Chapter 27 Magnetic Field and Magnetic Forces
|
|
|
- Benjamin Ferguson
- 9 years ago
- Views:
Transcription
1 Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged Particles - Magnetic Force on a Current-Carrying Conductor - Force and Torque on a Current Loop
2 1) A moving charge or collection of moving charges (e.g. electric current) produces a magnetic field. (Chap. 28). 2) A second current or charge responds to the magnetic field and experiences a magnetic force. (Chap. 27). 1. Magnetism Permanent magnets: exert forces on each other as well as on unmagnetized Fe pieces. - The needle of a compass is a piece of magnetized Fe. - If a bar-shaped permanent magnet is free to rotate, one end points north (north pole of magnet). - An object that contains Fe is not by itself magnetized, it can be attracted by either the north or south pole of permanent magnet. - A bar magnet sets up a magnetic field in the space around it and a second body responds to that field. A compass needle tends to align with the magnetic field at the needle s position.
3 1. Magnetism - Magnets exert forces on each other just like charges. You can draw magnetic field lines just like you drew electric field lines. - Magnetic north and south pole s behavior is not unlike electric charges. For magnets, like poles repel and opposite poles attract. - A permanent magnet will attract a metal like iron with either the north or south pole.
4 Magnetic poles about our planet
5 Magnetic declination / magnetic variation: the Earth s magnetic axis is not parallel to its geographic axis (axis of rotation) a compass reading deviates from geographic north. Magnetic inclination: the magnetic field is not horizontal at most of earth s surface, its angle up or down. The magnetic field is vertical at magnetic poles. Magnetic Poles versus Electric Charge - We observed monopoles in electricity. A (+) or (-) alone was stable, and field lines could be drawn around it. - Magnets cannot exist as monopoles. If you break a bar magnet between N and S poles, you get two smaller magnets, each with its own N and S pole.
6 -In 1820, Oersted ran experiments with conducting wires run near a sensitive compass. The orientation of the wire and the direction of the flow both moved the compass needle. - Ampere / Faraday / Henry moving a magnet near a conducting loop can induce a current. - The magnetic forces between two bodies are due to the interaction between moving electrons in the atoms. - Inside a magnetized body (permanent magnet) there is a coordinated motion of certain atomic electrons. Not true for unmagnetized objects.
7 2. Magnetic Field Electric field: 1) A distribution of electric charge at rest creates an electric field E in the surrounding space. 2) The electric field exerts a force F E = q E on any other charges in presence of that field. Magnetic field: 1) A moving charge or current creates a magnetic field in the surrounding space (in addition to E). 2) The magnetic field exerts a force F m on any other moving charge or current present in that field. - The magnetic field is a vector field vector quantity associated with each point in space. F m = q v B = q v Bsinϕ = qv B - F m is always perpendicular to B and v. F m
8 2. Magnetic Field - The moving charge interacts with the fixed magnet. The force between them is at a maximum when the velocity of the charge is perpendicular to the magnetic field. Interaction of magnetic force and charge
9 Right Hand Rule Positive charge moving in magnetic field direction of force follows right hand rule Negative charge F direction contrary to right hand rule. F = q vb Units: 1 Tesla = 1 N s / C m = 1 N/A m 1 Gauss = 10-4 T
10 Right Hand Rule If charged particle moves in region where both, E and B are present: F = q( E + v B)
11 Measuring Magnetic Fields with Test Charges Ex: electron beam in a cathode X-ray tube. - In general, if a magnetic field (B) is present, the electron beam is deflected. However this is not true if the beam is // to B (φ = 0, π F=0 no deflection). Electron q< 0 F has contrary direction to right hand rule No deflection F = 0 v // B Deflection F 0 F v, B
12 3. Magnetic Field Lines and Magnetic Flux - Magnetic field lines may be traced from N toward S (analogous to the electric field lines). - At each point they are tangent to magnetic field vector. - The more densely packed the field lines, the stronger the field at a point. - Field lines never intersect. - The field lines point in the same direction as a compass (from N toward S). - Magnetic field lines are not lines of force.
13 - Magnetic field lines have no ends they continue through the interior of the magnet.
14 Magnetic Flux and Gauss s Law for Magnetism Φ = B da = B cosϕ da = B da B - Magnetic flux is a scalar quantity. Φ B = B A = - If B is uniform: ϕ Φ B = B da = 0 BAcos Units: 1 Weber (1 Wb = 1 T m 2 = 1 N m / A) - Difference with respect to electric flux the total magnetic flux through a closed surface is always zero. This is because there is no isolated magnetic charge ( monopole ) that can be enclosed by the Gaussian surface. dφ B = da - The magnetic field is equal to the flux per unit area across an area at right angles to the magnetic field = magnetic flux density. B
15 4. Motion of Charged Particles in a Magnetic Field - Magnetic force perpendicular to v it cannot change the magnitude of the velocity, only its direction. F m = qv B - F does not have a component parallel to particle s motion cannot do work. - Motion of a charged particle under the action of a magnetic field alone is always motion with constant speed. - Magnitudes of F and v are constant (v perp. B) uniform circular motion. F = q v B = 2 v m R Radius of circular orbit in magnetic field: R = mv q B + particle counter-clockwise rotation. - particle clockwise rotation.
16 Angular speed: ω = v/r q B ω = v = mv q B m Cyclotron frequency: f =ω/2π - If v is not perpendicular to B v // (parallel to B) constant because F // = 0 particle moves in a helix. (R same as before, with v = v ). A charged particle will move in a plane perpendicular to the magnetic field.
17 5. Applications of Motion of Charged Particles Velocity selector - Particles of a specific speed can be selected from the beam using an arrangement of E and B fields. - F m (magnetic) for + charge towards right (q v B). Source of charged particles - F E (electric) for + charge to left (q E). - F net = 0 if F m = F E -qe + q v B = 0 v = E/B - Only particles with speed E/B can pass through without being deflected by the fields.
18 Thomson s e/m Experiment E = K + U =0 0.5 m v 2 = U = e V v = E B = 2eV m e = m 2 E 2VB 2 e/m does not depend on the cathode material or residual gas on tube particles in the beam (electrons) are a common constituent of all matter.
19 Mass Spectrometer - Using the same concept as Thompson, Bainbridge was able to construct a device that would only allow one mass in flight to reach the detector. - Velocity selector filters particles with v = E/B. After this, in the region of B particles with m 2 > m 1 travel with radius (R 2 > R 1 ). R = mv q B'
20 6. Magnetic Force on a Current-Carrying Conductor F = qv B F qv B m d - Total force: F m = ( nal)( qv B) d m = n = number of charges per unit volume A l = volume F = ( nqv )( A)( lb) = ( JA)( lb) IlB (B wire) m d = In general: d Force on one charge F = IlB = IlB sinϕ Magnetic force on a straight wire segment: F = Il B Magnetic force on an infinitesimal wire section: df = Idl B
21 - Current is not a vector. The direction of the current flow is given by dl, not I. dl is tangent to the conductor. F = Il B
22 7. Force and Torque on a Current Loop - The net force on a current loop in a uniform magnetic field is zero. Right wire of length a F = I a B (B l) Left wire of length b F = I b B sin (90º -φ) (B forms 90º-φ angle with l) F = I b B cosφ F net = F F + F - F = 0 - Net torque 0 (general). τ = r F τ = r F sinα = r F = rf τ F ' = r F sin 0 = 0 τ F = F(b / 2) sinϕ
23 τ total = τ F ' + τ F ' + τ F + τ F = ( b / 2) F sinϕ τ total = = ( IBa)( bsinϕ) IBAsinϕ Torque on a current loop A = a b Torque is zero, φ = 0º φ is angle between a vector perpendicular to loop and B
24 τ total = IBAsinϕ Magnetic dipole moment: = I A µ Electric dipole moment: p = qd Direction: perpendicular to plane of loop (direction of loop s vector area right hand rule) τ total = µ Bsinϕ Magnetic torque: τ = µ B Electric torque: τ = p E Potential Energy for a Magnetic Dipole: U = µ B = µ B cosϕ Potential Energy for an Electric Dipole: U = p E
25 Magnetic Torque: Loops and Coils If these loops all carry equal current I in same clockwise sense, F and torque on the sides of two adjacent loops cancel, and only forces and torques around boundary 0. Solenoid τ = NIBAsinϕ N = number of turns φ is angle between axis of solenoid and B Max. torque: solenoid axis B. Torque rotates solenoid to position where its axis is parallel to B.
26 Magnetic Dipole in a Non-Uniform Magnetic Field - Net force on a current loop in a non-uniform field is not zero. df = Idl B Radial force components cancel each Other F net to right. N S If polarity of magnet changes F net to left. N S
27 Magnetic Dipole and How Magnets Work A solenoid and a magnet orients themselves with axis parallel to field. Electron analogy: spinning ball of charge circulation of charge around spin axis similar to current loop electron has net magnetic moment. - In Fe atom, large number of electron magnetic moments align to each other non-zero atomic magnetic moment. - In unmagnetized Fe piece no overall alignment of µ of atoms total µ = 0. - Iron bar magnet magnetic moments of many atoms are parallel total µ 0. - A bar magnet tends to align to B, so that line from S to N is in direction of B.
28 - South and North poles represent tail and head of magnet s dipole moment, µ. How can a magnet attract an unmagnetized Fe object? 1) Atomic magnetic moments of Fe try to align to B of bar magnet Fe acquires net magnetic dipole moment // B. 2) Non-Uniform B attracts magnetic dipole. The magnetic dipole produced on nail is equivalent to current loop (I direction right hand rule) net magnetic force on nail is attractive (a) or (b) unmagnetized Fe object is attracted to either pole of magnet. S N N S
Magnetic Field and Magnetic Forces
Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets
Chapter 21. Magnetic Forces and Magnetic Fields
Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.
Chapter 19: Magnetic Forces and Fields
Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle in a Magnetic Field Crossed E and B fields Magnetic Forces on Current Carrying Wires
1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D
Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be
Chapter 22 Magnetism
22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field
Force on a square loop of current in a uniform B-field.
Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis
Chapter 33. The Magnetic Field
Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These
Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.
Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.
Magnetic Fields. I. Magnetic Field and Magnetic Field Lines
Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic
Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions
Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge
General Physics (PHY 2140)
General Physics (PHY 2140) Lecture 12 Electricity and Magnetism Magnetism Magnetic fields and force Application of magnetic forces http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 19 1 Department
Magnetic Dipoles. Recall that an electric dipole consists of two equal but opposite charges separated by some distance, such as in
MAGNETISM History of Magnetism Bar Magnets Magnetic Dipoles Magnetic Fields Magnetic Forces on Moving Charges and Wires Electric Motors Current Loops and Electromagnets Solenoids Sources of Magnetism Spin
Eðlisfræði 2, vor 2007
[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline
1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
Chapter 29: Magnetic Fields
Chapter 29: Magnetic Fields Magnetism has been known as early as 800C when people realized that certain stones could be used to attract bits of iron. Experiments using magnets hae shown the following:
Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5
Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat
Charged Particle in a Magnetic Field
Charged Particle in a Magnetic Field Consider a particle moving in an external magnetic field with its velocity perpendicular to the field The force is always directed toward the center of the circular
Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name
Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region
Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet
Magnetism Magnetism Opposite poles attract and likes repel Opposite poles attract and likes repel Like electric force, but magnetic poles always come in pairs (North, South) Like electric force, but magnetic
Quiz: Work and Energy
Quiz: Work and Energy A charged particle enters a uniform magnetic field. What happens to the kinetic energy of the particle? (1) it increases (2) it decreases (3) it stays the same (4) it changes with
Magnetic Fields and Their Effects
Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases
Force on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
E/M Experiment: Electrons in a Magnetic Field.
E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.
AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.
A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.
Introduction to Magnetic Fields
Chapter 8 Introduction to Magnetic Fields 8.1 Introduction...8-2 8.2 The Definition of a Magnetic Field...8-3 8.3 Magnetic Force on a Current-Carrying Wire...8-4 Example 8.1: Magnetic Force on a Semi-Circular
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
PY106 Class13. Permanent Magnets. Magnetic Fields and Forces on Moving Charges. Interactions between magnetic north and south poles.
Permanent Magnets Magnetic ields and orces on Moing Charges 1 We encounter magnetic fields frequently in daily life from those due to a permanent magnet. Each permanent magnet has a north pole and a south
physics 112N magnetic fields and forces
physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro -magnetism! is there a connection between electricity
Chapter 30 - Magnetic Fields and Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 30 - Magnetic Fields and Torque A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should
Faraday s Law of Induction
Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...10-10.1.1 Magnetic Flux...10-3 10.1. Lenz s Law...10-5 10. Motional EMF...10-7 10.3 Induced Electric Field...10-10 10.4 Generators...10-1
Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0
1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral
Physics 30 Worksheet #10 : Magnetism From Electricity
Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron
Direction of Induced Current
Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as
Chapter 19 Magnetic Forces and Fields
Chapter 19 Magnetic Forces and Fields Student: 3. The magnetism of the Earth acts approximately as if it originates from a huge bar magnet within the Earth. Which of the following statements are true?
Magnetic Fields and Forces. AP Physics B
Magnetic ields and orces AP Physics acts about Magnetism Magnets have 2 poles (north and south) Like poles repel Unlike poles attract Magnets create a MAGNETIC IELD around them Magnetic ield A bar magnet
5. Measurement of a magnetic field
H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of
Review Questions PHYS 2426 Exam 2
Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.
Physics 2B. Lecture 29B
Physics 2B Lecture 29B "There is a magnet in your heart that will attract true friends. That magnet is unselfishness, thinking of others first. When you learn to live for others, they will live for you."
Exam 2 Practice Problems Part 2 Solutions
Problem 1: Short Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Exam Practice Problems Part Solutions (a) Can a constant magnetic field set into motion an electron, which is initially
Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends
Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends A. on the direction of the magnetic field at that point only. B. on the magnetic field
Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:
Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.
Electromagnetism Laws and Equations
Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2
Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments
MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments OBJECTIVES 1. To start with the magnetic force on a moving charge q and derive
Magnetic fields of charged particles in motion
C H A P T E R 8 Magnetic fields of charged particles in motion CONCEPTS 8.1 Source of the magnetic field 8. Current loops and spin magnetism 8.3 Magnetic moment and torque 8.4 Ampèrian paths QUANTTATVE
Magnetic Field of a Circular Coil Lab 12
HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,
Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes
Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to
Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation
Examples of magnetic field calculations and applications Lecture 12 1 Example of a magnetic moment calculation We consider the vector potential and magnetic field due to the magnetic moment created by
Chapter 4. Electrostatic Fields in Matter
Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the
Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets
Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear
Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee
Chapter 7 Magnetism and Electromagnetism Objectives Explain the principles of the magnetic field Explain the principles of electromagnetism Describe the principle of operation for several types of electromagnetic
1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?
CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 3-3, with
Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged
F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.
PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet
Physics 221 Experiment 5: Magnetic Fields
Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found
The DC Motor. Physics 1051 Laboratory #5 The DC Motor
The DC Motor Physics 1051 Laboratory #5 The DC Motor Contents Part I: Objective Part II: Introduction Magnetic Force Right Hand Rule Force on a Loop Magnetic Dipole Moment Torque Part II: Predictions Force
Two bar magnets are brought near each other as shown. The magnets... A) attract B) repel C) exert no net force on each other.
Magnetic Fields and Forces Learning goals: Students will be able to Predict the direction of the magnet field for different locations around a bar magnet and an electromagnet. Relate magnetic field strength
ElectroMagnetic Induction. AP Physics B
ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday
45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!
Magnetism Basics Source: electric currents Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment Net Effect = Zero! Net Effect = Additive! Bipolar: all magnets
Candidate Number. General Certificate of Education Advanced Level Examination June 2010
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18
104 Practice Exam 2-3/21/02
104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero
Induced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
Chapter 22: Electric motors and electromagnetic induction
Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on
Problem 1 (25 points)
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2012 Exam Three Solutions Problem 1 (25 points) Question 1 (5 points) Consider two circular rings of radius R, each perpendicular
Chapter 10. Faraday s Law of Induction
10 10 10-0 Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction... 10-3 10.1.1 Magnetic Flux... 10-5 10.2 Motional EMF... 10-5 10.3 Faraday s Law (see also Faraday s Law Simulation in
Lab 4: Magnetic Force on Electrons
Lab 4: Magnetic Force on Electrons Introduction: Forces on particles are not limited to gravity and electricity. Magnetic forces also exist. This magnetic force is known as the Lorentz force and it is
Modern Physics Laboratory e/m with Teltron Deflection Tube
Modern Physics Laboratory e/m with Teltron Deflection Tube Josh Diamond & John Cummings Fall 2010 Abstract The deflection of an electron beam by electric and magnetic fields is observed, and the charge
Experiment 7: Forces and Torques on Magnetic Dipoles
MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying
Motor Fundamentals. DC Motor
Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical
Magnetostatics (Free Space With Currents & Conductors)
Magnetostatics (Free Space With Currents & Conductors) Suggested Reading - Shen and Kong Ch. 13 Outline Review of Last Time: Gauss s Law Ampere s Law Applications of Ampere s Law Magnetostatic Boundary
DC motors: dynamic model and control techniques
DC motors: dynamic model and control techniques Luca Zaccarian Contents 1 Magnetic considerations on rotating coils 1 1.1 Magnetic field and conductors.......................... 1 1.2 The magneto-motive
Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory
Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared
Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass
Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass Object: Understand the laws of force from electric and magnetic fields.
Magnetic Circuits. Outline. Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples
Magnetic Circuits Outline Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples 1 Electric Fields Magnetic Fields S ɛ o E da = ρdv B V = Q enclosed S da =0 GAUSS GAUSS
Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24
Chapter : The Electric Field Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4 The Electric Field Replaces action-at-a-distance Instead of Q 1 exerting a force directly on Q at a distance,
Physics 25 Exam 3 November 3, 2009
1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,
Chapter 8. Magnetic Field
8 8 8-0 Chapter 8 Magnetic Field 8 8... 8-0 8.1 Introduction... 8-3 8.2 The Definition of a Magnetic Field... 8-4 8.3 Magnetic Force on a Current-Carrying Wire... 8-6 8.3.1 Magnetic Force as the Sum of
Candidate Number. General Certificate of Education Advanced Level Examination June 2012
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven. Norton 0
Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven Norton 0 Norton 1 Abstract The electron charge to mass ratio was an experiment that was used to calculate the ratio
FORCE ON A CURRENT IN A MAGNETIC FIELD
7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v
Measurement of Charge-to-Mass (e/m) Ratio for the Electron
Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic
6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.
6/016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply,
STUDY GUIDE: ELECTRICITY AND MAGNETISM
319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: [email protected] Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three
Fields. 1.1 Action at a Distance versus Field Theory
Chapter 1 Fields 1.1 Action at a Distance versus Field Theory...1-1. Scalar Fields...1-3 Example 1.1: Half-Frozen /Half-Baked Planet...1-5 1..1 Representations of a Scalar Field...1-5 1.3 Vector Fields...1-7
Linear Motion vs. Rotational Motion
Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a
VELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
PHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
Physics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
LABORATORY V MAGNETIC FIELDS AND FORCES
LABORATORY V MAGNETIC FIELDS AND FORCES Magnetism plays a large part in our modern world's technology. Magnets are used today to image parts of the body, to explore the mysteries of the human brain, and
CHAPTER 5: MAGNETIC PROPERTIES
CHAPTER 5: MAGNETIC PROPERTIES and Magnetic Materials ISSUES TO ADDRESS... Why do we study magnetic properties? What is magnetism? How do we measure magnetic properties? What are the atomic reasons for
Lecture L6 - Intrinsic Coordinates
S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed
Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.
Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able
Chapter 7: Polarization
Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces
3600 s 1 h. 24 h 1 day. 1 day
Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
Inductors & Inductance. Electronic Components
Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered
Physics of the Atmosphere I
Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 [email protected] heidelberg.de Last week The conservation of mass implies the continuity equation:
