Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I
|
|
|
- Deirdre Young
- 9 years ago
- Views:
Transcription
1 Exm Stuy Guie Mth Clculus II, Winter 204 The following is list of importnt concepts from ech section tht will be teste on exm. This is not complete list of the mteril tht you shoul know for the course, but it is goo iniction of wht will be emphsize on exm. A thorough unerstning of ll of the following concepts will help you perform well on exm. Some plces to fin problems on these topics re the following: in the book, in the homework, on quizzes, n online (for exmple the COW webpge). Differentition n Anti-ifferentition Rules from Clculus I x (c) = 0 x (ex ) = e x x ln(x) = x x (xn ) = nx n x (x ) = x ln() x log (x) = xln() x sin(x) = cos(x) x csc(x) = csc(x)cot(x) x (sin (x)) = x 2 x (csc (x)) = x x 2 x cos(x) = sin(x) x sec(x) = sec(x)tn(x) x (cos (x)) = x 2 x (sec (x)) = x x 2 x tn(x) = sec2 (x) x cot(x) = csc2 (x) x (tn (x)) = +x 2 x (cot (x)) = +x 2. k x = k x +C e x x = e x +C x = ln( x ) +C x x n x = n + nxn+ +C; n x x = x ln() +C cos(x)x = sin(x) +C sin(x)x = cos(x) +C sec 2 (x)x = tn(x) +C csc(x)cot(x)x = csc(x) +C sec(x) tn(x)x = sec(x) +C csc 2 (x) = cot(x) +C x 2 x = sin (x) +C x x 2 x = csc (x) +C x 2 x = cos (x) +C x x 2 x = sec (x) +C + x 2 = tn (x) +C + x 2 x = cot (x) +C.
2 Techniques of Integrtion Section 5.2 This section is on computing efinite integrls s limits of Riemnn sums n in terms of signe re. Interpret efinite integrl s signe re. Compute integrls using re formuls of of geometric figures. Section 5.3 This section is on the funmentl theorem of clculus. Use the funmentl theorem of clculus to compute efinite integrls, i.e. b where F(x) is n nti-erivtive of f (x) on [, b]. f (x)x = F(b) F(), Compute the inefinite integrls from the tble bove f (x)x = F(x) +C, where F(x) is n nti-erivtive of f (x). Section 5.5 This section is on u-substitution. u-substitution is the nti-ifferentition rule formulte from unoing the chin rule: Chin Rule x f (g(x)) = f (g(x))g (x) u-substitution f (g(x))g (x)x = f (g(x)) +C Use u-substitution to evlute inefinite integrls f (g(x))g (x)x = f (u)u = f (u) +C = f (g(x)) +C [ ] u = g(x) u-substitution u = g (x)x Use u-substitution to evlute efinite integrls b g(b) f (g(x))g (x)x = f (u)u = f (g()) f (g(b)) g() [ ] u = g(x) u() = g() u-substitution u = g (x)x u(b) = g(b) Section 7. This section is on integrtion by prts.
3 Integrtion by prts is the nti-ifferentition rule formulte from unoing the prouct rule: Prouct Rule x ( f (x) g(x)) = g(x) f (x) + f (x)g (x) Integrtion by prts f (x)g (x)x = f (x)g(x) g(x) f (x)x Use integrtion by prts to evlute inefinite integrls f (x)g (x)x = f (x)g(x) g(x) f (x)x [ u = f (x) v = g(x) Integrtion by prts u = f (x)x v = g (x)x ] This formul sys tht uv = u v vu. When integrting by prts, we choose u n v must then be the reminer of the integrn. Then u is the ifferentil of u n v is chosen by nti-ifferentiting g (x) so the v is the ifferentil of v. Use integrtion by prts to evlute efinite integrls b f (x)g b b (x)x = f (x)g(x) g(x) f (x)x [ u = f (x) v = g(x) Integrtion by prts u = f (x)x v = g (x)x ] The techniques here re the sme s integrting by prts to evlute inefinite integrls. The ifference is tht we evlute the terms t the enpoints n b. Section 7.2 This section is on techniques for integrting trigonometric functions. Compute inefinite integrls of the form sin m (x)cos n (x)x when either m or n is o by splitting off erivtive term, using the Pythgoren theorem, n integrte using u-substitution. You shoul be ble to compute efinite integrls of this form s well. You re expecte to know the Pythgoren theorem, sin 2 (x) + cos 2 (x) =. Compute inefinite integrls of the form sin m (x)cos n (x)x when both m or n re even by using ouble ngle formuls. The ouble ngle formuls, cos 2 (x) = cos(2x) n sin2 (x) = 2 2 cos(2x) will be provie for you; you re not expecte to memorize them. You shoul be ble to compute efinite integrls of this form s well.
4 Compute inefinite integrls of the form tn m (x)sec 2k (x)x n tn 2k+ (x)sec n (x)x by splitting off erivtive term, using the Pythgoren theorem, n integrte using u-substitution. You shoul be ble to compute efinite integrls of this form s well. You re expecte to know nother version of the Pythgoren theorem, obtine in the following wy: strt with the Pythgoren theorem, sin 2 (x) + cos 2 (x) =, n ivie both sie by cos 2 (x) to obtin sin 2 (x) cos 2 (x) + cos2 (x) cos 2 (x) = cos 2 (x) tn 2 (x) + = sec 2 (x). Section 7.4 This section is on integrting rtionl functions using prtil frction ecomposition. Use prtil frction ecomposition to rewrite rtionl functions into sum of functions tht you cn integrte irectly. This my involve polynomil long ivision (or synthetic ivision if you prefer). You will be expecte to be ble to ecompose rtionl functions whose enomintors hve liner terms, repete liner terms, irreucible qurtic terms, n combintions thereof. You will not be expecte to hnle repete irreucible qurtic terms. In prticulr, the enomintors of the functions you will be expecte to integrte will contin terms of the following forms: Liner term Repete liner term Irreucible qurtic term (x ) (x ) k (x ) For exmple, you re expecte to be ble to integrte x 4 (x )(x 3) 3 (x 2 + ). This prticulr problem woul be too long for n exm question, but you shoul know ll of the techniques involve. You shoul be ble to compute both efinite n inefinite integrls of this form. Applictions of Integrtion Section 6. This section is on computing re between curves. Given two functions f (x) n g(x) on n intervl [,b], you shoul be ble to compute the re between the two curves on [,b] b A = f (x) g(x) x. In prctice, we brek up the intervl [,b] in to sections where f (x) is bove g(x) n vice vers, then integrte the top function minus the bottom function on ech intervl.
5 Given two functions f (y) n g(y) on n intervl [c,], you shoul be ble to compute the re between the two curves on [c,] A = f (y) g(y) y. c This is essentilly the sme problem s the lst bullet item turne on its sie. We o everything in the y irection inste of the x irection. You shoul be ble to ientify regions efine by their bouning curves. Tht is, you shoul be ble to ientify region given the curve tht form its bounry. For exmple, you shoul be ble to ientify the region boune by y = sin(x), y =, x = π/2, n x = 3π/2. Section 6.2 This section is on computing volumes of solis. You shoul be ble to use the formul b V = A(x)x where V is the volume of the soli with cross-sectionl re A(x) for x in [,b]. You shoul be ble to use this formul when soli is escribe by its bse n cross-sectionl region s well s using revolutions of solis. Use the bove formul (using the isk or wsher metho) to compute the volume of solis of revolution obtine by revolving given region bout horizontl or verticl xis. There re two formultions of this formul to compute volumes. Revolving bout horizontl xis Revolving bout verticl xis -Axis of revolution is of the form y = -Axis of revolution is of the form x = (incluing the x-xis, which is y = 0) (incluing the y-xis, which is x = 0) -Verticl cross-sectionl cuts -Horizontl cross-sectionl cuts (prllel to the y-xis) (prllel to the x-xis) -Fix x n compute cross-sectionl re A(x) -Fix y n compute cross-sectionl re A(y) -Integrte in x -Integrte in y -Integrting with isks: b -Integrting with isks: V = πr(x) 2 x V = πr(y) 2 y c -Integrting with wshers: -Integrting with wshers: b V = π(r(x) 2 r(x) 2 )x V = π(r(y) 2 r(y) 2 )y c Section 6.4 This section is on computing work. You shoul be fmilir with the formuls W = F (work = force istnce) n F = m (force = mss )
6 You shoul be ble to set up n compute integrls to fin the mount of work one in vrious pplictions problems like the ones in section 6.4 in the text. This inclues using Hooke s lw to compute the force function for spring, computing work given force function, work one to pump wter out of tnk, work one to lift chin/rope, etc. Section 6.5 This section is on computing verge vlues of functions. Given function f (x) on [,b], the verge vlue of f (x) on [,b] is f [,b] = b f (x)x. b You shoul know this eqution n be ble to compute integrl verges using the integrtion techniques mentione bove. Know the interprettion of the verge vlue of function in terms of the re uner curve. In prticulr, f [,b] is the height of the rectngle of with b necessry to enclose the sme re unerneth f (x) on [,b]. Tht is, b f [,b] (b ) = f (x)x ( ) ( ) Are of rectngle with height = Are uner f (x) on [,b]. f [,b] n with b.
Integration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
6.2 Volumes of Revolution: The Disk Method
mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of
15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time
Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
Review Problems for the Final of Math 121, Fall 2014
Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since
The Fundamental Theorem of Calculus
Section 5.4 Te Funmentl Teorem of Clculus Kiryl Tsiscnk Te Funmentl Teorem of Clculus EXAMPLE: If f is function wose grp is sown below n g() = f(t)t, fin te vlues of g(), g(), g(), g(3), g(4), n g(5).
SUBSTITUTION I.. f(ax + b)
Integrtion SUBSTITUTION I.. f(x + b) Grhm S McDonld nd Silvi C Dll A Tutoril Module for prctising the integrtion of expressions of the form f(x + b) Tble of contents Begin Tutoril c 004 [email protected]
Review guide for the final exam in Math 233
Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered
AREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.
5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued
Applications to Physics and Engineering
Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics
MODULE 3. 0, y = 0 for all y
Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)
4.11 Inner Product Spaces
314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces
Operations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator
AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.
Lecture 5. Inner Product
Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right
Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
Warm-up for Differential Calculus
Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:
Section 5-4 Trigonometric Functions
5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
6.5 - Areas of Surfaces of Revolution and the Theorems of Pappus
Lecture_06_05.n 1 6.5 - Ares of Surfces of Revolution n the Theorems of Pppus Introuction Suppose we rotte some curve out line to otin surfce, we cn use efinite integrl to clculte the re of the surfce.
www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)
www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input
Volumes by Cylindrical Shells: the Shell Method
olumes Clinril Shells: the Shell Metho Another metho of fin the volumes of solis of revolution is the shell metho. It n usull fin volumes tht re otherwise iffiult to evlute using the Dis / Wsher metho.
PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
To differentiate logarithmic functions with bases other than e, use
To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with
Binary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy
20. Product rule, Quotient rule
20. Prouct rule, 20.1. Prouct rule Prouct rule, Prouct rule We have seen that the erivative of a sum is the sum of the erivatives: [f(x) + g(x)] = x x [f(x)] + x [(g(x)]. One might expect from this that
6 Energy Methods And The Energy of Waves MATH 22C
6 Energy Methods And The Energy of Wves MATH 22C. Conservtion of Energy We discuss the principle of conservtion of energy for ODE s, derive the energy ssocited with the hrmonic oscilltor, nd then use this
1.2 The Integers and Rational Numbers
.2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl
2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration
Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting
Factoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
Geometry 7-1 Geometric Mean and the Pythagorean Theorem
Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the
Exponential and Logarithmic Functions
Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define
FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation
FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does
CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line.
CURVES ANDRÉ NEVES 1. Problems (1) (Ex 1 of 1.3 of Do Crmo) Show tht the tngent line to the curve α(t) (3t, 3t 2, 2t 3 ) mkes constnt ngle with the line z x, y. (2) (Ex 6 of 1.3 of Do Crmo) Let α(t) (e
Experiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
Graphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1470 - COLLEGE ALGEBRA (4 SEMESTER HOURS)
SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 470 - COLLEGE ALGEBRA (4 SEMESTER HOURS). COURSE DESCRIPTION: Polynomil, rdicl, rtionl, exponentil, nd logrithmic functions
Inverse Trig Functions
Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that
MATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
SPECIAL PRODUCTS AND FACTORIZATION
MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come
9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1
Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x)
Pure C4. Revision Notes
Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd
AAPT UNITED STATES PHYSICS TEAM AIP 2010
2010 F = m Exm 1 AAPT UNITED STATES PHYSICS TEAM AIP 2010 Enti non multiplicnd sunt preter necessittem 2010 F = m Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD
and thus, they are similar. If k = 3 then the Jordan form of both matrices is
Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If
Introduction to Integration Part 1: Anti-Differentiation
Mathematics Learning Centre Introuction to Integration Part : Anti-Differentiation Mary Barnes c 999 University of Syney Contents For Reference. Table of erivatives......2 New notation.... 2 Introuction
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is
Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:
Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A
Physics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x
Integration. 148 Chapter 7 Integration
48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but
Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany
Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required
PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials
MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic
Math 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
Section 7-4 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
The Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
Lecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
QUADRATURE METHODS. July 19, 2011. Kenneth L. Judd. Hoover Institution
QUADRATURE METHODS Kenneth L. Judd Hoover Institution July 19, 2011 1 Integrtion Most integrls cnnot be evluted nlyticlly Integrls frequently rise in economics Expected utility Discounted utility nd profits
Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a
Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006
dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.
Vectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
Introduction to Integration Part 2: The Definite Integral
Mthemtics Lerning Centre Introduction to Integrtion Prt : The Definite Integrl Mr Brnes c 999 Universit of Sdne Contents Introduction. Objectives...... Finding Ares 3 Ares Under Curves 4 3. Wht is the
1 Fractions from an advanced point of view
1 Frtions from n vne point of view We re going to stuy frtions from the viewpoint of moern lger, or strt lger. Our gol is to evelop eeper unerstning of wht n men. One onsequene of our eeper unerstning
COMPONENTS: COMBINED LOADING
LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of
Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
Section 5.4 More Trigonometric Graphs. Graphs of the Tangent, Cotangent, Secant, and Cosecant Function
Section 5. More Trigonometric Graphs Graphs of the Tangent, Cotangent, Secant, and Cosecant Function 1 REMARK: Many curves have a U shape near zero. For example, notice that the functions secx and x +
Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and
Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric
Math 230.01, Fall 2012: HW 1 Solutions
Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The
The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.
Instrutor: Longfei Li Mth 43 Leture Notes 16. Line Integrls The invention of line integrls is motivted by solving problems in fluid flow, fores, eletriity nd mgnetism. Line Integrls of Funtion We n integrte
Rotating DC Motors Part II
Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors
addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.
APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving
Algebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review
Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 [email protected] December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1
The Riemann Integral. Chapter 1
Chpter The Riemnn Integrl now of some universities in Englnd where the Lebesgue integrl is tught in the first yer of mthemtics degree insted of the Riemnn integrl, but now of no universities in Englnd
9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors
Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only
The Quick Calculus Tutorial
The Quick Calculus Tutorial This text is a quick introuction into Calculus ieas an techniques. It is esigne to help you if you take the Calculus base course Physics 211 at the same time with Calculus I,
EQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint
Distributions. (corresponding to the cumulative distribution function for the discrete case).
Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive
Reasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
Brillouin Zones. Physics 3P41 Chris Wiebe
Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction
Numerical Methods of Approximating Definite Integrals
6 C H A P T E R Numericl Methods o Approimting Deinite Integrls 6. APPROXIMATING SUMS: L n, R n, T n, AND M n Introduction Not only cn we dierentite ll the bsic unctions we ve encountered, polynomils,
How To Understand The Theory Of Inequlities
Ostrowski Type Inequlities nd Applictions in Numericl Integrtion Edited By: Sever S Drgomir nd Themistocles M Rssis SS Drgomir) School nd Communictions nd Informtics, Victori University of Technology,
Basically, logarithmic transformations ask, a number, to what power equals another number?
Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In
CHAPTER 11 Numerical Differentiation and Integration
CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods
I. Pointwise convergence
MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.
Rules for Finding Derivatives
3 Rules for Fining Derivatives It is teious to compute a limit every time we nee to know the erivative of a function. Fortunately, we can evelop a small collection of examples an rules that allow us to
DIFFERENTIATING UNDER THE INTEGRAL SIGN
DIFFEENTIATING UNDE THE INTEGAL SIGN KEITH CONAD I hd lerned to do integrls by vrious methods shown in book tht my high school physics techer Mr. Bder hd given me. [It] showed how to differentite prmeters
Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the
PROBLEM 4.1 SOLUTION. Knowing that the couple shown acts in a vertical plane, determine the stress at (a) point A, (b) point B.
PROBLEM.1 Knowing tht the couple shown cts in verticl plne, determine the stress t () point A, (b) point B. SOLUTON () (b) For rectngle: For cross sectionl re: 1 = bh 1 1 = 1 + + = ()(1.5) + ()(5.5) +
Real Analysis and Multivariable Calculus: Graduate Level Problems and Solutions. Igor Yanovsky
Rel Anlysis nd Multivrible Clculus: Grdute Level Problems nd Solutions Igor Ynovsky 1 Rel Anlysis nd Multivrible Clculus Igor Ynovsky, 2005 2 Disclimer: This hndbook is intended to ssist grdute students
