Modeling of Earth Surface Dynamics and Related Problems Using OpenFOAM
|
|
|
- Daniella Griffith
- 10 years ago
- Views:
Transcription
1 CSDMS 2013 Meeting Modeling of Earth Surface Dynamics and Related Problems Using OpenFOAM Xiaofeng Liu, Ph.D., P.E. Assistant Professor Department of Civil and Environmental Engineering University of Texas at San Antonio, Texas Disclaimer: This offering is not approved or endorsed by Silicon Graphics International Corp., the producer of the OpenFOAM software and owner of the OpenFOAM trademarks.
2 Outline A brief introduction of OpenFOAM Sample applications of OpenFOAM Demonstration (Time permitting) 2
3 A brief introduction of OpenFOAM OpenFOAM is an open source multi-physics modeling platform written in C++ FOAM stands for Field Operation And Manipulation OpenFOAM is not limited to fluid dynamics It is a generic modeling platform It can be used to solve (m)any differential equation(s) 3
4 Example applications of OpenFOAM River flow, coastal flow, waves, and sediment transport Hydraulic structures Porous media flow and solute/particle transport Buoyant flows and multiphase flows Some new developments in our group 4
5 5 Free surface flows over bedforms
6 6 Liu et al., 2011
7 7 Liu et al., 2011
8 8
9 River flow under a bridge 9
10 10 Scour under an elevated wall due to waves
11 Particle resolving scour protection simulations 11 Liu et al, 2012
12 12
13 13 Liu et al, 2012
14 14 Pore-scale modeling of porous media flow
15 15 Sinir and Liu, 2012
16 16 (Sinir and Liu, 2012)
17 17 (Sinir and Liu, 2012)
18 Porous media flow and solute/particle transport Solves simple groundwater flow equation h S s = K 2 h + Q t where h is the pressure head, S s is the specific storage coefficient, K is hydraulic conductivity, Q is source/sink This governing equation is a simple heat equation. The solution of which is very easily implemented in OpenFOAM using tensor notations. Also solves advection-diffusion-reaction (ADR) equation C t S t + = n ρ b ( UC) K a C = D K d 2 S C ρ n b S t All these with less than 50 lines of code!
19 Porous media flow test case: Toth (1963): h ' ' ' ( x, z ) = z + c x + a ( b x) 0 0 sin h h = 0 = 0 x x h z = 0
20
21 Nanoparticle Concentration in Sand Column Test T=0.01 h T=0.02 h T=0.03 h T=0.04 h T=0.1 h
22
23 Buoyancy affected flows (gravity current over roughness and bedforms) 23 Jiang and Liu, 2012
24 24 Jiang and Liu, 2012
25 Time = 5 s Time = 10 s Time = 15 s 25
26 26
27 27
28 28
29 Basic steps for a modeling task 29
30 30 Numerical features of OpenFOAM Finite volume method Also has Lagrangian particle tracking, finite element method, finite area method, etc. Unstructured meshes (both fixed and deforming)
31 31 Numerical features of OpenFOAM Solve fluid dynamics equations using the segregated pressure methods (e.g., PISO, SIMPLE, SIMPLEC, etc.) Can be 1D, 2D, and 3D based on the mesh and boundary conditions Automatic parallel computation based on domain decomposition and MPI Automatic descretizations of the equations
32 So how are equations solved in OpenFOAM? Equations are essentially the group of operations on fields Mathematical language: Partial differential equation (PDE) Pseudo-natural language in OF Linear system after discretization 32
33 33 Numerical features of OpenFOAM Descretizations schemes (system/fvschemes) Spatial: upwind, central, TVD, NVD, etc. Temporal: Euler, backward, CN, etc. Linear system solvers (system/fvsolution) PBiCG (asymmetric matrix) PCG (symmetric matrix) GAMG (multi-grid method) Smooth solver and diagonal solver
34 34 Modeling capabilities of OpenFOAM Incompressible and compressible flows Turbulence models Laminar RANS: Reynolds Averaged Navier-Stokes LES: Large Eddy Simulations DES: Detached Eddy Simulations DNS: Direct Numerical Simulations
35 Modeling capabilities of OpenFOAM Multiphase flows Free surface flows Buoyant flows: due to sediment, temperature, salinity, etc. Transport and rheological models Newtonian Non-Newtonian 35 (Liu and García, 2010)
36 Modeling capabilities of OpenFOAM Dynamic mesh To model motion of the domain or object Various method to deform the mesh Can be used to generate a mesh Immersed boundary method 36 Credit: Jorge D. Abad, U. Pitt.
37 Pre-processing capabilities of OpenFOAM Mesh generation Generic tools: blockmesh snappyhexmesh Mesh conversion Convert meshes from/to other formats e.g., Anysis, Fluent, GMESH, Gambit Mesh manipulation Rotation, translation, extrusion, split, join, etc. 37
38 Pre-processing capabilities of OpenFOAM Set up initial conditions Modify the files directly, or Generic tool: setfields Set up boundary conditions Modify the files directly, or Use tools, or Programming by yourself 38
39 39 Post-processing capabilities of OpenFOAM Directly load into ParaView ParaView is open source and free
40 40 Post-processing capabilities of OpenFOAM Convert OpenFOAM results to other formats Generic tools: foamtofluent foamtofieldview foamtovtk foamtotecplot360
41 41 Demonstrations
42 CSDMS 2013 Meeting Modeling of Earth Surface Dynamics and Related Problems Using OpenFOAM Xiaofeng Liu, Ph.D., P.E. Assistant Professor Department of Civil and Environmental Engineering University of Texas at San Antonio, Texas 42 Disclaimer: This offering is not approved or endorsed by Silicon Graphics International Corp., the producer of the OpenFOAM software and owner of the OpenFOAM trademarks.
Open Source CFD Solver - OpenFOAM
Open Source CFD Solver - OpenFOAM Wang Junhong (HPC, Computer Centre) 1. INTRODUCTION The OpenFOAM (Open Field Operation and Manipulation) Computational Fluid Dynamics (CFD) Toolbox is a free, open source
Self Financed One Week Training
Self Financed One Week Training On Computational Fluid Dynamics (CFD) with OpenFOAM December 14 20, 2015 (Basic Training: 3days, Advanced Training: 5days and Programmer Training: 7days) Organized by Department
OpenFOAM Opensource and CFD
OpenFOAM Opensource and CFD Andrew King Department of Mechanical Engineering Curtin University Outline What is Opensource Software OpenFOAM Overview Utilities, Libraries and Solvers Data Formats The CFD
OpenFOAM Workshop. Yağmur Gülkanat Res.Assist.
OpenFOAM Workshop Yağmur Gülkanat Res.Assist. Introduction to OpenFOAM What is OpenFOAM? FOAM = Field Operation And Manipulation OpenFOAM is a free-to-use open-source numerical simulation software with
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
OpenFOAM Optimization Tools
OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov [email protected] and [email protected] Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749
Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT
Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx
CCTech TM. ICEM-CFD & FLUENT Software Training. Course Brochure. Simulation is The Future
. CCTech TM Simulation is The Future ICEM-CFD & FLUENT Software Training Course Brochure About. CCTech Established in 2006 by alumni of IIT Bombay. Our motive is to establish a knowledge centric organization
How To Run A Cdef Simulation
Simple CFD Simulations and Visualisation using OpenFOAM and ParaView Sachiko Arvelius, PhD Purpose of this presentation To show my competence in CFD (Computational Fluid Dynamics) simulation and visualisation
NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM
NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir
OpenFOAM open source CFD on ANSELM
OpenFOAM Tomáš Brzobohatý Supercomputing for industry SC4Industry Research Programme 3 - Libraries for Parallel Computing, VŠB-TU Ostrava OpenFOAM - Introduction - Features - OpenFOAM Case Outline OpenFOAM
Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics
Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in
Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations
Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations SAFIR2010 Seminar, 10.-11.3.2011, Espoo Juho Peltola, Timo Pättikangas (VTT) Tomas Brockmann, Timo Siikonen
HPC Deployment of OpenFOAM in an Industrial Setting
HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment
Computational Modeling of Wind Turbines in OpenFOAM
Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi [email protected] ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational
How To Run A Steady Case On A Creeper
Crash Course Introduction to OpenFOAM Artur Lidtke University of Southampton [email protected] November 4, 2014 Artur Lidtke Crash Course Introduction to OpenFOAM 1 / 32 What is OpenFOAM? Using OpenFOAM
CastNet: Modelling platform for open source solver technology
CastNet: Modelling platform for open source solver technology. DHCAE Tools GmbH Address: Friedrich-Ebert-Str. 368, 47800 Krefeld, Germany / Company site: Alte Rather Str. 207 / 47802 Krefeld Phone +49
AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications
AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications Dr. Bjoern Landmann Dr. Kerstin Wieczorek Stefan Bachschuster 18.03.2015 FluiDyna GmbH, Lichtenbergstr. 8, 85748 Garching
This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM and OpenCFD trade marks.
Disclaimer This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM and OpenCFD trade marks. Introductory OpenFOAM Course From 14 th
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
HPC enabling of OpenFOAM R for CFD applications
HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,
CFD modelling of floating body response to regular waves
CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table
The Multiphase Capabilities of the CFD Toolbox OpenFOAM for Hydraulic Engineering Applications
ICHE 2014, Hamburg - Lehfeldt & Kopmann (eds) - 2014 Bundesanstalt für Wasserbau ISBN 978-3-939230-32-8 The Multiphase Capabilities of the CFD Toolbox OpenFOAM for Hydraulic Engineering Applications L.
THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA
THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry
Vista: A Multi-field Object Oriented CFD-package
Vista: A Multi-field Object Oriented CFD-package T. Kvamsdal 1, R. Holdahl 1 and P. Böhm 2 1 SINTEF ICT, Applied Mathematics, Norway 2 inutech GmbH, Germany Outline inutech & SINTEF VISTA a CFD Solver
TECHNICAL BRIEF: Selected Benchmarks from Commercial CFD Codes
TECHNICAL BRIEF: Selected Benchmarks from Commercial CFD Codes For a large portion of the engineering community, the primary source of CFD capabilities is through the purchase of a commercial CFD code.
CastNet: GUI environment for OpenFOAM
CastNet: GUI environment for OpenFOAM CastNet is a preprocessing system and job-control system for OpenFOAM. CastNet works with the standard OpenFOAM releases provided by ESI Group as well as ports for
Course Outline for the Masters Programme in Computational Engineering
Course Outline for the Masters Programme in Computational Engineering Compulsory Courses CP-501 Mathematical Methods for Computational 3 Engineering-I CP-502 Mathematical Methods for Computational 3 Engineering-II
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha
A comparison of CFD Software packages to find the. suitable one for numerical modeling of gasification. process
A comparison of CFD Software packages to find the suitable one for numerical modeling of gasification process CMPT 898(02) Progress Report by Mohammad Reza Haghgoo April 29, 2013 1 Abstract The increasing
Distinguished Professor George Washington University. Graw Hill
Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok
Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
CFD: What is it good for?
CFD: What is it good for? Tom O Mahoney TNO Fluid Dynamics Introduction to CFD CFD - Computational Fluid Dynamics Computational the using of computers to simulate the physics of fluids Fluid Either gas
How To Model A Horseshoe Vortex
Comparison of CFD models for multiphase flow evolution in bridge scour processes A. Bayón-Barrachina, D. Valero, F.J. Vallès Morán, P. A. López-Jiménez Dept. of Hydraulic and Environmental Engineering
CFD Simulation of Subcooled Flow Boiling using OpenFOAM
Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet CFD
Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.
Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
Benchmarking COMSOL Multiphysics 3.5a CFD problems
Presented at the COMSOL Conference 2009 Boston Benchmarking COMSOL Multiphysics 3.5a CFD problems Darrell W. Pepper Xiuling Wang* Nevada Center for Advanced Computational Methods University of Nevada Las
2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013
2013 Code_Saturne User Group Meeting EDF R&D Chatou, France 9 th April 2013 Thermal Comfort in Train Passenger Cars Contact For further information please contact: Brian ANGEL Director RENUDA France [email protected]
Introduction to CFD Analysis
Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
TVM 4155 Numerical modelling and hydraulics 10. March 2014. OpenFOAM homework
TVM 4155 Numerical modelling and hydraulics 10. March 2014 OpenFOAM homework OpenFOAM is the most popular open-source CFD program in the world today. In this homework we will use the program to determine
How To Calculate Wind Loading
Use of Computational Fluid Dynamics in Civil Engineering Prof. Dr.-Ing. Casimir Katz, SOFiSTiK AG, Oberschleißheim ir. Henk Krüs, Cyclone Fluid Dynamics BV, Waalre Zusammenfassung: Der Einsatz von CFD
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
How To Create A Cdf Optimisation System
ADVANCED ENGINEERING 4(2010)2, ISSN 1846-5900 INTERFACES FOR EMBEDDING CFD OPTIMISATION WORKFLOWS INTO THE PRODUCT DEVELOPMENT PROCESS Todorov, G.; Ovcharova, J.; Romanov, B. & Kamberov, K. Abstract: The
Model of a flow in intersecting microchannels. Denis Semyonov
Model of a flow in intersecting microchannels Denis Semyonov LUT 2012 Content Objectives Motivation Model implementation Simulation Results Conclusion Objectives A flow and a reaction model is required
Steady Flow: Laminar and Turbulent in an S-Bend
STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and
CFD Analysis of Container Ship Sinkage, Trim and Resistance
CFD Analysis of Container Ship Sinkage, Trim and Resistance (abridged) Shaun Wortley B. Eng. Mechanical Engineering Project Report Department of Mechanical Engineering Curtin University 2013 21 Guillardon
Giorgio Bornia. Research statement. Primary interests
Giorgio Bornia Research statement 2500 Broadway and Boston 79409-1042 Lubbock, TX +1 806 834 8754 +1 806 742 1112 [email protected] http://www.math.ttu.edu/~gbornia Primary interests My main research
A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER
A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER William Logie and Elimar Frank Institut für Solartechnik SPF, 8640 Rapperswil (Switzerland)
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,
POLITECNICO DI MILANO Department of Energy
1D-3D coupling between GT-Power and OpenFOAM for cylinder and duct system domains G. Montenegro, A. Onorati, M. Zanardi, M. Awasthi +, J. Silvestri + ( ) Dipartimento di Energia - Politecnico di Milano
CFD Based Air Flow and Contamination Modeling of Subway Stations
CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George
OpenFOAM: Open source CFD in research and industry
Inter J Nav Archit Oc Engng 29) 1:89~94 DOI 1.3744/JNAOE.29.1.2.89 OpenFOAM: Open source CFD in research and industry Hrvoje Jasak 1,2 1 Wikki Ltd. London, United Kingdom, 2 FSB, University of Zagreb,
Introduction to CFD Analysis
Introduction to CFD Analysis Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 2-2 What is CFD? Computational fluid dynamics (CFD) is the science
Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands
Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes
Simple beginning 3D OpenFOAM Tutorial
Eng. Sebastian Rodriguez www.libremechanics.com Background. 1 Case definition. 1 3D modeling. 2 Units. 4 Physical parameters. 4 Meshing. 6 Structuring the case folders. 7 Boundary conditions. 7 Solving
OPTIMISE TANK DESIGN USING CFD. Lisa Brown. Parsons Brinckerhoff
OPTIMISE TANK DESIGN USING CFD Paper Presented by: Lisa Brown Authors: Lisa Brown, General Manager, Franz Jacobsen, Senior Water Engineer, Parsons Brinckerhoff 72 nd Annual Water Industry Engineers and
STCE. Outline. Introduction. Applications. Ongoing work. Summary. STCE RWTH-Aachen, Industrial Applications of discrete adjoint OpenFOAM, EuroAD 2014
Industrial Applications of discrete adjoint OpenFOAM Arindam Sen Software and Tools for Computational Engineering Science RWTH Aachen University EuroAD 2014, Nice, 16-17. June 2014 Outline Introduction
Part II: Finite Difference/Volume Discretisation for CFD
Part II: Finite Difference/Volume Discretisation for CFD Finite Volume Metod of te Advection-Diffusion Equation A Finite Difference/Volume Metod for te Incompressible Navier-Stokes Equations Marker-and-Cell
Lecturer, Department of Engineering, [email protected], Lecturer, Department of Mathematics, [email protected]
39 th AIAA Fluid Dynamics Conference, San Antonio, Texas. A selective review of CFD transition models D. Di Pasquale, A. Rona *, S. J. Garrett Marie Curie EST Fellow, Engineering, [email protected] * Lecturer,
HPC enabling of OpenFOAM for CFD Applications 25 th 27 th March 2015 CINECA Casalecchio di Reno, Bologna
VIRTUAL TEST RIG FOR PERFORMANCE EVALUATION OF A ROTATING HEAT EXCHANGER A. Corsini G. Delibra M. Martini G. Di Meo A. Santoriello FMGroup @ DIMA-URLS www.dima.uniroma1.it Enel Ingegneria e Ricerca S.p.A.
This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM and OpenCFD trade marks.
Disclaimer This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM and OpenCFD trade marks. Introductory OpenFOAM Course From 13 th
Open Source Computational Fluid Dynamics
Open Source Computational Fluid Dynamics An MSc course to gain extended knowledge in Computational Fluid Dynamics (CFD) using open source software. Teachers: Miklós Balogh and Zoltán Hernádi Department
BBIPED: BCAM-Baltogar Industrial Platform for Engineering design
BBIPED: BCAM-Baltogar Industrial Platform for Engineering design Carmen Alonso-Montes, Imanol García, Ali Ramezani, Lakhdar Remaki BCAM Basque Center for Applied Mathematics (Bilbao), Spain Motivation
Introductory FLUENT Training
Chapter 10 Transient Flow Modeling Introductory FLUENT Training www.ptecgroup.ir 10-1 Motivation Nearly all flows in nature are transient! Steady-state assumption is possible if we: Ignore transient fluctuations
Iterative Solvers for Linear Systems
9th SimLab Course on Parallel Numerical Simulation, 4.10 8.10.2010 Iterative Solvers for Linear Systems Bernhard Gatzhammer Chair of Scientific Computing in Computer Science Technische Universität München
Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.
Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?
Draft Version. For personal use. c Copyright 2011 - Máté Márton LOHÁSZ. Tutorial for Channel Flow by LES using Open Source CFD
Tutorial for Channel Flow by LES using Open Source CFD Máté Márton Lohász February 2011 i CONTENTS ii Contents 1 Overview 1 2 Set up your environment 1 3 Very short intro to OpenFOAM 1 3.1 Simulation set-up............................
Open source Computational Fluid Dynamics using OpenFOAM
Light Aircraft Design: Methods and Tools 2015 (invited paper) Royal Aeronautical Society, General Aviation Conference, London, November 2015 Open source Computational Fluid Dynamics using OpenFOAM H. Medina
Set up and solve a transient problem using the pressure-based solver and VOF model.
Tutorial 18. Using the VOF Model This tutorial was run using ANSYS FLUENT 12.1. The results have been updated to reflect the change in the default setting of node-based smoothing for the surface tension
COMPUTATIONAL FLUID DYNAMICS USING COMMERCIAL CFD CODES
ME469B - Spring 2007 COMPUTATIONAL FLUID DYNAMICS USING COMMERCIAL CFD CODES Gianluca Iaccarino Dept. Mechanical Engineering Bldg. 500 RM 204 (RM500-I) Ph. 650-723-9599 Email: [email protected] ME469B/1/GI
Fundamentals of Fluid Mechanics
Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
Simulation of Fluid-Structure Interactions in Aeronautical Applications
Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing [email protected] December 2003 3 rd FENET Annual Industry
TFAWS AUGUST 2003 VULCAN CFD CODE OVERVIEW / DEMO. Jeffery A. White. Hypersonic Airbreathing Propulsion Branch
TFAWS AUGUST 2003 VULCAN CFD CODE OVERVIEW / DEMO Jeffery A. White Hypersonic Airbreathing Propulsion Branch VULCAN DEVELOPMENT HISTORY Evolved from the LARCK code development project (1993-1996). LARCK
OPEN-SOURCE CFD ANALYSIS OF MULTI-DOMAIN UNSTEADY HEATING WITH NATURAL CONVECTION
TASK QUARTERLY 13 No 4, 403 414 OPEN-SOURCE CFD ANALYSIS OF MULTI-DOMAIN UNSTEADY HEATING WITH NATURAL CONVECTION PAWEŁ SOSNOWSKI AND JACEK POZORSKI Institute of Fluid-Flow Machinery, Polish Academy of
Extension of the OpenFOAM CFD tool set for modelling multiphase flow
Extension of the OpenFOAM CFD tool set for modelling multiphase flow Ridhwaan Suliman Johan Heyns Oliver Oxtoby Advanced Computational Methods Research Group, CSIR South Africa CHPC National Meeting, Durban,
Computational Fluid Dynamics Research Projects at Cenaero (2011)
Computational Fluid Dynamics Research Projects at Cenaero (2011) Cenaero (www.cenaero.be) is an applied research center focused on the development of advanced simulation technologies for aeronautics. Located
CFD simulations using an AMR-like approach in the PDE Framework Peano
CFD simulations using an AMR-like approach in the PDE Framework Peano, Fakultät für Informatik Technische Universität München Germany Miriam Mehl, Hans-Joachim Bungartz, Takayuki Aoki Outline PDE Framework
Introduction to Computational Fluid Dynamics
Introduction to Computational Fluid Dynamics Instructor: Dmitri Kuzmin Institute of Applied Mathematics University of Dortmund [email protected] http://www.featflow.de Fluid (gas and liquid)
APPENDIX 3 CFD CODE - PHOENICS
166 APPENDIX 3 CFD CODE - PHOENICS 3.1 INTRODUCTION PHOENICS is a general-purpose software code which predicts quantitatively the flow of fluids in and around engines, process equipment, buildings, human
Computational Fluid Dynamics in Automotive Applications
Computational Fluid Dynamics in Automotive Applications Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom FSB, University of Zagreb, Croatia 1/15 Outline Objective Review the adoption of Computational
Distance Learning Program
Distance Learning Program Leading To Master of Engineering or Master of Science In Mechanical Engineering Typical Course Presentation Format Program Description Clarkson University currently offers a Distance
CHAPTER 4 CFD ANALYSIS OF THE MIXER
98 CHAPTER 4 CFD ANALYSIS OF THE MIXER This section presents CFD results for the venturi-jet mixer and compares the predicted mixing pattern with the present experimental results and correlation results
International Journal of Heat and Mass Transfer
International Journal of Heat and Mass Transfer 57 (2013) 190 201 Contents lists available at SciVerse ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt
Coupling micro-scale CFD simulations to meso-scale models
Coupling micro-scale CFD simulations to meso-scale models IB Fischer CFD+engineering GmbH Fabien Farella Michael Ehlen Achim Fischer Vortex Factoria de Càlculs SL Gil Lizcano Outline Introduction O.F.Wind
Introduction: Keywords: CFD, MRF, Blower Angular Orientation
Behavior of MRF Approach on Flow Rate, for the Blower Having Four Anti Fouling Blades & By Changing the Angular Orientation of the Blower about the Axis of Rotation Vikas D Pawar CFD - Analyst GTEC Whirlpool
MECH 479: Computational Fluid Dynamics
MECH 479: Computational Fluid Dynamics W. K. Bushe University of British Columbia Department of Mechanical Engineering Today s To Do List Explain To Do List Discuss course outline Discuss basics of CFD
Benchmark Computations of 3D Laminar Flow Around a Cylinder with CFX, OpenFOAM and FeatFlow
Benchmark Computations of 3D Laminar Flow Around a Cylinder with CFX, OpenFOAM and FeatFlow E. Bayraktar, O. Mierka and S. Turek Institute of Applied Mathematics (LS III), TU Dortmund Vogelpothsweg 87,
Feature Commercial codes In-house codes
A simple finite element solver for thermo-mechanical problems Keywords: Scilab, Open source software, thermo-elasticity Introduction In this paper we would like to show how it is possible to develop a
Simulation of Flow Field and Particle Trajectories in Hard Disk Drive Enclosures
Simulation of Flow Field and Particle Trajectories in Hard Disk Drive Enclosures H. Song*, M. Damodaran*and Quock Y. Ng** *Singapore-Massachusetts Institute of Technology Alliance (SMA) Nanyang Technological
Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure
Universal Journal of Mechanical Engineering (1): 8-33, 014 DOI: 10.13189/ujme.014.00104 http://www.hrpub.org Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure Alireza Falahat
Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics
Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow
CFD Lab Department of Engineering The University of Liverpool
Development of a CFD Method for Aerodynamic Analysis of Large Diameter Horizontal Axis wind turbines S. Gomez-Iradi, G.N. Barakos and X. Munduate 2007 joint meeting of IEA Annex 11 and Annex 20 Risø National
Computational Engineering Programs at the University of Erlangen-Nuremberg
Computational Engineering Programs at the University of Erlangen-Nuremberg Ulrich Ruede Lehrstuhl für Simulation, Institut für Informatik Universität Erlangen http://www10.informatik.uni-erlangen.de/ ruede
Abaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
Module 6 Case Studies
Module 6 Case Studies 1 Lecture 6.1 A CFD Code for Turbomachinery Flows 2 Development of a CFD Code The lecture material in the previous Modules help the student to understand the domain knowledge required
