY A CONSTANT FORCE
WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of
Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.
IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational
Persuasion by Cheap Talk - Online Appendix
Persuasion by Cheap Talk - Online Appendix By ARCHISHMAN CHAKRABORTY AND RICK HARBAUGH Online appendix to Persuasion by Cheap Talk, American Economic Review Our results in the main text concern the case
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Exam in: FYS 310 Classical Mechanics and Electrodynamics Day of exam: Tuesday June 4, 013 Exam hours: 4 hours, beginning at 14:30 This examination
PROBLEM SET. Practice Problems for Exam #1. Math 2350, Fall 2004. Sept. 30, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam #1 Math 350, Fall 004 Sept. 30, 004 ANSWERS i Problem 1. The position vector of a particle is given by Rt) = t, t, t 3 ). Find the velocity and acceleration vectors
FRICTION, WORK, AND THE INCLINED PLANE
FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle
Simple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
Lecture L6 - Intrinsic Coordinates
S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed
