# Review Problems for the Final of Math 121, Fall 2014

Size: px
Start display at page:

Transcription

1 Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd of the text which constitute only prt of the common Mth Finl. Since the finl is comprehensive (though emphsizing the second hlf of semester), this collection should be complemented by other review mterils, e.g. the review problems for the midterm nd the rel midterm of this semester, when prepring for the finl.. Find the following limits. (i) lim x + ln (x + ) cot (x). (ii) lim x (+ 5x) / ln(x).. A prticle with velocity t ny time t given by v(t) =e t moves in stright line. How fr does the prticle move from time t =to t =?. Evlute (i) x dx nd (ii) x + x ( x ) dx, if convergent. x6. For f (x) =, find (i) the most generl ntiderivtive of f on the intervl (, ), x nd (ii) the ntiderivtive F of f with F (/) =. 5. Wht constnt ccelertion (in mi/h ) is required to increse the speed of cr from 5 mi/h to 6 mi/h in seconds? 6. If f (x) =6x + x, f () =, nd f () =, find f. 7. If f (x) dx =, 7 5 f (x) dx =, nd 7 f (x) dx =, find 5 f (x) dx. 8. Find the re of the region (in the first qudrnt) bounded by the y-xis nd the curve x = y / y (whose y-intercepts re nd ). 9. Compute. Differentite x () x + dx, (d) x ln (x) dx, x (g) x x dx, x. If f is continuous nd cos (t) dt, nd t (b) (e) (f) x x + x +x + dx, xe x+ dx, sin (x) dx. cos t dt. f (x) dx =8, find x f ( x ) dx. (c) dx, x (f) sin (x) cos (x) dx,. Find the length of the prmetric curve (x, y) = ( t sin (t), ln (t) ) with t s concrete definite integrl without ctully computing its vlue.. A spring exerts restoring force proportionl to the distnce it is stretched from its nturl length. We stretch it feet beyond its nturl length nd mesure the restoring force t pounds. How much work, in foot-pounds, is done in stretching the spring n dditionl feet (thus from feet beyond its nturl length to 5 feet beyond its nturl length)?

2 . A ft ldder is lening ginst the wll. If the bottom of the ldder is being pulled wy (from the wll) t the constnt rte of ft/sec, how fst is the top coming down when the top is 6 ft bove the ground? 5. Two crs strt moving from the sme point. One cr trvels north t mph nd the other cr trvels est t mph. Let d(t) denote the distnce between the crs t time t (the number of hours fter the crs leve the initil point). How fst is the distnce between the crs incresing two hours lter? 6. A mn strts wlking north t 5 ft/s from point P. Ten seconds lter womn strts wlking est t ft/s from point ft due est of P. At wht rte re the people moving prt seconds fter the womn strts wlking? 7. A tnk of the shpe of circulr cone with its vertex pointing downwrd (nd its top horizontl) is being filled with wter. Assume tht the rdius of its circulr top is 6 m nd its height (i.e. the distnce from the vertex to the top) is m. Let h (t) be the wter level (i.e. the distnce from the vertex to the wter surfce) in the tnk t time t in minutes. If the wter is being pumped into the tnk t the rte of 5 m /min strting from t =, how fst is the wter level rising when the wter level is 5 m? 8. Find the derivtives of the functions (i) F (x) = (iii) H (x) = ln(x) tn (t) dt. x sin ( t ) dt, (ii) G (x) = 9. For function f with continuous derivtive f on the whole rel line, lim h h () f (), (b) f(), (c) f(), (d) f (), (e) none of the bove.. Find continuous function f nd constnt such tht x x x x +h f (t)dt =6x 9. +t dt, nd f (x)dx =. () Give the itertive formul for Newton s method for pproximting root of n eqution f(x) =, where f is differentible function on the rel line. (b) Use Newton s method with first guess x =to pproximte the solution of the eqution x x 8=by listing the first numbers in the sequence of pproximtions obtined by the Newton s method.. Given function f with continuous derivtive f on the rel line R nd with f () =, f () = 5, lim x f (x) =, nd lim x f f (x) (x) =, evlute the following limits: () lim x x, (b) lim x f (x) ln (x), (c) lim cos (x) x f (x).. A prticle moves long the y-xis so tht its velocity t ny time t is given by v(t) =t cos t. At time t =, the position of the prticle is y =. () For wht intervls of t, t 5, is the prticle moving upwrd? (b) Write n expression for the ccelertion (t) of the prticle in terms of t. (c) Write n expression for the position y(t) of the prticle in terms of t. (d) Find the position of the prticle t the moment when its velocity becomes zero for the first time fter the beginning of motion.. Find the number(s) b such tht the verge vlue of f(x) = x +x on the intervl [,b] is equl to In three hour trip, the velocity of cr t ech hlf hour ws recorded s follows: Time (Hours) Velocity (MPH) Estimte the distnce trveled using the Simpson s pproximtion S 6 nd estimte the verge velocity of

3 the cr during this trip. 6. Express s concrete sum of numbers the pproximtion T 6 to x +dx obtined by the Trpezoidl Rule. 7. Evlute the following integrls: () e sin x cos x dx, (d) x sin (x) dx, 8. Let F (x) = π/ (g) cos x sin x dx, (j) (xe x + e +x ) dx, f(x) (b) (e) 6 (h) (k) x + x +x +5 dx, 6x(x + ) dx, x x dx, dt 9t +, (c) ( x) dx, (f) x +x dx, (i) (l) (x + x ) dx, x(ln x) dx. tn (t ) dt for differentible function f. Then F (x) = () tn (x), (b) tn (x) f (x), (c) f (tn (x)), (d) sec (x), (e) none of the bove. 9. If k (kx x ) dx = 8, then k = () 9, (b), (c), (d) 9, (e) none of the bove.. If the function g hs continuous derivtive on [,c], then c g (x) dx = () g(c) g(), (b) g(x)+c, (c) g(x) g(), (d) g(c), (e) none of the bove. x. Compute (i) x dx, (ii) x x +dx, (iii) sin (x) cos (x) dx, (iv) + x ( ) dx, (vi) (x ) x dx, nd (vii) x x 9 + ln ( x + ) dx. sin (x) dx, (v). A log meters long is cut t -meter intervls nd the dimeters, in meters, of its (circulr) cross sections t these 9 cuts from one end to the other re.5,.8,.6,.7,.8,.,.9,.8, nd.9. The dimeters, in meters, t the two ends of the log re. nd.. Use Simpson s Rule to estimte the volume of the log.. Let <c<bnd let g be differentible on [,b]. Which of the following is NOT necessrily true? () b b g(x) dx = c g(x) dx + b c g(x) dx, (d) lim x c g(x) =g(c), (e) If k is constnt, then. If f is n even nd continuous function, then () f(x) dx, (b) g(x) dx, (b) There exists d in [, b] such tht g (d) = g(b) g(), (c) f(x) dx, (c), (d) /, (e) f(x) dx + b kg(x) dx = k f(x) dx = f(x) dx, (f) none of the bove. b b g(x) dx. 5. A publisher estimtes tht book will sell t the rte of r(t) = 6, e.8t books per yer t the time t yers from now. Find the totl number of books tht will ever be sold (up to t = ).

4 6. Let R be the region in the first qudrnt enclosed by the y-xis nd the grphs of y = sin x nd y = cos x, for x π/. () Set up the definite integrl for the re of R nd evlute it exctly. (b) Find the centroid of (x, y) of R. (c) Set up the integrl for the volume of the solid generted when R is revolved bout the x-xis nd evlute it exctly. (d) Set up definite integrls to compute the perimeter of R. Do not compute the integrls. 7. For function f with continuous derivtive f on the rel line, the integrl x f ( x ) dx = () x f ( x ) x f ( x ) dx, (b) xf ( x ) f ( x ) dx, (e) none of the bove. f ( x ) dx, (c) uf (u) du with u = x, (d) xf ( x ) 8. The mount of pollution in lke x yers fter the closing of chemicl plnt is P (x) = /x tons (for x ). Find the verge mount of pollution between nd yers fter the closing. 9. Consider the function f(x) =+x on the intervl [, ]. Find number c in [, ] so tht the re of the rectngle with bse on [, ] nd height f(c) is equl to the re under the grph of f in the given intervl.. Compute the length of the curve given by x = e t sin t nd y = e t cos t, for t π.. A prticle is moved long the x-xis by force tht mesures x pounds t point x feet from the origin. Find the work done in moving the prticle over distnce of ft. from the origin.. A crne is lifting 5 lb trnsformer from the ground level to the third floor which is feet bove ground level. A 6 foot cble connects the trnsformer to the top of the crne. The cble weighs 5 lb per liner foot. How much work is done in lifting the trnsformer feet bove the ground?. Which of the following improper integrls is convergent? () x / sin (x) dx, (b) bove, (f) none of the bove. xe x dx, (c) x ( + x ) dx, (d) x / ( x) dx, (e) ll of the. It is observed tht long stright highwy from city A to city B, cr pssed city A t speed mph (miles per hour) t :.m. nd pssed city B t speed 5 mph (miles per hour) t :.m. on the sme dy, where cities A nd B re miles prt. T F () At certin moment between :.m. nd :.m., the cr s speed hs to be t lest 7 mph. T F (b) At certin moment between :.m. nd :.m., the cr s speed hs to be t lest 66 mph. T F (c) Between :.m. nd :.m., the cr s speed cn never exceed 7 mph. T F (d) At certin moment between :.m. nd :.m., the cr s ccelertion hs to be t lest mi/h. T F (e) Between :.m. nd :.m., the cr s ccelertion cn never be greter thn 5 mi/h. T F (f) Between :.m. nd :.m., the cr s ccelertion cn never be negtive. 5. Find the volume of the solid obtined by revolving, bout the line x =, the region R in the first qudrnt nd bounded by the curves y =x nd y = x /5. 6. Find the volume of the solid S tht hs the region { (x, y) :x /5 y } in the xy-plne s its bse nd hs ll of its cross-sections perpendiculr to the y-xis being squres.

5 7. Find the volume of the solid obtined by revolving, bout the y-xis, the region { R = (x, y) : x nd y e x}. (Hint: Use the method of cylindricl shells.) 8. An qurium 5 m long, m wide, nd m deep is full of wter. Find the work needed to pump hlf of the wter out of the qurium over its top. Note tht the density of wter is kg/m nd the grvittionl ccelertion is 9.8 m/s. 9. A swimming pool is m wide nd 5 m long, nd its bottom is n inclined plne, the shllow end hving depth of m nd the deep end m. If the pool is full of wter, find the hydrosttic force on () the deep end, (b) one of the two (trpezoidl) sides, nd (c) the bottom of the pool. 5. If f (x) dx =, 8 6 f (x) dx =, nd 8 f (x) dx =, find (i) 6 f (x) dx nd (ii) 8 5. Find the re of the region R bounded by the curves y = x x nd y =x x. (f (x) sin (x)) dx. 5. A mn strts wlking north t ft/s from point P. Five seconds lter womn strts wlking est t ft/s from point ft due est of P. At wht rte re these two persons moving prt seconds fter the womn strts wlking? 5. Find f (x) for x>, if f () =, f () =, nd f (x) = x + x. 5. With wht constnt negtive ccelertion (ft/s ) by brkes cn cr be brought to full stop from speed of 6 mi/h within exctly distnce of 5 feet? ( mi. = 58 ft.) 55. Find the volume of the solid S with flt bse which is the region R bounded by y = x nd y =x on the xy-plne nd with its intersection with ny plne x = c, c R, being either n equilterl tringle or n empty set. 56. The grph of continuous function f on the closed intervl [ 5, 5] is shown in the following figure, where the rc is semicircle. Let h(x) = x f(t) dt for 5 x 5. () Compute h(5) nd h ( ). (b) Compute h ( ) nd h (). (c) Find the set of points x t which h is well-defined. (d) On wht intervl or intervls is the grph of h concve upwrd? (e) Find the vlue(s) of x t which h hs its bsolute mximum nd minimum on the closed intervl [ 5, 5] figure 57. Given the following grph of function f, define the function g (x) = ech of the following sttements is true or flse. 5 x 5 f (t) dt. Determine whether

6 y 5 5 x figure T F () g ( ) =. T F (b) g ( ) >. T F (c) g () >. T F (d) g () >. T F (e) g ( ) <. T F (f) g () <. 58. For the function g defined in Problem 57 bove, find the points x in the open intervl ( 5, 5) t which g hs locl mximum, nd the points t which g hs n bsolute mximum over the closed intervl [ 5, 5]. 6

### PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

### Applications to Physics and Engineering

Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

### AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

### 5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

### Graphs on Logarithmic and Semilogarithmic Paper

0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

### Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

### Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

### Review guide for the final exam in Math 233

Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

### 1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

### 6.2 Volumes of Revolution: The Disk Method

mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

### Version 001 Summer Review #03 tubman (IBII20142015) 1

Version 001 Summer Reiew #03 tubmn (IBII20142015) 1 This print-out should he 35 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Concept 20 P03

### www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

### Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I

Exm Stuy Guie Mth 2020 - Clculus II, Winter 204 The following is list of importnt concepts from ech section tht will be teste on exm. This is not complete list of the mteril tht you shoul know for the

### Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

### Operations with Polynomials

38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

### 10.6 Applications of Quadratic Equations

10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,

### Experiment 6: Friction

Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

### AAPT UNITED STATES PHYSICS TEAM AIP 2010

2010 F = m Exm 1 AAPT UNITED STATES PHYSICS TEAM AIP 2010 Enti non multiplicnd sunt preter necessittem 2010 F = m Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD

### Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

### SOLUTIONS TO CONCEPTS CHAPTER 5

1. m k S 10m Let, ccelertion, Initil velocity u 0. S ut + 1/ t 10 ½ ( ) 10 5 m/s orce: m 5 10N (ns) 40000. u 40 km/hr 11.11 m/s. 3600 m 000 k ; v 0 ; s 4m v u ccelertion s SOLUIONS O CONCEPS CHPE 5 0 11.11

### Unit 6: Exponents and Radicals

Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

### Week 11 - Inductance

Week - Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n

### Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 tmcwillim@college.hrvrd.edu December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1

### v T R x m Version PREVIEW Practice 7 carroll (11108) 1

Version PEVIEW Prctice 7 crroll (08) his print-out should he 5 questions. Multiple-choice questions y continue on the next colun or pge find ll choices before nswering. Atwood Mchine 05 00 0.0 points A

LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of

### The Definite Integral

Chpter 4 The Definite Integrl 4. Determining distnce trveled from velocity Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: If we know

### Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

### 4.11 Inner Product Spaces

314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

### 9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

### RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

### 15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time

### Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

### Integration by Substitution

Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

### Derivatives and Rates of Change

Section 2.1 Derivtives nd Rtes of Cnge 2010 Kiryl Tsiscnk Derivtives nd Rtes of Cnge Te Tngent Problem EXAMPLE: Grp te prbol y = x 2 nd te tngent line t te point P(1,1). Solution: We ve: DEFINITION: Te

### Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

### P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

### PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

### Section 5-4 Trigonometric Functions

5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

### Math 135 Circles and Completing the Square Examples

Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

### Lectures 8 and 9 1 Rectangular waveguides

1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

### Warm-up for Differential Calculus

Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

### Exponential and Logarithmic Functions

Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define

### The Fundamental Theorem of Calculus

Section 5.4 Te Funmentl Teorem of Clculus Kiryl Tsiscnk Te Funmentl Teorem of Clculus EXAMPLE: If f is function wose grp is sown below n g() = f(t)t, fin te vlues of g(), g(), g(), g(3), g(4), n g(5).

### PROBLEM 4.1 SOLUTION. Knowing that the couple shown acts in a vertical plane, determine the stress at (a) point A, (b) point B.

PROBLEM.1 Knowing tht the couple shown cts in verticl plne, determine the stress t () point A, (b) point B. SOLUTON () (b) For rectngle: For cross sectionl re: 1 = bh 1 1 = 1 + + = ()(1.5) + ()(5.5) +

### Integration. 148 Chapter 7 Integration

48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

### 6 Energy Methods And The Energy of Waves MATH 22C

6 Energy Methods And The Energy of Wves MATH 22C. Conservtion of Energy We discuss the principle of conservtion of energy for ODE s, derive the energy ssocited with the hrmonic oscilltor, nd then use this

### Pure C4. Revision Notes

Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

### Factoring Polynomials

Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

### Lecture 3 Gaussian Probability Distribution

Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

### MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

### Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

### W i f(x i ) x. i=1. f(x i ) x = i=1

Work Force If an object is moving in a straight line with position function s(t), then the force F on the object at time t is the product of the mass of the object times its acceleration. F = m d2 s dt

### Binary Representation of Numbers Autar Kaw

Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

### Vectors 2. 1. Recap of vectors

Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

### addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.

APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The

### SUBSTITUTION I.. f(ax + b)

Integrtion SUBSTITUTION I.. f(x + b) Grhm S McDonld nd Silvi C Dll A Tutoril Module for prctising the integrtion of expressions of the form f(x + b) Tble of contents Begin Tutoril c 004 g.s.mcdonld@slford.c.uk

### Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

### CHAPTER 11 Numerical Differentiation and Integration

CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods

### Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems

Euler Euler Everywhere Using the Euler-Lgrnge Eqution to Solve Clculus of Vrition Problems Jenine Smllwood Principles of Anlysis Professor Flschk My 12, 1998 1 1. Introduction Clculus of vritions is brnch

### EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

### 2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

### Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

### . At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

### 6.5 - Areas of Surfaces of Revolution and the Theorems of Pappus

Lecture_06_05.n 1 6.5 - Ares of Surfces of Revolution n the Theorems of Pppus Introuction Suppose we rotte some curve out line to otin surfce, we cn use efinite integrl to clculte the re of the surfce.

### LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

### Helicopter Theme and Variations

Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

### Basic Analysis of Autarky and Free Trade Models

Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

### CUBIC-FOOT VOLUME OF A LOG

CUBIC-FOOT VOLUME OF A LOG Wys to clculte cuic foot volume ) xylometer: tu of wter sumerge tree or log in wter nd find volume of wter displced. ) grphic: exmple: log length = 4 feet, ech section feet in

### Lecture 5. Inner Product

Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

### 10 AREA AND VOLUME 1. Before you start. Objectives

10 AREA AND VOLUME 1 The Tower of Pis is circulr bell tower. Construction begn in the 1170s, nd the tower strted lening lmost immeditely becuse of poor foundtion nd loose soil. It is 56.7 metres tll, with

### The remaining two sides of the right triangle are called the legs of the right triangle.

10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

### PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

### Reasoning to Solve Equations and Inequalities

Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

### PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS

PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,

### Volumes as integrals of cross-sections (Sect. 6.1) Volumes as integrals of cross-sections (Sect. 6.1)

Volumes s integrls of cross-sections (ect. 6.1) Te volume of simple regions in spce Volumes integrting cross-sections: Te generl cse. Certin regions wit oles. Volumes s integrls of cross-sections (ect.

### Section 6.4: Work. We illustrate with an example.

Section 6.4: Work 1. Work Performed by a Constant Force Riemann sums are useful in many aspects of mathematics and the physical sciences than just geometry. To illustrate one of its major uses in physics,

### MATH PLACEMENT REVIEW GUIDE

MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your

### SPECIAL PRODUCTS AND FACTORIZATION

MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

### Ratio and Proportion

Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty

### 1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply?

Assignment 3: Bohr s model nd lser fundmentls 1. In the Bohr model, compre the mgnitudes of the electron s kinetic nd potentil energies in orit. Wht does this imply? When n electron moves in n orit, the

### Brillouin Zones. Physics 3P41 Chris Wiebe

Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction

### t 3 t 4 Part A: Multiple Choice Canadian Association of Physicists 1999 Prize Exam

Cndin Assocition of Physicists 1999 Prize Exm This is three hour exm. Ntionl rnking nd prizes will be bsed on student s performnce on both sections A nd B of the exm. However, performnce on the multiple

### Section 7-4 Translation of Axes

62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

### Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

### MODULE 3. 0, y = 0 for all y

Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

### Introduction to Integration Part 2: The Definite Integral

Mthemtics Lerning Centre Introduction to Integrtion Prt : The Definite Integrl Mr Brnes c 999 Universit of Sdne Contents Introduction. Objectives...... Finding Ares 3 Ares Under Curves 4 3. Wht is the

### , and the number of electrons is -19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow.

Prolem 1. f current of 80.0 ma exists in metl wire, how mny electrons flow pst given cross section of the wire in 10.0 min? Sketch the directions of the current nd the electrons motion. Solution: The chrge

### APPLICATION OF INTEGRALS

APPLICATION OF INTEGRALS 59 Chpter 8 APPLICATION OF INTEGRALS One should study Mthemtics ecuse it is only through Mthemtics tht nture cn e conceived in hrmonious form. BIRKHOFF 8. Introduction In geometry,

### Distributions. (corresponding to the cumulative distribution function for the discrete case).

Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

### Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

### All pay auctions with certain and uncertain prizes a comment

CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin

### The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.

Instrutor: Longfei Li Mth 43 Leture Notes 16. Line Integrls The invention of line integrls is motivted by solving problems in fluid flow, fores, eletriity nd mgnetism. Line Integrls of Funtion We n integrte

### and thus, they are similar. If k = 3 then the Jordan form of both matrices is

Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

### Work. Example. If a block is pushed by a constant force of 200 lb. Through a distance of 20 ft., then the total work done is 4000 ft-lbs. 20 ft.

Work Definition. If a constant force F is exerted on an object, and as a result the object moves a distance d in the direction of the force, then the work done is Fd. Example. If a block is pushed by a

### B Conic Sections. B.1 Conic Sections. Introduction to Conic Sections. Appendix B.1 Conic Sections B1

Appendi B. Conic Sections B B Conic Sections B. Conic Sections Recognize the four bsic conics: circles, prbols, ellipses, nd hperbols. Recognize, grph, nd write equtions of prbols (verte t origin). Recognize,

### Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity

Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University

### DIFFERENTIATING UNDER THE INTEGRAL SIGN

DIFFEENTIATING UNDE THE INTEGAL SIGN KEITH CONAD I hd lerned to do integrls by vrious methods shown in book tht my high school physics techer Mr. Bder hd given me. [It] showed how to differentite prmeters

### UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES Solution to exm in: FYS30, Quntum mechnics Dy of exm: Nov. 30. 05 Permitted mteril: Approved clcultor, D.J. Griffiths: Introduction to Quntum

### PHY 140A: Solid State Physics. Solution to Homework #2

PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.

### Week 7 - Perfect Competition and Monopoly

Week 7 - Perfect Competition nd Monopoly Our im here is to compre the industry-wide response to chnges in demnd nd costs by monopolized industry nd by perfectly competitive one. We distinguish between