Harold s Calculus Notes Cheat Sheet 26 April 2016
|
|
|
- Charleen Cross
- 9 years ago
- Views:
Transcription
1 Hrol s Clculus Notes Chet Sheet 26 April 206 AP Clculus Limits Defiitio of Limit Let f e fuctio efie o ope itervl cotiig c let L e rel umer. The sttemet: lim x f(x) = L mes tht for ech ε > 0 there exists δ > 0 such tht if 0 < x < δ, the f(x) L < ε Tip : Direct sustitutio: Plug i f() see if it provies legl swer. If so the L = f(). The Existece of Limit The limit of f(x) s x pproches is L if oly if: Defiitio of Cotiuity A fuctio f is cotiuous t c if for every ε > 0 there exists δ > 0 such tht x c < δ f(x) f(c) < ε. Tip: Rerrge f(x) f(c) to hve (x c) s fctor. Sice x c < δ we c fi equtio tht reltes oth δ ε together. Two Specil Trig Limits lim f(x) = L x lim x + f(x) = L Prove tht f(x) = x 2 is cotiuous fuctio. f(x) f(c) = (x 2 ) (c 2 ) = x 2 c 2 + = x 2 c 2 = (x + c)(x c) = (x + c) (x c) Sice (x + c) 2c f(x) f(c) 2c (x c) < ε So give ε > 0, we c choose δ = ε > 0 i the 2c Defiitio of Cotiuity. So sustitutig the chose δ for (x c) we get: f(x) f(c) 2c ( ε) = ε 2c Sice oth coitios re met, f(x) is cotiuous. si x lim = x 0 x cos x lim = 0 x 0 x Copyright y Hrol Toomey, WyzAt Tutor
2 Derivtives Defiitio of Derivtive of Fuctio Slope Fuctio Nottio for Derivtives 0. The Chi Rule. The Costt Multiple Rule 2. The Sum Differece Rule 3. The Prouct Rule 4. The Quotiet Rule 5. The Costt Rule 6. The Power Rule 6. The Geerl Power Rule 7. The Power Rule for x 8. Asolute Vlue 9. Nturl Logorithm 0. Nturl Expoetil. Logorithm 2. Expoetil 3. Sie 4. Cosie 5. Tget 6. Cotget 7. Sect (See Lrso s -pger of commo erivtives) f f(x + h) f(x) (x) = lim h 0 h f f(x) f(c) (c) = lim x c x c f (x), f () (x), y x, y, x [f(x)], D x[y] x [f(g(x))] = f (g(x))g (x) y x = y u u x x [cf(x)] = cf (x) x [f(x) ± g(x)] = f (x) ± g (x) x [fg] = fg + g f x [f g ] = gf fg g 2 x [c] = 0 x [x ] = x x [u ] = u u where u = u(x) x [x] = (thik x = x x 0 = ) x [ x ] = x x x [l x] = x x [e x ] = e x x [log x] = (l ) x x [x ] = (l ) x [si(x)] = cos(x) x [cos(x)] = si(x) x x [t(x)] = sec2 (x) x [cot(x)] = csc2 (x) [sec(x)] = sec(x) t(x) x Copyright y Hrol Toomey, WyzAt Tutor 2
3 Derivtives 8. Cosect 9. Arcsie 20. Arccosie 2. Arctget 22. Arccotget 23. Arcsect 24. Arccosect 25. Hyperolic Sie 26. Hyperolic Cosie 27. Hyperolic Tget 28. Hyperolic Cotget 29. Hyperolic Sect 30. Hyperolic Cosect 3. Hyperolic Arcsie 32. Hyperolic Arccosie 33. Hyperolic Arctget 34. Hyperolic Arccotget 35. Hyperolic Arcsect 36. Hyperolic Arccosect (See Lrso s -pger of commo erivtives) [csc(x)] = csc(x) cot(x) x x [si (x)] = x 2 x [cos (x)] = x 2 x [t (x)] = + x 2 x [cot (x)] = + x 2 x [sec (x)] = x x 2 x [csc (x)] = x x 2 [sih(x)] = cosh(x) x [cosh(x)] = sih(x) x x [th(x)] = sech2 (x) x [coth(x)] = csch2 (x) [sech(x)] = sech(x) th(x) x [csch(x)] = csch(x) coth(x) x x [sih (x)] = x 2 + x [cosh (x)] = x 2 x [th (x)] = x 2 x [coth (x)] = x 2 x [sech (x)] = x x 2 x [csch (x)] = x + x 2 Positio Fuctio s(t) = 2 gt2 + v 0 t + s 0 Velocity Fuctio v(t) = s (t) = gt + v 0 Accelertio Fuctio (t) = v (t) = s (t) Jerk Fuctio j(t) = (t) = v (t) = s (3) (t) Copyright y Hrol Toomey, WyzAt Tutor 3
4 Applictios of Differetitio Rolle s Theorem f is cotiuous o the close itervl [,], f is ifferetile o the ope itervl (,). Me Vlue Theorem If f meets the coitios of Rolle s Theorem, the L Hôpitl s Rule Grphig with Derivtives Test for Icresig Decresig Fuctios The First Derivtive Test The Seco Derivitive Test Let f (c)=0, f (x) exists, the Test for Cocvity Poits of Iflectio Chge i cocvity Alyzig the Grph of Fuctio If f() = f(), the there exists t lest oe umer c i (,) such tht f (c) = 0. f f() f() (c) = f() = f() + ( )f (c) Fi c. P(x) If lim f(x) = lim x c x c Q(x) = { 0 0,, 0,, 0 0, 0, }, ut ot {0 }, P(x) the lim x c Q(x) = lim x c P (x) Q (x) = lim P (x) x c Q (x) =. If f (x) > 0, the f is icresig (slope up) 2. If f (x) < 0, the f is ecresig (slope ow) 3. If f (x) = 0, the f is costt (zero slope). If f (x) chges from to + t c, the f hs reltive miimum t (c, f(c)) 2. If f (x) chges from + to - t c, the f hs reltive mximum t (c, f(c)) 3. If f (x), is + c + or - c -, the f(c) is either. If f (x) > 0, the f hs reltive miimum t (c, f(c)) 2. If f (x) < 0, the f hs reltive mximum t (c, f(c)) 3. If f (x) = 0, the the test fils (See st erivtive test). If f (x) > 0 for ll x, the the grph is cocve up 2. If f (x) < 0 for ll x, the the grph is cocve ow If (c, f(c)) is poit of iflectio of f, the either. f (c) = 0 or 2. f oes ot exist t x = c. (See Hrol s Illegls Grphig Rtiols Chet Sheet) x-itercepts (Zeros or Roots) f(x) = 0 y-itercept f(0) = y Domi Vli x vlues Rge Vli y vlues Cotiuity No ivisio y 0, o egtive squre roots or logs Verticl Asymptotes (VA) x = ivisio y 0 or uefie Horizotl Asymptotes (HA) lim f(x) y lim f(x) y x x + Ifiite Limits t Ifiity lim f(x) lim x x + Differetiility Limit from oth irectios rrives t the sme slope Reltive Extrem Crete tle with omis, f(x), f (x), f (x) Cocvity If f (x) +, the cup up If f (x), the cup ow Poits of Iflectio f (x) = 0 (cocvity chges) Copyright y Hrol Toomey, WyzAt Tutor 4
5 Approximtig with Differetils Newto s Metho Fis zeros of f, or fis c if f(c) = 0. Tget Lie Approximtios Fuctio Approximtios with Differetils Relte Rtes x + = x f(x ) f (x ) y = mx + y = f (c)(x c) + f(c) f(x + x) f(x) + y = f(x) + f (x) x Steps to solve:. Ietify the kow vriles rtes of chge. (x = 5 m; y = 20 m; x = 2 m s ; y =? ) 2. Costruct equtio reltig these qutities. (x 2 + y 2 = r 2 ) 3. Differetite oth sies of the equtio. (2xx + 2yy = 0) 4. Solve for the esire rte of chge. (y = x y x ) 5. Sustitute the kow rtes of chge qutities ito the equtio. (y = = 3 m 2 s ) Copyright y Hrol Toomey, WyzAt Tutor 5
6 Summtio Formuls Sum of Powers Misc. Summtio Formuls c = c i = i 2 = ( + ) 2 i 3 = ( i) i 4 i 5 i 6 i 7 = ( + )(2 + ) 6 2 = 2 ( + ) 2 4 = = = ( + )(2 + )( ) 30 = 2 ( + ) 2 ( ) 2 = = = ( + )(2 + )( ) 42 = 2 ( + ) 2 ( ) 24 S k () = i k ( + )k+ = k + k + (k + r ) S r() i(i + ) = i 2 + i = i(i + ) = + = i(i + )(i + 2) ( + 3) 4( + )( + 2) k r=0 ( + )( + 2) 3 Copyright y Hrol Toomey, WyzAt Tutor 6
7 Riem Sum Mipoit Rule Trpezoil Rule Simpso s Rule TI-84 Plus TI-Nspire CAS Numericl Methos P 0 (x) = f(x) x = lim f(x i ) x i P 0 where = x 0 < x < x 2 < < x = x i = x i x i P = mx{ x i } Types: Left Sum (LHS) Mile Sum (MHS) Right Sum (RHS) P 0 (x) = f(x) x f(x i) x = x[f(x ) + f(x 2) + f(x 3) + + f(x )] where x = x i = (x 2 i + x i ) = mipoit of [x i, x i ] Error Bous: E M K( ) P (x) = f(x) x x 2 [f(x 0) + 2f(x ) + 2f(x 3 ) + + 2f(x ) + f(x )] where x = x i = + i x Error Bous: E T K( )3 2 2 P 2 (x) = f(x)x x 3 [f(x 0) + 4f(x ) + 2f(x 2 ) + 4f(x 3 ) + + 2f(x 2 ) + 4f(x ) + f(x )] Where is eve x = x i = + i x Error Bous: E S K( ) [MATH] fit(f(x),x,,), [MATH] [] [ENTER] Exmple: [MATH] fit(x^2,x,0,) x 2 x = 0 3 [MENU] [4] Clculus [3] Itegrl [TAB] [TAB] [X] [^] [2] [TAB] [TAB] [X] [ENTER] Copyright y Hrol Toomey, WyzAt Tutor 7
8 Itegrtio Bsic Itegrtio Rules Itegrtio is the iverse of ifferetitio, vice vers. f(x) = 0 f(x) = k = kx 0 The Costt Multiple Rule The Sum Differece Rule The Power Rule f(x) = kx The Geerl Power Rule Reim Sum Defiitio of Defiite Itegrl Are uer curve Swp Bous Aitive Itervl Property The Fumetl Theorem of Clculus The Seco Fumetl Theorem of Clculus Me Vlue Theorem for Itegrls The Averge Vlue for Fuctio (See Hrol s Fumetl Theorem of Clculus Chet Sheet) x f (x) x = f(x) + C f(x) x = f(x) x 0 x = C k x = kx + C k f(x) x = k f(x) x [f(x) ± g(x)] x = f(x) x ± g(x) x x x = x+ + C, where + If =, the x x = l x + C If u = g(x), u = g(x) the x u u x = u+ + C, where + f(c i ) x i, where x i c i x i = x = lim f(c i) x i = f(x) x 0 f(x) x = f(x) x f(x) x = f(x) x h(x) c + f(x) x c f(x) x = F() F() x x g(x) x f(t) t = f(x) f(t) t = f(g(x))g (x) f(t) t = f(h(x))h (x) f(g(x))g (x) g(x) f(x) x = f(c)( ) Fi c. f(x) x Copyright y Hrol Toomey, WyzAt Tutor 8
9 Itegrtio Methos. Memorize See Lrso s -pger of commo itegrls 2. U-Sustitutio f(g(x))g (x)x = F(g(x)) + C Set u = g(x), the u = g (x) x f(u) u = F(u) + C u = u = x u v = uv v u u = u = v = v = 3. Itegrtio y Prts 4. Prtil Frctios 5. Trig Sustitutio for 2 x 2 Pick u usig the LIATED Rule: L Logrithmic : l x, log x, etc. I Iverse Trig.: t x, sec x, etc. A Algeric: x 2, 3x 60, etc. T Trigoometric: si x, t x, etc. E Expoetil: e x, 9 x, etc. D Derivtive of: y x P(x) Q(x) x where P(x) Q(x) re polyomils Cse : If egree of P(x) Q(x) the o log ivisio first Cse 2: If egree of P(x) < Q(x) the o prtil frctio expsio 2 x 2 x Sustututio: x = si θ Ietity: si 2 θ = cos 2 θ 5. Trig Sustitutio for x 2 2 x 2 2 x Sustututio: x = sec θ Ietity: sec 2 θ = t 2 θ x x 5c. Trig Sustitutio for x Sustututio: x = t θ Ietity: t 2 θ + = sec 2 θ 6. Tle of Itegrls CRC Str Mthemticl Tles ook 7. Computer Alger Systems (CAS) TI-Nspire CX CAS Grphig Clcultor TI Nspire CAS ip pp 8. Numericl Methos Riem Sum, Mipoit Rule, Trpezoil Rule, Simpso s Rule, TI WolfrmAlph Google of mthemtics. Shows steps. Free. Copyright y Hrol Toomey, WyzAt Tutor 9
10 Coitio Prtil Frctios (See Hrol s Prtil Frctios Chet Sheet) f(x) = P(x) Q(x) where P(x) Q(x) re polyomils egree of P(x) < Q(x) If egree of P(x) Q(x) the o log ivisio first P(x) (x + )(cx + ) Exmple Expsio 2 (ex 2 + fx + g) A = (x + ) + B (cx + ) + C (cx + ) 2 + Dx + E (ex 2 + fx + g) Typicl Solutio x = l x + + C x + Sequece Sequeces & Series Geometric Series (See Hrol s Series Chet Sheet) lim = L (Limit) Exmple: (, +, +2, ) S = lim ( r ) r = r oly if r < where r is the rius of covergece ( r, r) is the itervl of covergece Covergece Tests Series Covergece Tests (See Hrol s Series Covergece Tests Chet Sheet). Divergece or th Term 6. Rtio 2. Geometric Series 7. Root 3. p-series 8. Direct Compriso 4. Altertig Series 9. Limit Compriso 5. Itegrl 0. Telescopig Tylor Series Tylor Series (See Hrol s Tylor Series Chet Sheet) + = f() (c)! =0 f(x) = P (x) + R (x) (x c) + f(+) (x ) ( + )! (x c) + where x x c (worst cse scerio x ) lim x + R (x) = 0 Copyright y Hrol Toomey, WyzAt Tutor 0
Repeated multiplication is represented using exponential notation, for example:
Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you
SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
MATHEMATICS SYLLABUS SECONDARY 7th YEAR
Europe Schools Office of the Secretry-Geerl Pedgogicl developmet Uit Ref.: 2011-01-D-41-e-2 Orig.: DE MATHEMATICS SYLLABUS SECONDARY 7th YEAR Stdrd level 5 period/week course Approved y the Joit Techig
Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits
Clulus Chet Sheet Limits Deiitios Preise Deiitio : We sy lim L i or every ε > 0 there is δ > 0 suh tht wheever 0 δ L < ε. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig suiietly
Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits
Clulus Chet Sheet Limits Deiitios Preise Deiitio : We sy lim ( ) L i or every e > 0 there is > 0 suh tht wheever 0 L < e. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig suiietly
Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I
Exm Stuy Guie Mth 2020 - Clculus II, Winter 204 The following is list of importnt concepts from ech section tht will be teste on exm. This is not complete list of the mteril tht you shoul know for the
Chapter 04.05 System of Equations
hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.
Reasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
Math 113 HW #11 Solutions
Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate
Application: Volume. 6.1 Overture. Cylinders
Applictio: Volume 61 Overture I this chpter we preset other pplictio of the defiite itegrl, this time to fid volumes of certi solids As importt s this prticulr pplictio is, more importt is to recogize
SOME IMPORTANT MATHEMATICAL FORMULAE
SOME IMPORTANT MATHEMATICAL FORMULAE Circle : Are = π r ; Circuferece = π r Squre : Are = ; Perieter = 4 Rectgle: Are = y ; Perieter = (+y) Trigle : Are = (bse)(height) ; Perieter = +b+c Are of equilterl
Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation
Lesso 0.: Sequeces d Summtio Nottio Def. of Sequece A ifiite sequece is fuctio whose domi is the set of positive rel itegers (turl umers). The fuctio vlues or terms of the sequece re represeted y, 2, 3,...,....
A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of
Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig
4.3. The Integral and Comparison Tests
4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece
PROBLEMS 05 - ELLIPSE Page 1
PROBLEMS 0 ELLIPSE Pge 1 ( 1 ) The edpoits A d B of AB re o the X d Yis respectivel If AB > 0 > 0 d P divides AB from A i the rtio : the show tht P lies o the ellipse 1 ( ) If the feet of the perpediculrs
Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
Section 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015
Harold s s Cheat Sheet 8 December 05 Algebra Constant Linear Identity f(x) c f(x) x Range: [c, c] Undefined (asymptote) Restrictions: c is a real number Ay + B 0 g(x) x Restrictions: m 0 General Fms: Ax
1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator
AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.
MATHEMATICS P1 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE GRADE 12
Mathematics/P1 1 Jue 014 Commo Test MATHEMATICS P1 COMMON TEST JUNE 014 NATIONAL SENIOR CERTIFICATE GRADE 1 Marks: 15 Time: ½ hours N.B: This questio paper cosists of 7 pages ad 1 iformatio sheet. Please
STUDY COURSE BACHELOR OF BUSINESS ADMINISTRATION (B.A.)
STUDY COURSE BACHELOR OF BUSINESS ADMINISTRATION (B.A. MATHEMATICS (ENGLISH & GERMAN REPETITORIUM 0/06 Prof. Dr. Philipp E. Zeh Mthemtis Prof. Dr. Philipp E. Zeh LITERATURE (GERMAN Böker, F., Formelsmmlug
Sequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review
Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 [email protected] December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1
Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
Continuity. DEFINITION 1: A function f is continuous at a number a if. lim
Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.
SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1470 - COLLEGE ALGEBRA (4 SEMESTER HOURS)
SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 470 - COLLEGE ALGEBRA (4 SEMESTER HOURS). COURSE DESCRIPTION: Polynomil, rdicl, rtionl, exponentil, nd logrithmic functions
Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
Limits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
The Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
Graphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
Released Assessment Questions, 2015 QUESTIONS
Relesed Assessmet Questios, 15 QUESTIONS Grde 9 Assessmet of Mthemtis Ademi Red the istrutios elow. Alog with this ooklet, mke sure you hve the Aswer Booklet d the Formul Sheet. You my use y spe i this
Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a
We will begin this chapter with a quick refresher of what an exponent is.
.1 Exoets We will egi this chter with quick refresher of wht exoet is. Recll: So, exoet is how we rereset reeted ultilictio. We wt to tke closer look t the exoet. We will egi with wht the roerties re for
Infinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)
www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input
Theorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius
SUBSTITUTION I.. f(ax + b)
Integrtion SUBSTITUTION I.. f(x + b) Grhm S McDonld nd Silvi C Dll A Tutoril Module for prctising the integrtion of expressions of the form f(x + b) Tble of contents Begin Tutoril c 004 [email protected]
Inverse Trig Functions
Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that
4.11 Inner Product Spaces
314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces
MATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
Factoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
Convexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
Section 7-4 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
Integration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
INTEGRATING FACTOR METHOD
Differential Equations INTEGRATING FACTOR METHOD Graham S McDonald A Tutorial Module for learning to solve 1st order linear differential equations Table of contents Begin Tutorial c 2004 [email protected]
The Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
m n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a.
TIth.co Alger Expoet Rules ID: 988 Tie required 25 iutes Activity Overview This ctivity llows studets to work idepedetly to discover rules for workig with expoets, such s Multiplictio d Divisio of Like
Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
Properties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
Review Problems for the Final of Math 121, Fall 2014
Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since
Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1355 - INTERMEDIATE ALGEBRA I (3 CREDIT HOURS)
SINCLAIR COMMUNITY COLLEGE DAYTON OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1355 - INTERMEDIATE ALGEBRA I (3 CREDIT HOURS) 1. COURSE DESCRIPTION: Ftorig; opertios with polyoils d rtiol expressios; solvig
Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
MATHEMATICAL ANALYSIS
Mri Predoi Trdfir Băl MATHEMATICAL ANALYSIS VOL II INTEGRAL CALCULUS Criov, 5 CONTENTS VOL II INTEGRAL CALCULUS Chpter V EXTENING THE EFINITE INTEGRAL V efiite itegrls with prmeters Problems V 5 V Improper
WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS.
WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Contributor: U.N.Iyer Department of Mathematics and Computer Science, CP 315, Bronx Community College, University
Warm-up for Differential Calculus
Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:
Chapter 6: Variance, the law of large numbers and the Monte-Carlo method
Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
Exponential and Logarithmic Functions
Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
2-3 The Remainder and Factor Theorems
- The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
The Velocity Factor of an Insulated Two-Wire Transmission Line
The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the
Unit 6: Exponents and Radicals
Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -
Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <[email protected]>
(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1
Review guide for the final exam in Math 233
Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered
PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
Calculus. Contents. Paul Sutcliffe. Office: CM212a.
Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical
MATH 381 HOMEWORK 2 SOLUTIONS
MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e
Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
3. If x and y are real numbers, what is the simplified radical form
lgebra II Practice Test Objective:.a. Which is equivalet to 98 94 4 49?. Which epressio is aother way to write 5 4? 5 5 4 4 4 5 4 5. If ad y are real umbers, what is the simplified radical form of 5 y
15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
NATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
Pure C4. Revision Notes
Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd
GRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
AP STATISTICS SUMMER MATH PACKET
AP STATISTICS SUMMER MATH PACKET This pcket is review of Algebr I, Algebr II, nd bsic probbility/counting. The problems re designed to help you review topics tht re importnt to your success in the clss.
Sequences and Series
Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.
EQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint
f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1
Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x)
MATHEMATICS (860) CLASS XI
MATHEMATICS (860) Aims:. To ele didtes to quire kowledge d to develop uderstdig of the terms, oepts, symols, defiitios, priiples, proesses d formule of Mthemtis t the Seior Seodry stge.. To develop the
Chapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
Lecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular
2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration
Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
Math Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis
Series FOURIER SERIES Graham S McDonald A self-contained Tutorial Module for learning the technique of Fourier series analysis Table of contents Begin Tutorial c 004 [email protected] 1. Theory.
S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.
S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,
100. In general, we can define this as if b x = a then x = log b
Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,
4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
Lecture 5: Span, linear independence, bases, and dimension
Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;
The Fundamental Theorem of Calculus
Section 5.4 Te Funmentl Teorem of Clculus Kiryl Tsiscnk Te Funmentl Teorem of Clculus EXAMPLE: If f is function wose grp is sown below n g() = f(t)t, fin te vlues of g(), g(), g(), g(3), g(4), n g(5).
AP Calculus BC 2003 Scoring Guidelines Form B
AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet
0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
Vectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10
FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.
