Theorems About Power Series
|
|
|
- Felix O’Connor’
- 9 years ago
- Views:
Transcription
1 Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius of covergece such that. If R = 0, the the series i eq. () coverges for x = 0 ad diverges for ay o-zero real value of x. 2. If R =, the the series i eq. () coverges absolutely for ay (fiite) real umber x. 3. If 0 < R <, the the series i eq. () coverges absolutely for every real umber x such that x < R, ad diverges for every real umber x such that x > R. I may cases, R ca be determied by the ratio test, which yields R = lim a + a Examples of the three possible cases exhibited above are:. (2) (i)! x, (ii) x!, (iii) x. I particular, usig eq. (2), it follows that for the three series listed above, R = 0 for series (i), R = for series (ii) ad R = for series (iii). The iterval of covergece for the series i eq. () is defied to be the set of all possible values of x for which the series coverges. Note that if if 0 < R <, the the covergece properties of eq. () for x = R ad x = R are ot specified, If the limit i eq. (2) does ot exist, the a differet test, called the root test, ca be used to determie the radius of covergece. The root test yields /R = lim a /. If this limit fails to exist, oe ca modify the test slightly by employig the subsequece obtaied from the {a } for which the root test yields the largest possible value i the limit of. If both the ratio test ad the root test apply, oe ca show that they both yield the same value for the radius of covergece R.
2 ad must be determied by other meas. Thus, the iterval of covergece may or may ot iclude oe or both of the edpoits of the iterval R x R. The possible covergece properties at a edpoit are: absolute covergece, coditioal covergece or divergece. Theorem : The power series f(x) = a x is absolutely coverget for x < R, where R is the radius of covergece. Moreover, a x is cotiuous ad ifiitely differetiable withi the iterval of covergece, x < R. Proof: The covergece properties of the power series are a cosequece of the ratio test. The proof of cotiuity ad differetiability ca be foud i the refereces at the ed of this ote. Theorem 2: If the power series f(x) = a x is coverget at x = R, the it is a cotiuous fuctio withi the iterval of covergece icludig the edpoit at x = R. I this case, we have f(r) = lim x R a x = lim a x = x R a R, where lim x R meas that x approaches R from the left, i.e. from iside the iterval of covergece, x < R. That is, i this case it is permissible to iterchage the order of the limit ad the ifiite sum. Likewise, if the power series is coverget at x = R, the it is a cotiuous fuctio withi the iterval of covergece icludig the edpoit at x = R. I this case, we have f( R) = lim x R + a x = lim a x = ( ) a R, x R + where lim x R + meas that x approaches R from the right, i.e. from iside the iterval of covergece, x < R. Theorem 2 is kow as Abel s theorem. As a example of its applicatio, cosider the power series, l( + x) = ( ) +x, x <. (3) I this case, the radius of covergece is R =. Moreover, if we set x = above, the resultig series is coditioally coverget (as a cosequece of the alteratig series test). Thus, the power series for l( + x) is cotiuous at x =, which allows us to coclude that: l 2 = ( ) +. 2
3 The coverse of Abel s theorem is sometimes false. As a example, we cosider the ifiite geometric series, + x = ( ) x. (4) Settig x = above yields the diverget series Hece, the coditios of Abel s theorem are ot satisfied, i which case we caot coclude that ( ) x is cotiuous at x =. I particular, for x =, the left had side of eq. (4) yields. Although oe ca make a case for assigig to the series , the latter series is clearly ot coverget accordig to the stadard mathematical defiitio of covergece. Theorem 3: Cosider a power series f(x) = a x with radius of covergece R. The, term-by-term differetiatio ad itegratio of the power series is permitted, ad does ot chage the radius of covergece. That is, df = d a x d = a x = f(x) = a x = a x = a x, x < R, (5) a x + +. x < R. (6) I particular, for values of x withi the iterval of covergece, x < R, it is permissible to iterchage the order of the ifiite summatio ad the differetiatio or itegratio. This feature is oe of the reasos that power series are so ice they behave for the most part like ordiary polyomials. Proof: This theorem is a simple cosequece of the ratio test. Note that the ratio test is icoclusive at the edpoits of the iterval of covergece, so that the covergece properties at x = R ad x = R must be separately ivestigated. Although a power series, its derivative ad its itegral possess the same radius of covergece, this does ot mea that they have the same iterval of covergece. I particular, the itervals of covergece of the power series represetatios of f(x), df/ ad f(x) ca differ at the edpoits of the iterval of covergece. I geeral, by differetiatig a fuctio defied by a power series with radius of covergece R, we may lose covergece at a edpoit of the iterval of covergece of f(x). I cotrast, by itegratig a fuctio defied by a power series with radius of covergece R, we may gai covergece at a edpoit of the iterval of covergece of f(x). O the other had, the series compariso I geeral, if f(x) = f (x) is a poitwise coverget sum, it may happe that the itegral of the ifiite sum is ot equal to the ifiite sum of the itegrals, ad/or the derivative of the ifiite sum is ot equal to the ifiite sum of the derivatives. However, this caot happe for a power series whe x lies withi the iterval of covergece. 3
4 test implies if f(x) diverges at a edpoit, the df/ must also diverge at that edpoit, whereas if f(x) coverges at a edpoit, the f(x) must also coverge at that edpoit. The followig two examples are istructive. First, we defie the dilogarithm Li 2 (x) via the power series, Li 2 (x) x, x. (7) 2 The ratio test implies that the radius of covergece is R =, ad the p-series test implies that the power series coverges absolutely at both edpoits of the iterval of covergece. Takig a derivative of eq. (7) yields d Li 2(x) = d x = d 2 2 x = x, x <. (8) At x = the resultig series is the alteratig harmoic series which coverges, whereas at x = the resultig series is the harmoic series which diverges. Usig Abel s theorem, we ca exted the domai of validity of eq. (8) to iclude the edpoit x = (but ot the edpoit x = ). That is, eve though the series give by eq. (7) is coverget at x =, the series represetatio of the derivative of Li 2 (x) is diverget at x =. Usig eqs. (3) ad (8), it follows that: d Li l( x) 2(x) =. (9) x Strictly speakig, this result is oly valid i the rage x <. For our secod example, we start with the ifiite geometric series give i eq. (4), which diverges at both edpoits of the iterval of covergece. Computig the itegral of eq. (4) yields: = l( + x) = + x = ( ) x+ ( ) x = + = x ( ) ( ) x, x <. (0) At x = + the resultig series is the alteratig harmoic series which coverges, whereas at x = the resultig series is the egative of the harmoic series which diverges. Usig Abel s theorem, we ca exted the domai of validity of eq. (0) to iclude the edpoit x = (but ot the edpoit x = ). That is, eve though the ifiite geometric series give i eq. (4) is diverget at x =, the series represetatio of the itegral of /( + x) is coverget at x =. 4
5 Theorem 4: Give two power series with radii of covergece R ad R 2, respectively, i.e. f (x) = a x, x < R, () f 2 (x) = b x, x < R 2, (2) the the sum ad product of the two power series are give respectively by: f (x) + f 2 (x) = (a + b )x, x < R, (3) f (x)f 2 (x) = k=0 a k b k x, x < R, (4) where the radius of covergece of the sum ad of the product is at least as large as the miimum of R ad R 2, i.e. R mi{r, R 2 }. The subtractio of two series is the defied simply by chagig the sigs of all the b above before addig the two series. The divisio of the two series, f (x)/f 2 (x), ca be performed if ad oly if b 0 0. Assumig that this coditio holds, f (x) f 2 (x) = c x, x < R, (5) where the radius of covergece satisfies R mi{r, R 2, x 0 }, with x 0 idetified as the zero of f 2 (x) earest to x = 0. The coefficiets c i eq. (5) are determied recursively usig: [ c 0 = a 0 b 0, c = b 0 a ] b k c k k= for =, 2, 3,.... I the geeric case, R = mi{r, R 2 } ad R = mi{r, R 2, x 0 }. However, i special cases the radius of covergece may be larger. Here is oe such example: z = z, z <, (6) z (2 z)( z) = z z = ( ) z 2, z <, (7) 2 have radii of covergece R = R 2 =. Nevertheless, the sum of the two series defied i eqs. (6) ad (7) has a radius of covergece R = 2 > mi{r, R 2 }, z = ( z ), z <
6 Theorem 5: The power series represetatio of a fuctio, f(x) = a x, with a o-zero radius of covergece x < R, is uique. Proof: This is a cosequece of Taylor s theorem i calculus, which provides a explicit formula for the coefficiets of a power series, a = d f.! x=0 Refereces All of the results obtaied i these otes ca be foud i stadard mathematical refereces. I particular, the followig two refereces are elemetary ad highly readable:. Earl D. Raiville, Ifiite Series (The Macmilla Compay, New York, 967). 2. O.E. Staaitis, A Itroductio to Sequeces, Series, ad Improper Itegrals (Holde-Day, Ic., Sa Fracisco, 967). At a slightly higher level, but still accessible, I also recommed: 3. T.J.I a. Bromwich, A Itroductio to the Theory of Ifiite Series (Macmilla & Co. Ltd., Lodo, 959). 4. Korad Kapp, Theory ad Applicatio of Ifiite Series (Dover Publicatios, Ic., Mieola, NY, 990). 5. Bria S. Thomso, Judith B. Brucker ad Adrew M. Brucker, Elemetary Real Aalysis (Pretice-Hall, Ic., Eglewood Cliffs, NJ, 200). 6
4.3. The Integral and Comparison Tests
4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece
SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
Section 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
Sequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
INFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
Infinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
Convexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
Properties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x
0 INFINITE SERIES 0. Sequeces Preiary Questios. What is a 4 for the sequece a? solutio Substitutig 4 i the expressio for a gives a 4 4 4.. Which of the followig sequeces coverge to zero? a b + solutio
Building Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
Lecture 5: Span, linear independence, bases, and dimension
Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;
A probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
Chapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
Overview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
Ekkehart Schlicht: Economic Surplus and Derived Demand
Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/
Basic Elements of Arithmetic Sequences and Series
MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
Math 114- Intermediate Algebra Integral Exponents & Fractional Exponents (10 )
Math 4 Math 4- Itermediate Algebra Itegral Epoets & Fractioal Epoets (0 ) Epoetial Fuctios Epoetial Fuctios ad Graphs I. Epoetial Fuctios The fuctio f ( ) a, where is a real umber, a 0, ad a, is called
AP Calculus AB 2006 Scoring Guidelines Form B
AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success
Soving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
Factors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8
CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive
Asymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
Modified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value
Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
Confidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
3 Basic Definitions of Probability Theory
3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio
Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
Chapter 6: Variance, the law of large numbers and the Monte-Carlo method
Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.
S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,
Degree of Approximation of Continuous Functions by (E, q) (C, δ) Means
Ge. Math. Notes, Vol. 11, No. 2, August 2012, pp. 12-19 ISSN 2219-7184; Copyright ICSRS Publicatio, 2012 www.i-csrs.org Available free olie at http://www.gema.i Degree of Approximatio of Cotiuous Fuctios
I. Chi-squared Distributions
1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.
Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2
74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is
Class Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
An Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function
A Efficiet Polyomial Approximatio of the Normal Distributio Fuctio & Its Iverse Fuctio Wisto A. Richards, 1 Robi Atoie, * 1 Asho Sahai, ad 3 M. Raghuadh Acharya 1 Departmet of Mathematics & Computer Sciece;
Normal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
3. Greatest Common Divisor - Least Common Multiple
3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
CHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
Metric, Normed, and Topological Spaces
Chapter 13 Metric, Normed, ad Topological Spaces A metric space is a set X that has a otio of the distace d(x, y) betwee every pair of poits x, y X. A fudametal example is R with the absolute-value metric
http://www.webassign.net/v4cgijeff.downs@wnc/control.pl
Assigmet Previewer http://www.webassig.et/vcgijeff.dows@wc/cotrol.pl of // : PM Practice Eam () Questio Descriptio Eam over chapter.. Questio DetailsLarCalc... [] Fid the geeral solutio of the differetial
1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
Institute of Actuaries of India Subject CT1 Financial Mathematics
Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i
Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction
THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,
Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
Chapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
Chapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity
where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
Research Article Sign Data Derivative Recovery
Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov
NATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
ON THE DENSE TRAJECTORY OF LASOTA EQUATION
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLIII 2005 ON THE DENSE TRAJECTORY OF LASOTA EQUATION by Atoi Leo Dawidowicz ad Najemedi Haribash Abstract. I preseted paper the dese trajectory
A Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
Lecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular
SEQUENCES AND SERIES
Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say
AP Calculus BC 2003 Scoring Guidelines Form B
AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet
Chapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
Part - I. Mathematics
Part - I Mathematics CHAPTER Set Theory. Objectives. Itroductio. Set Cocept.. Sets ad Elemets. Subset.. Proper ad Improper Subsets.. Equality of Sets.. Trasitivity of Set Iclusio.4 Uiversal Set.5 Complemet
hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
Section 8.3 : De Moivre s Theorem and Applications
The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =
Hypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
Department of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE
Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau
GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4
GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5
1 The Gaussian channel
ECE 77 Lecture 0 The Gaussia chael Objective: I this lecture we will lear about commuicatio over a chael of practical iterest, i which the trasmitted sigal is subjected to additive white Gaussia oise.
CS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least
Incremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich [email protected] [email protected] Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <[email protected]>
(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork
Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the
THE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
7.1 Finding Rational Solutions of Polynomial Equations
4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?
A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design
A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 [email protected] Abstract:
Analysis Notes (only a draft, and the first one!)
Aalysis Notes (oly a draft, ad the first oe!) Ali Nesi Mathematics Departmet Istabul Bilgi Uiversity Kuştepe Şişli Istabul Turkey [email protected] Jue 22, 2004 2 Cotets 1 Prelimiaries 9 1.1 Biary Operatio...........................
Maximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
On Formula to Compute Primes. and the n th Prime
Applied Mathematical cieces, Vol., 0, o., 35-35 O Formula to Compute Primes ad the th Prime Issam Kaddoura Lebaese Iteratioal Uiversity Faculty of Arts ad cieces, Lebao [email protected] amih Abdul-Nabi
How To Solve An Old Japanese Geometry Problem
116 Taget circles i the ratio 2 : 1 Hiroshi Okumura ad Masayuki Wataabe I this article we cosider the followig old Japaese geometry problem (see Figure 1), whose statemet i [1, p. 39] is missig the coditio
Remarques sur un beau rapport entre les series des puissances tant directes que reciproques
Aug 006 Traslatio with otes of Euler s paper Remarques sur u beau rapport etre les series des puissaces tat directes que reciproques Origially published i Memoires de l'academie des scieces de Berli 7
Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
Now here is the important step
LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"
Output Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
